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1. Introduction 
 

Recently, nanotechnology and nanostructures have 

gained an unbelievable role in the modern engineering and 

the rate of nanostructures’ employment in various 

micro/nano electro-mechanical-systems (MEMS/NEMS) is 

rising with a high speed (Ebrahimi and Barati 2016a, b, c, d, 

e, Ebrahimi et al. 2016a, Ebrahimi and Dabbagh 2016, 

Ebrahimi and Hosseini 2016a, b). Therefore, such structures 

must be analyzed properly in different mechanical aspects 

and this process cannot be performed using classical 

continuum theory. The mechanical responses of nanosize 

structures are completely different from those in the macro 

scale and this is the main issue of developing size-

dependent continuum theories. 

The flexoelectricity is related to a particular 

electromechanical coupling phenomenon between 

polarization and strain gradients (Jiang et al. 2013). In fact, 

imposing a strain gradient to dielectrics can induce an 

electrical polarization by breaking the inversion symmetry. 

It is well known that the flexoelectricity provides an 

inherent size effect as the dimensions of nanostructured 

materials decrease. Contrary to flexoelectricity, the 

piezoelasticity cannot introduce such size effect for a wide 

range of dielectrics applied in NEMs. Also, having a large 

ratio of surface area to volume in nanomaterials, surface 

effects have been believed to involve the size-dependency 

of material properties. According to the surface elasticity 

theory developed by Gurtin and Murdoch (1975), the size-

dependency of nanoscale structures due to the surface 

effects have been broadly researched by the modified  
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continuum models from static and dynamic perspectives 

(Wang and Wang 2011, Hosseini et al. 2016). 

Recently, a number of researches are performed to 

incorporate the surface effects in analysis of piezoelectric 

nanostructure. Yan and Jiang (2011) investigated surface 

effects on vibration and buckling of piezoelectric 

nanobeams with surface effects. Also, Yan and Jiang (2012) 

explored vibrational and stability behaviors of piezoelectric 

nanoplates considering surface effects and in-plane 

constraints. A Two-dimensional theory of surface 

piezoelasticity of plates is presented by Zhang et al. (2013). 

Also, Zhang et al. (2014a) researched wave propagation of 

piezoelectric nanoplates considering surface effects. Also, 

Zhang et al. (2014b) investigated the influence of surface 

piezoelasticity on the buckling behavior of piezoelectric 

nanofilms subjected to mechanical loadings. Recently, Li 

and Pan (2016) presented bending analysis of a sinusoidal 

piezoelectric nanoplate with surface effects. As a deficiency, 

the nonlocality of stress field is not considered in these 

papers. 

Recently, modeling of nanostructures by using the 

nonlocal elastic field theory of Eringen (1972, 1983) has 

received wide importance. The prominence of nonlocal 

theory of elasticity has stimulated the researchers to 

investigate the behavior of the nanostructures much 

accurately (Ebrahimi and Barati 2016f, g, h, i, j, k, l, 

Ebrahimi and Barati 2017). This theory contains a nonlocal 

stress field parameter which introduces a stiffness-softening 

influence on the nanostructures. To include the nonlocal 

effects in analysis of piezoelectric nanostructures, Ke and 

Wang (2012) investigated thermal vibration of piezoelectric 

nanoscale beams according to the nonlocal theory. Wang 

and Wang (2012) researched the electromechanical 

coupling behavior of a piezoelectric nanowire incorporating 

both surface and nonlocal effects. Also, Liu et al. (2013) 
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presented vibration analysis of piezoelectric nanoplates 

exposed to thermo-electro-mechanical loads based on the 

nonlocal theory. Thermal buckling and free vibration 

analysis of FG nanobeams subjected to temperature 

distribution have been exactly investigated by Ebrahimi and 

Salari (2015a, b, c) and Ebrahimi et al. (2015 a, b). 

