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1. Introduction 
 

The use of composite structures has developed greatly in 

recent years in many fields such as aerospace, naval, 

automotive and constructions, for their superior 

performance and reliability (Ozturk, 2015, Draiche et al. 

2016, Chikh et al. 2017). In order to predict accurately their 

structural responses; various beam theories with different 

approaches have been developed. A composite beam used 

as a structural element is often subjected to different types 

of compression which can cause buckling. Knowledge of 

critical and post-critical behaviour is then necessary in the 

dimensioning of these beams. However, composite 

materials are characterized by their anisotropic behavior. 

The behavior of composite structures has been identified 

since 1975 (Housner 1975, Jones 1998). However, the fact 

that the structures are composed of layers of superposed 

folds leads to specific modes of rupture. These are mainly 

delaminated and detachments due to the intrinsic weakness 

in transverse composite structures. Analysis of the stability  
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of composite plates is much more difficult. Indeed, the 
critical load depends on other additional parameters such as 
fiber orientation, stacking sequence, geometric variables 
and boundary conditions (Hirano 1980, Fukunaga 1986, 
Miki et al. 1986, Yung et al. 1989). There are many theories 
that have been proposed to explain the shear deformation of 
moderately deep and highly anisotropic composite 
structures. The study of the behaviour of composite 
laminated plates is based on the theory of laminates. This 
theory uses the same hypotheses as the general theory of 
plates which are, in a scheme of first degrees, associated 
with the names of Reissner/Mindlin and Kirchoff-Love. 
Kirchoff-Love's theory is historically one of the first two-
dimensional approaches to bending elastic plates. It is based 
on the preservation of normals, neglecting transverse shear. 
In the case of Thick plates, the contribution of transverse 
shears is not negligible and then the preservation hypothesis 
of normal is no longer applied. The Reissner/Mindlin theory 
allows transverse shearing to be taken into account. It is 
based on the kinematic assumption of the plane sections but 
introducing a shear correction factor (Bellifa et al. 2016). 
The higher order theory is best suited to thick plates; it is 
based on a nonlinear distribution of fields across the 
thickness. This model does not require correction factors. In 
this theory, the displacement fields of the components were 
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Abstract.  In this paper, an exact analytical solution is developed for the analysis of the post-buckling non-linear response of 

simply supported deformable symmetric composite beams. For this, a new theory of higher order shear deformation is used for 

the analysis of composite beams in post-buckling. Unlike any other shear deformation beam theories, the number of functions 

unknown in the present theory is only two as the Euler-Bernoulli beam theory, while three unknowns are needed in the case of 

the other beam theories. The theory presents a parabolic distribution of transverse shear stresses, which satisfies the nullity 

conditions on both sides of the beam without a shear correction factor. The shear effect has a significant contribution to buckling 

and post-buckling behaviour. The results of this analysis show that classical and first-order theories underestimate the amplitude 

of the buckling whereas all the theories considered in this study give results very close to the static response of post-buckling. 

The numerical results obtained with the novel theory are not only much more accurate than those obtained using the Euler-

Bernoulli theory but are almost comparable to those obtained using higher order theories, Accuracy and effectiveness of the 

current theory. 
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chosen in different shapes in order to satisfy the zero-shear 
stress on the upper and lower fibers. The well-known 
higher-order plate theories with five unknown functions are 
as follows: the third-order beam theory (TBT) (Levinson 
1980, Murthy 1981, Reddy 1984), the sinusoidal beam/plate 
theory (SBT) (Touratier 1991, Hamidi et al. 2015), the 
hyperbolic beam/plate theory (HBT) (Soldatos 1992, Saidi 
et al. 2016, Zidi et al. 2017) and the exponential theory 
(EBT) (Karama et al. 2003). Recently, new shear 
deformation theories are developed with few unknowns 
(Bessaim et al. 2013, Bouderba et al. 2013, Tounsi et al. 
2013, Ait Amar Meziane et al. 2014, Fekrar et al. 2014, 
Akavci 2014, Bousahla et al. 2014, Zidi et al. 2014, Hebali 
et al. 2014, Belabed et al. 2014, Attia et al. 2015, Ait Yahia 
et al. 2015, Larbi Chaht et al. 2015, Al-Basyouni et al. 
2015, Taibi et al. 2015, Zemri et al. 2015, Belkorissat et al. 
2015, Bourada et al. 2015, Mahi et al. 2015, Ahouel et al. 
2016, Kar and Panda 2016, 2017, Bennoun et al. 2016, 
Houari et al. 2016, Beldjelili et al. 2016, Barati et al. 2016, 
Boukhari et al. 2016, Bounouara et al. 2016, Besseghier et 
al. 2017, Mouffoki et al. 2017, Bellifa et al. 2017a, Fahsi et 
al. 2017, Hirwani et al. 2017, Benadouda et al. 2017, 
Bouafia et al. 2017, Yazid et al. 2018, Meksi et al. 2018, 
Youcef et al. 2018, Attia et al. 2018, Benchohra et al. 2018, 
Abualnour et al. 2018). The aforementioned theories are 
applied at the fold level, which requires many unknowns for 
multi-layered plates and is often the calculations are tedious 
to get accurate results. Recently, Bouderba et al. (2016) 
proposed a new simple theory of first-order shear 
deformation is developed and validated for a variety of 
numerical examples of the thermal buckling response of an 
FGM plate with different boundary conditions with only 
four unknowns, unlike to the first theory of conventional 
first-order shear deformation and has strong similarities 
with classical plate theory in aspects such as motion 
equations, and constraint expressions. The study of the 
stability of the plates was also of interest to Bakora and 
Tounsi (2015) investigated the thermo-mechanical post-
buckling of an FGP plate on an elastic foundation. Panda 
and Singh (2009) studied thermal post-buckling behavior of 
laminated composite cylindrical/hyperboloid shallow shell 
panel using nonlinear finite element method. Panda and 
Singh (2010) analyzed thermal post-buckling analysis of a 
laminated composite spherical shell panel embedded with 
shape memory alloy fibres using non-linear finite element 
method. Panda and Singh (2013a) presented nonlinear finite 
element analysis of thermal post-buckling vibration of 
laminated composite shell panel embedded with SMA fibre. 
Panda and Singh (2013b) examined post-buckling behavior 
of laminated composite doubly curved panel embedded 
with SMA fibers subjected to thermal environment. Panda 
and Singh (2013c) studied thermal postbuckling behavior of 
laminated composite spherical shell panel using NFEM. 
Daneshmehra et al. (2013) presented a post-buckling 
analysis of functionally graded beams according to different 
shear deformation theories. Swaminathan and 
Naveenkumar (2014) presented higher order refined 
computational models for the stability analysis of 
functionally graded plates. Akbaş (2015a) investigated the 
wave propagation of a functionally graded beam in thermal 
environments. Akbaş (2015b) examined the post-buckling 
analysis of axially functionally graded three-dimensional 
beams. Katariya and Panda (2016) studied thermal buckling 