Ebrahimi and Barati (2016o, p, q) investigated buckling 

behavior of smart piezoelectrically actuated higher-order 

size-dependent graded nanoscale beams and plates in 

thermal environment. Asemi et al. (2014) explored the 

Influence of initial stress on vibrational behavior of double-

piezoelectric-nanoplate systems under different boundary 

conditions. Zang et al. (2014) investigated axial wave 

propagation of piezoelectric nanoplates considering surface 

and nonlocal effects. Liu et al. (2014) studied buckling and 

post-buckling behaviors of piezoelectric Timoshenko 

nanobeams under thermo-electro-mechanical loadings. Ke 

et al. (2015) reported vibration response of a nonlocal 

piezoelectric nanoplate considering various boundary 

conditions. Liu et al. (2015) presented large amplitude 

vibration of nonlocal piezoelectric nanoplates under electro-

mechanical coupling. Asemi et al. (2015) researched the 

nanoscale mass detection using vibrating piezoelectric 

ultrathin films subjected to thermo-electro-mechanical 

loads. Ansari et al. (2016) presented thermo-electrical 

vibrational analysis of post-buckled piezoelectric nanosize 

beams according to the nonlocal elasticity theory. Ebrahimi 

and Barati (2016a) investigated dynamic behavior of non-

homogenous piezoelectric nanobeams under magnetic field. 

Wang et al. (2016) investigated vibration response of 

piezoelectric circular nanoplates considering surface and 

nonlocal effects. Ebrahimi and Barati (2017a) presented 

buckling analysis of nonlocal third-order shear deformable 

piezoelectric nanobeams embedded in elastic medium. Liu 

et al. (2016) studied nonlinear vibration of piezoelectric 

nanoplates using nonlocal Mindlin plate theory. 
Incorporation of flexoelectric effect in analysis of 

piezoelectric nanostructures is carried out by few 
researchers. Zhang et al. (2014) examined the flexoelectric 
effect on the electroelastic and vibration responses of 
piezoelectric nanoplates. Liang et al. (2014) showed the 
influences of surface and flexoelectricity on a piezoelectric 
nanobeam. Zhang and Jiang (2014) investigated bending 
behavior of piezoelectric nanoplates due to surface effects 
and flexoelectricity. Yang et al. (2015) examined 
electromechanical behavior of piezoelectric nanoplates with 
flexoelectricity under simply-supported boundary 
conditions. Liang et al. (2015) presented buckling and 
vibration behaviors of piezoelectric nanowires due to 
flexoelectricity. Liang et al. (2016) examined buckling and 
vibration of flexoelectric nanofilms under simply-supported 
boundary conditions. But, they did not consider the effects 
of surface piezoelasticity, nonlocality and other kinds of 
boundary conditions in their model. Most recently, surface 
and nonlocal effects on vibration behavior of flexoelectric 
nanobeams is examined by Ebrahimi and Barati (2017b). 
They reported that flexoelectricity effect is more prominent 
for slender beams. Thus, it is reliable to model a 
flexoelectric nanobeam by Euler-Bernoulli beam theory. 
They also showed that the mechanical behavior of 
piezoelectric nanobeams is significantly influenced by the 
presence of nonlocality. Therefore, there is a strong 

scientific need to investigate thermal vibration behavior of 
flexoelectric/piezoelectric nanobeams incorporating both 
surface piezoelasticity and nonlocal effects. 

In this paper, thermo-electro-mechanical vibration 

behavior of size-dependent flexoelectric/ piezoelectric 

nanobeams is investigated based on nonlocal and surface 

elasticity theories. Flexoelectricity represents the coupling 

between strain gradients and electrical polarizations. The 

flexoelectric/piezoelectric nanobeam is exposed to uniform 

and linear temperature rises across the thickness. Nonlocal 

elasticity theory of Eringen is applied in analysis of 

flexoelectric/piezoelectric nanobeams for the first time. The 

residual surface stresses which are usually neglected in 

modeling of flexoelectric/piezoelectric nanobeams are 

incorporated into nonlocal elasticity to provide better 

understanding of the physic of problem. Applying a 

Galerkin-based solution which satisfies various boundary 

conditions the governing equations obtained from 

Hamilton’s principle are solved. The reliability of present 

approach is verified by comparing obtained results with 

those provided in literature. Finally, the influences of 

nonlocal parameter, surface effect, plate geometrical 

parameters, thermal environments and boundary conditions 

on the vibration characteristics of flexoelectric/piezoelectric 

nanobeams are explored. 