and vibration response of laminated composite curved shell 
panel. Barka et al. (2016) studied thermal post-buckling 
behavior of imperfect temperature-dependent sandwich 
functionally graded plates resting on Pasternak elastic 
foundation. Abdelaziz et al. (2017) presented an efficient 
hyperbolic shear deformation theory for bending, buckling 
and free vibration of FG sandwich plates with various 
boundary conditions. Katariya et al. (2017) predicted 
nonlinear eigenfrequency of laminated curved sandwich 
structure using higher-order equivalent single-layer theory. 
Kar et al. (2017) examined the influence of different 
temperature load on thermal post-buckling response of 
functionally graded shallow curved shell panels. The 
instability of buckling is related to the geometry of the 
structure and its loading (Ahmed 2014). Baseri et al. (2016) 
used an analytical solution for buckling of embedded 
laminated plates based on higher order shear deformation 
plate theory. Bousahla et al. (2016) studied the thermal 
stability of plates with functionally graded coefficient of 
thermal expansion. Sekkal et al. (2017a, b) presented both 
2D and quasi 3D HSDT for buckling and vibration of FG 
plate. Menasria et al. (2017) presented a new and simple 
HSDT for thermal stability analysis of FG sandwich plates. 
Aldousari (2017) presented a bending analysis of different 
material distributions of functionally graded beam. Bellifa 
et al. (2017b) proposed a nonlocal zeroth-order shear 
deformation theory for nonlinear postbuckling of 
nanobeams. Khetir et al. (2017) investigated the thermal 
buckling behavior of embedded nanosize FG plates using a 
new nonlocal trigonometric shear deformation theory. El-
Haina et al. (2017) presented a simple analytical approach 
for thermal buckling of thick functionally graded sandwich 
plates. Rahmani et al. (2017) employed various nonlocal 
higher-order shear deformation beam theories to study the 
bending and buckling behavior of FG beam. A slender 
structure loaded in compression in its plane or along its 
axis, as opposed to transverse loading or bending, enters a 
state of unstable equilibrium from of a certain level of 
loading. In other words, beyond this level of loading, an 
Infinitesimal disturbance modifies the deformation mode of 
the structure (Timoshenko and Gere 1963). The buckling 
therefore corresponds to a change of equilibrium branch, 
Branch fundamental to a secondary branch. After buckling 
(in the postbuckling phase), the structure deforms in the 
directions transverse to the axis or to the loading plane. Part 
of the deformation energy in the plane, or along the axis, is 
thus transformed into bending deformation energy and of 
transverse shear. The new state of equilibrium may itself be 
stable or unstable in the sense that a disturbance of the 
imposed effort leads to an undetermined increase of the 
deflection. In post-buckling, the secondary branch et is 
theoretically unstable (horizontal) (Stolz 2003), but in 
practice the loading may increase slightly with deflection of 
geometric non-linearity. 

In this paper an efficient and simple refined theory with 

only two unknown functions is developed to study and 

examine the importance of shear deformation on the post-

buckling response of composite beams. The ends of the 

beam are assumed to be axially blocked, and consequently 

the geometrical non-linearity due to the stretching of the 

mean plane becomes significant. The constitutive equations 

for composite beams were obtained using the Von-Karman 

theory for large deflections (Kar et al. 2015, Kar and Panda  
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Fig. 1 Geometry of a laminated composite beam 

 

Table 1 The shape function )(zf  describing the shear 

deformation according to different beam theories 
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2015). The governing equations composed of two partial 

nonlinear differential equations in terms of axial and lateral 

displacements in the mean plane. For the static problem, the 

model is manipulated to become explicitly independent of 

the axial displacement, and consequently a bending model 

is obtained. Assuming a symmetrically supported laminated 

beam, the displacement field is postulated to satisfy the 

boundary conditions. The post-buckling static amplitude is 

obtained by solving the nonlinear equations while the 

critical buckling load is obtained by solving their linear 

counterparts. The results showing the variation of the post-

buckling amplitude with the applied axial load are 

presented. Increases in static post-buckling intervention 

such as shear deformation have been shown to become 

more important. 

 

 

2. Theoretical formulation 
 

2.1 Kinematics of the present beam model 
 

A laminated composite beam with rectangular section

)( hb  and length L  is subjected to a compressive axial 

load N  as shown in Fig. 1. 

For the development of the present shear deformation 

theory, the following displacement field is assumed 
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where
0

u and
0

w are the two unknown functions of mid-

plane displacements of beam, respectively. f(z) represents  

 

Fig. 2 Representation of global and individual axis acting 

on a single lamina 

 

 

the shape functions determining the distribution of the 

transverse shear strains and stresses along the thickness. 

Table 1 presents the function f(z) according to different 

beam theories. For the transverse shear stress behaviour, it 

is very important that the first derivative of the transverse 

shear stress function must give a parabolic response in the 

thickness direction of the laminate and satisfy the boundary 

conditions. 

 

2.2 The strain field 
 

The non-linear von Karman strain–displacement 

equations are as follows 
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On the basis of the displacement field given in Eq. (1), 

Eq. (2) becomes 
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and  

 zf)z(g 
 (5) 

 

2.3 Constitutive relations 
 

The stresses acting on a lamina (ply of the laminate) are 

three-dimensional state stresses, in general. However, the 

thickness of a lamina is very thin. Hence, a generalized 

state of plane stress is assumed. That means, no 

interlaminar stresses are included in this analysis. 

Considering x-y-z as the global coordinate and 1-2-3 as the 

principal material coordinate (Fig. 2), the stress-strain 

relationship in 1-2-3 coordinate can be written as equation 
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where ( x , y , xy , yz , xz ) are the constraints and ( x ,

y , xy , yz , xz ) are the strains relative to the coordinates 

(1-2-3) of the layer and the matrix are stiffness coefficients 

of the k-th layer in the axis reference system  (1-2-3). 
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material properties of the lamina. 
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Then if the principal axes of the lamina are rotated to 

coincide with the global x and y axes, the transformation of 

stiffness matrix   k
Q is expressed in equation 
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where cosm and sinn  

In global coordinates (x, y, z), the stress-strain 

relationship for the k-th layer, is written as 
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where   k
Q is elastic stiffness matrix in the global 

coordinates. 

The stress-strain relationship of the kth-layer (Eqs. (9, 

10)) for beam is written in the simplified form as  
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2.4 Governing equations 
 

The governing equations can be obtained using the 

principle of virtual work. The principle can be stated in the 

following form 
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where is the top surface. 

Substituting Eqs. (3), (4) and (5) into Eq. (12) and 

integrating through the thickness of the plate, Eq. (12) can 

be rewritten as 
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In which the stress resultants xxx SMN ,,  and xQ  are 
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where kh  and 1kh  are the top and bottom z-coordinates 

of the kth-layer. 

The governing equations can be obtained from Eq. (13) 

by integrating the displacement gradients by parts and 

624



 

Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory 

 

setting the coefficients 0 u  and 0 w  zero separately. 

Thus, one can obtain the equilibrium equations associated 

with the present shear deformation theory. 
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2.5 Governing equations in terms of displacements 
 

By substituting Eq. (4) into Eq. (8) and the subsequent 

results into Eq. (14), the stress resultants can be written as 

below 
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By substituting Eq. (16) into Eq. (15), the governing 

equations can be written in terms of generalized 

displacements ( 0u  and 0w ) as 
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One notes that Eq. (18a) may be solved for the axial 

displacement
 
u0, and hence it can be eliminated from the 

other two equations. This will lead to a flexural model that 

is given in terms of only the displacements unknowns
 
w0. It 

is worth noting that this is applicable regardless of the 

symmetry property of the structural laminate. Integrating 

Eq. (18a) with respect to the spatial coordinate x yields 
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where 1c  is a constant that represents the induced axial 

tension force due to midplane stretching as it will be shown. 

Integrating Eq. (19) once more, we obtain 
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For the midplane stretching to be significant, the beam 

ends must be restrained (Nayfeh and Mook 1979). The 

boundary conditions for the axial displacement are assumed 

as follows 
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The constants 1c  and 2c  are now given by 
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If 11B  and sB11  vanish, as in the case of a symmetric 

laminate, or xw  0 and 
3

0
3 xw   vanish at the beam 

ends, as in the case of clamped–clamped beams, one can 

easily note that the constant 1c  yields the well-known 

tension force due to midplane stretching. Now, Eq. (19) can 

be rewritten as follows 
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Eq. (18a) and its first derivative can be expressed as 

follows 
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and 
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Substituting Eqs. (23)-(26) into Eq. (18b), we obtain 
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where   is a constant defined by 
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For symmetric laminates, the stiffness's 11B  and sB11  

vanishes. A simply supported beam has the following 

boundary conditions 

LxatSMw xx ,000   (29) 