 

 

2. Nonlocal elasticity theory for the piezoelectric 

materials with flexoelectric effect 
 

Suppose a nanobeam made of PZT-5H piezoelectric 

material, as shown in Fig. 1. According to the nonlocal 

elasticity model (Eringen 1972) which contains wide range 

interactions between points in a continuum solid, the stress 

state at a point inside a body is introduced as a function of 

the strains of all neighbor points. The influence of 

flexoelectricity due to the elastic polarization Pi induced by 

strain gradient, and the elastic stress created by electric field 

gradient, can be expressed by 

2 2
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(1b) 

where σij, εij, Ek denote the stress, strain and electric field 

components, respectively; Cijkl, ekij and kik are elastic, 

piezoelectric and dielectric constant, respectively. Also, χij 

is the relative dielectric susceptibility and fijkl is the 

flexoelectric coefficient. αkl, ΔT and pi are thermal 

expansion coefficient, temperature change and pyroelectric 

constant, respectively. Also, e0a is nonlocal parameter 

which is introduced to describe the size-dependency of 

nanostructures. The effect of flexoelectricity is involved 

using the following expression of the electric enthalpy 

energy density as follows (Zhang et al. 2014) 

1 1 1
( )

2 2 2
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 
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(2) 

Finally, the constitutive relations incorporating nonlocal 

and flexoelectricity effects can be expressed by 
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Fig. 1 Geometry and coordinates of 

flexoelectric/piezoelectric nanobeam 
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(3d) 

in which τijl denotes the moment stress tensor due to the 

converse flexoelectric effect, Di is the electric displacement 

vector and Qij denotes the electric quadrupole density due to 

flexoelectricity, respectively. The size-dependent 

phenomena in piezoelectric nanostructures due to 

flexoelectricity involved in Eq. (3) is reported in analysis of 

nanowires, nanobeams and nanoplates. Taking into account 

the surface effects, i.e., the residual surface stress, the 

surface elasticity, and the surface piezoelectricity, the 

surface internal energy density Us can be defined by the 

surface strain and the surface polarization as (Zhang et al. 

2014) 

1 1

2 2

s s s s s s s s s s
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in which Γαβ denotes the surface residual stress tensor, 
sa  

and 
sc  denote the surface permittivity and surface 

elastic constants. Also, 
se and 

sE are the surface 

piezoelectric tensor and surface electric field. Finally, the 

nonlocal surface constitutive relations can be written as 

2 2
0(1 ( ) )

ss s s s sU
e a c e E     



 



      


 

(5a) 

2 2
0(1 ( ) )

ss s s s s

s

U
e a D a E e

E
    






     


 
(5b) 

where 
s
  and 

sD  are the surface Cauchy stress and 

surface electric displacement. 

 

 

3. Theoretical formulation 
 

Here, the classical beam theory is employed for 

modeling of a piezoelectric nanobeam with surface, 

nonlocal and flexoelectric effects. The displacement field at 

any point of the nanobeam can be written as 

 1 , ,x y
w

u z u
x

z



  (6a) 

3( , , )u x y z w  (6b) 

where u is displacement of the mid-surface and w is the 

bending displacement. Nonzero strains and strain-gradients 

of the present beam model are expressed as 

2 2
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Through extended Hamilton’s principle, the governing 

equations can be derived as follows 

0
( ) 0

t

S K W dt    
 

(8) 

where ∏s and ∏W are strain energy and external forces 

work, respectively and ∏K is kinetic energy. The strain 

energy can be written as 
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Substituting Eq. (7) into Eq. (9a) yields 
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(9b) 

in which the variables introduced in arriving at the last 

expression are defined as follows 
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The work done by applied forces can be written in the 

form 

0
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L
T

W

w w
N dx

x x
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where NT is thermal load. The first variational of the virtual 

kinetic energy of present beam model can be written in the 

form as 

 
(11a) 

in which the mass inertias are defined as 

 
(11b) 

The following equations are obtained by inserting Eqs. 