In view of Eq. (16), the stress resultants xM  and xS  

are given by 
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These two equations can be solved for 
2

0
2 xw   and 
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0
4 xw  at the boundaries and obtain 
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Since ,11
sD sH11  and 11D  do not vanish, the boundary 

conditions in terms of the displacements can be expressed 

as follows 
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The first buckling mode was proofed to be the only 

stable equilibrium position (Nayfeh et al. 2008). For simply 

supported boundary conditions outlined above, the 

following displacement field is assumed 

L

x
axw sin)(   (34) 

where a is unknown to be determined. Substituting Eq. (34) 

into Eq. (27), yields three solutions: the first is the trivial 

solution, 0a , that corresponds to the equilibrium 

position in the prebuckling state and the other two 

solutions, 0a , correspond to the stable equilibrium 

positions in the postbuckling state. As it is well-known, the 

prebuckling equilibrium position becomes unstable beyond 

the state of buckling. The postbuckling response can be 

obtained as follows 
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We note that the buckling amplitude a , corresponds to 

the maximum buckling level that occurs at the midspan of 

the beam where x = L/2. 

On the other hand, the critical buckling load, crN , can be 

obtained by solving the linear counterpart of Eq. (27). The 

result is 
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For convenience, the following non-dimensional critical 

buckling load, crP , is used 
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L
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3. Results and discussion 
 

In this section, the present theory with only two 

functions unknown has been verified by comparing the 

obtained results and to investigate the responses of 

composite beams for postbuckling problems with those 

available in the literature. We consider a (0°/90°/0°) cross-

ply symmetrically laminated simply supported beam with 

the following properties (Aydogdu 2009):  
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Fig. 3 Variation of the maximum buckling with the applied 

axial load for L/h = 5 and E1/E2 = 10 

 

Table 2 Non-dimensional first critical buckling load using 

different beam theories 

2

1

E

E  
Beam theory 

L/h 

5 10 20 50 100 

10 

Euler-Bernoulli 8.001 8.001 8.001 8.001 8.001 

Timoshenko 5.113 7.011 7.728 7.956 7.989 

Reddy 4.727 6.814 7.666 7.945 7.987 

Karama et al. 4.734 6.815 7.666 7.945 7.987 

Soldatos 4.727 6.813 7.666 7.945 7.987 

Touratier 4.734 6.815 7.666 7.945 7.987 

Present 4.727 6.813 7.666 7.945 7.987 

40 

Euler-Bernoulli 31.760 31.760 31.760 31.760 31.760 

Timoshenko 9.797 20.353 27.857 31.064 31.583 

Reddy 8.613 18.832 27.086 30.906 31.542 

Karama et al. 8.699 18.862 27.092 30.906 31.542 

Soldatos 8.644 18.834 27.083 30.905 31.542 

Touratier 8.699 18.862 27.092 30.906 31.542 

Present 8.644 18.834 27.083 30.905 31.542 
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In order to validate and demonstrate the accuracy and 

efficiency of the new shear deformation theory developed in 

the present study, with only two unknown functions, we 

determine the nondimensional first critical buckling load for 

laminated beams with different length-to-height ratios and 

compare the results with those available in the literature. 

Table 2 shows the critical buckling loads given by Eq. 

(38), for laminates (0°/ 90°/0°) with different length-to-

height ratios L/h = 5, 10, 20, 50, 100 using different 

theories of beams. Current solutions are validated against 

those derived from higher order theories (TBT, SBT, HBT, 

EBT) as well as the Euler-Bernoulli theory and that of 

Timoshenko. As can be seen from the results found in this 

table, the shear deformation has a significant effect on the 

critical buckling loads. The results given by the new theory 

of deformations of higher order with two variables are in  

 

Fig. 4 Variation of the maximum buckling with the applied 

axial load for L/h = 10 and E1/E2 = 10 

 

 