(9b), (10) and (11) in Eq. (8) when the coefficients of δu, 

δw are equal to zero 
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and the associated boundary conditions 
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For a piezoelectric nanobeam with the flexoelectric 

effect, the nonlocal constitutive relations for the bulk may 

be written as 

2
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where φ is the electrostatic potential and zE
z
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 


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Also, the nonlocal constitutive relations for the surface 

layer can be expressed by 
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Under the open circuit condition, the electric 

displacement on the surface is zero. Therefore, one can 

obtain the electric field an electric field gradient as 
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Finally, the electric field gradient can be written as 
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Using Eqs. (14) and (15), the nonlocal constitutive 

relations for the bulk and surface can be expressed by the 

following form 
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Therefore, by integrating Eqs. (21)-(23) over the beam’s 

cross-section area, the force and moment stress resultants 

can be rewritten in the following form 
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and the cross-sectional rigidities are defined as 
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And the force and moment stress resultants due to 

surface piezoelasticity may be expressed as 
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The nonlocal governing equations of a piezoelectric 

nanobeam with surface and flexoelectric effects in terms of 

the displacement can be derived by substituting Eqs. (24)-

(29), into Eq. (12) as follows 
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4. Solution procedure 
 

Here, an analytical solution of the governing equations 
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for vibration of a flexoelectric nanobeam having simply-

supported (S) and clamped (C) boundary conditions is 

presented which they are given as: 

• Simply-supported (S) 

0xx xxw N M      at x=0,L (33) 

• Clamped (C) 

0
w

w
x


 


         at x=0,L (34) 

To satisfy above-mentioned boundary conditions, the 

displacement quantities are presented in the following form 
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where (Um, Wm) are the unknown coefficients. Inserting 

Eqs. (35) and (36) into Eqs. (31) and (32) respectively, 

leads to 
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(38) 

By finding determinant of the coefficients of above 

matrix and setting it to zero, we can find natural 

frequencies. The function Xm for different boundary 

conditions is defined by 

S-S: 

𝑋𝑚(𝑥) = sin(𝜆𝑚𝑥) 

 

𝜆𝑚 =
𝑚𝜋

𝐿
 

(39) 

C-

C: 

𝑋𝑚(𝑥) = sin(𝜆𝑚𝑥) − sinh(𝜆𝑚𝑥) − 𝜉𝑚(cos(𝜆𝑚𝑥)
− cosh(𝜆𝑚𝑥)) 

 

𝜉𝑚 =
sin(𝜆𝑚𝑥) − sinh(𝜆𝑚𝑥)

cos(𝜆𝑚𝑥) − cosh(𝜆𝑚𝑥)
 

 

𝜆1 = 4.730, 𝜆2 = 7.853, 𝜆3 = 10.996, 𝜆4

= 14.137, 𝜆𝑚≥5

=
(𝑚 + 0.5)𝜋

𝐿
 

(40) 

C-S: 

𝑋𝑚(𝑥) = sin(𝜆𝑚𝑥) − sinh(𝜆𝑚𝑥) − 𝜉𝑚(cos(𝜆𝑚𝑥)
− cosh(𝜆𝑚𝑥)) 

 

𝜉𝑚 =
sin(𝜆𝑚𝑥) + sinh(𝜆𝑚𝑥)

cos(𝜆𝑚𝑥) + cosh(𝜆𝑚𝑥)
 

 

𝜆1 = 3.927, 𝜆2 = 7.069, 𝜆3 = 10.210, 𝜆4

= 13.352,   𝜆𝑚≥5

=
(𝑚 + 0.25)𝜋

𝐿
 

(41) 

 

 

5. Types of thermal loadings 
 

5.1 Uniform temperature rise 
 

Assume the case that the temperature of the nanoplate 

uniformly raised through-the-thickness as  

.)( TzT   (42) 

Therefore, the pre-buckling force NT is 

11 1

TN c h T   (43) 

  

5.2 Linear temperature rise 
 

Now let us consider the temperature rise varies linearly 

across the nanoplate thickness as 

0

1
( ) ( )

2

z
T z T T

h
     (44) 

The pre-buckling force NT is 
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11 1

1

2

TN c h T   (45) 

 

 

6. Numerical results and discussions 
 

In this section, results are provided to investigate the 

thermal vibration behavior of flexoelectric/piezoelectric 

nanobeams employing nonlocal elasticity theory 

incorporating surface effect. Various types of boundary 

conditions are considered in this analysis (C-C, C-S and S-

S). In the present paper it is assumed that the 

flexoelectric/piezoelectric nanobeam is made of PZT-5H 

where the elastic properties are considered as c11=102 Gpa, 

c12=31 Gpa, c66=35.5 Gpa and the piezoelectric and 

dielectric coefficients are assumed as e31=17.05 C/m2 and 

k33=1.76×10-8 C/(Vm). The flexoelectric coefficient is also 

considered as f31=10-7 (Yang et al. 2015). The surface elastic 

and piezoelectric constants for PZT-5H can be considered 

as: 11

sc =102 N/m, 12

sc =3.3 N/m, 66

sc =2.13 N/m and 31

se

=-3×10-8 C/m. 

Comparison is performed with those of a piezoelectric 

nanobeam presented by Yan and Jiang (2011). To this end, 

effect of nonlocality, flexoelectricity and thermal loading 

are omitted. In Fig. 2 the frequency ratio (ω/ω0) is 

presented as a function of nanobeam thickness. Also, ω0 is 

the natural frequency of piezoelectric nanobeam without 

surface effect.  

The results are in an excellent agreement with those of 

Yan and Jiang (2011) for a simply-supported nanobeam. 

Also, for better presentation of the results the following 

dimensionless quantity is adopted 

2

0

11

( )
,

e aL

h c L


     (46) 

Fig. 3 determines the surface and flexoelectricity effects 

on the variation of natural frequencies of piezoelectric 

nanobeams with respect to thickness for S-S boundary 

conditions at µ=0.1. In this figure, NL refers to nonlocal 

piezoelectric nanobeam without surface and flexoelectric 

effects. NL-Flexoelectric refers to a nonlocal flexoelectric 

nanobeam without surface effect. Also, NL-SE denote a 

nonlocal piezoelectric nanobeam without flexoelectric 

effect. It is observable from this figure that neglecting the 

surface effect leads to lower natural frequencies. In fact, 

inclusion of surface effect enhances the stiffness of 

flexoelectric nanobeams and natural frequencies increase. It 

is found that flexoelectricity effect leads to higher natural 

frequencies, especially at smaller values of nanobeam 

thickness. Therefore, the maximum natural frequencies are 

observed for NL-SE-Flexoelectric nanobeam, while 

nonlocal (NL) piezoelectric nanobeam has the minimum 

buckling load. For the nonlocal (NL) piezoelectric 

nanobeams, natural frequencies are not dependent on the 

value of nanobeam thickness. But, when the flexoelectric 

effect is involved, natural frequencies reduce as the value of  

 

Fig. 2 Comparison of frequency ratio of S-S piezoelectric 

nanobeams (L/h=20) 

 

 

Fig. 3 Surface and flexoelectricity effects on vibration 

frequency of nonlocal S-S piezoelectric nanobeams with 

respect to thickness (µ=0.1) 

 

 

thickness rises. So, flexoelectricity has an important size 

effect on vibration behavior of piezoelectric nanobeams. It 

can be concluded that surface and flexoelectric effects are 

important at lower thicknesses. In other words, effects 

surface elasticity and flexoelectricity are negligible at large 

thicknesses. 