Fig. 5 Variation of the maximum buckling with the applied 

axial load for L/h = 20 and E1/E2 = 10 

 

 

excellent agreements with the solutions of the different 

models are observed. Note also for the new theory of shear 

deformation with two unknown functions that the effect of 

deformation by shear is greater for the composites with high 

orthotropy, that is to say a high ratio. These results are in 

good agreement with those of Soldatos (Soldatos 1992). We 

can also observe that the theories of Levinson (1980), 

Murthy (1981) and Reddy and Soldatos as well as the new 

theory of shear deformation with two unknown functions 

give results more precise than the other theories of shear 

deformation. After having verified the accuracy and 

precision of this new theory of high-order in the calculation 

of the critical buckling load, we will show that this new 

theory is also precise in the contribution of the resulting 

postbuckling response which is the subject of this study. 

As the first example, (0°/90°/0°) composite beams with 

material I and 1021 EE  is considered.  Their mid-span 

postbuckling amplitude with the applied axial load with 5 

ratios of length to-depth, L/h=5, 10, 20, 50 are given in 

Figs. 3-6. Which studied the variation of the buckling 

amplitude a  with the applied axial load P . 

As can be noted from the figures, the length-to- 
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Fig. 6 Variation of the maximum buckling with the applied 

axial load for L/h = 50 and E1/E2 = 10 

 

 

Fig. 7 Variation of the maximum buckling with the applied 

axial load for L/h = 5 and E1/E2 = 40 

 

 

Fig. 8 Variation of the maximum buckling with the applied 

axial load for L/h = 10 and E1/E2 = 40 

 

 

thickness ratio is a crucial parameter in the analysis of post-

buckling of composite beams. It can be noted that, every 

time that the report length on height increases the different 

theories giving identical results. For a ratio of length to-

depth L/h=5 the choice of the theory is important. 

 

Fig. 9 Variation of the maximum buckling with the applied 

axial load for L/h = 20 and E1/E2 = 40 

 

 

Fig. 10 Variation of the maximum buckling with the applied 

axial load for L/h = 50 and E1/E2 = 40 

 

 

As shown in Table 2 when determining the critical 

buckling load, the new theory of higher order shear 

deformation at two unknown functions is in good 

agreement with the results found with the other five-

variable theories, these figures also show that the solutions 

are also identical in post-buckling without forgetting the 

effect of the deformation theory. The results found by the 

new theory of higher order shear deformation to two 

unknown functions in post-buckling are very close. We also 

note that the theory of first-order shear deformation always 

underestimates the amplitude of buckling in relation to 

higher order theories. For a length / height ratio of 50, the 

shear deformation effect can be neglected. 

It should be noted that the Figs. 7-10 present the 

variation of the amplitude of buckling with the axial load 

for material II where 40
21
EE . These figures clearly 

show that the responses are similar to those found using 

material I, however, the latter are much more important 

because the material II at high orthotropy, i.e. a high ratio. 

The new theory of higher order shear deformation at two 

unknown functions is in good agreement with the results 

found with the other five-variable theories, however the 

post-buckling response found using the Euler-Bernoulli 
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theory is under Estimated in relation to higher order 

theories. FIG. 8 shows that for a slender girder all theories 

are combined in this case so that the shear deformation is 

neglected, the length-thickness ratio must be greater than 

50. 

 

 

4. Conclusions 
 

An efficient and simple theory of refined plates has been 

successfully developed for post-buckling analysis of 

composite beams. The composite beams are subjected to an 

axial compression load and their non-linear geometry is 

introduced into the deformation-strain equations based on 

the Von-Karman assumptions. The principle of virtual 

works as well as current theory and the first and third order 

shear deformation theories are used to predict the amplitude 

of the composite beams. It can be concluded that the present 

theory is not only accurate but also effective in predicting 

the post-buckling response of the composite beam 

compared to other shear deformation beam theories such as 

Timoshenko and higher order theories (TBT, SBT, HBT, 

EBT). 
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