Influences of uniform and linear temperature changes 

(ΔT) on natural frequencies of flexoelectric nanobeam with 

surface effect for different nonlocal parameters is presented 

in Figs. 4 and 5, respectively for S-S and C-C boundary 

conditions. It is found that presence of temperature field has 

a significant effect on the vibration behavior flexoelectric 

nanobeam. In fact, temperature rise makes the flexoelectric 

nanobeam more flexible and vibration frequencies reduce at 

a constant nonlocal parameter. Moreover, the vibration 

frequencies of thermally affected flexoelectric nanobeam 

depend on the value of nonlocal parameter. It is observed 

that increasing the value of nonlocal parameter leads to 

reduction in dimensionless vibration frequencies of 

flexoelectric nanobeam at every magnitude of temperature  
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(a) UTR 

 
(b) LTR 

Fig. 4 Temperature change effects on vibration frequency of 

nonlocal S-S piezoelectric nanobeams with respect to 

nonlocal parameter (L/h=20) 

 

 

change. This is due to stiffness reduction of flexoelectric 

nanobeam by considering the nonlocal stress field 

parameter. 

Examination of flexoelectric and nonlocal effects on 

vibration behavior of flexoelectric nanobeams under S-S, C-

S and C-C boundary conditions when L/h=20 and ΔT=200 

K is presented in Fig. 6. It is observable from this figure 

that neglecting the flexoelectric effect leads to lower natural 

frequencies at a fixed nonlocal parameter. It is also found 

that the nonlocal flexoelectric nanobeam has lower natural 

frequencies compared with local flexoelectric nanobeam 

(µ=0 nm2), regardless of the type of boundary conditions. 

So, inclusion of nonlocal stress field parameter reduces the 

natural frequencies of a flexoelectric nanobeam. Such 

observation is neglected in all previous analyzes on 

flexoelectric nanobeams. So, by ignoring the effect of 

nonlocality in analysis of flexoelectric nanobeams, the 

obtained results are overestimated. Hence, it can be  

 
(a) UTR 

 
(b) LTR 

Fig. 5 Temperature change effects on vibration frequency of 

nonlocal C-C piezoelectric nanobeams with respect to 

nonlocal parameter (L/h=20) 

 

 

concluded that the vibration behavior of flexoelectric 

nanobeams is sensitive to the nonlocal parameter. The 

maximum and minimum natural frequencies of flexoelectric 

nanobeam are obtained for C-C and S-S boundary 

conditions. In fact, stronger supports at ends make the 

flexoelectric nanobeam stiffer and natural frequencies rise. 

It is known that nanobeam under uniform temperature rise 

(UTR) is more flexible than linear temperature rise (LTR). 

So, LTR gives larger frequencies for a piezoelectric 

nanobeam with and without flexoelectric effect. 

Figs. 7 and 8 present the variation of vibration 

frequency of nonlocal S-S and C-C piezoelectric 

nanobeams under uniform and linear thermal loadings with 

respect to temperature rise for various nonlocal parameters 

at L/h=20. Increasing temperature leads to reduction in 

stiffness of flexoelectric nanobeam and natural frequencies 

reduce. In fact, as the temperature rise, vibration frequency 

reduces until it becomes close to zero at a critical point. 

After this critical point, increase of temperature yields 

larger frequencies. The most important observation from  
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(a) UTR 

 
(b) LTR 

Fig. 6 Flexoelectric and nonlocal effects on vibration 

frequency of nonlocal piezoelectric nanobeams for various 

boundary conditions (L/h=20, ΔT=200 K) 

 

 

this figure is that nonlocal flexoelectric nanobeam gives 

larger critical temperatures than local flexoelectric 

nanobeam. In fact, inclusion of nonlocal effect diminishes 

the stiffness of flexoelectric nanobeams and critical 

temperatures reduce. 

In fact, as the value of nonlocal parameter increases, the 

critical temperature is transferred to the left. So, it is 

showed that the nonlocal effect which is neglected in all 

previous papers on flexoelectric nanobeams affects 

significantly the vibration frequencies. In fact, by ignoring 

nonlocal effect the critical temperatures of flexoelectric 

nanobeams is overestimated. Also, it is clear that a 

flexoelectric nanobeam under linear temperature rise (LTR) 

has larger critical temperature than a flexoelectric 

nanobeam under uniform temperature rise (UTR).  

 
(a) UTR 

 
(b) LTR 

Fig. 7 Variation of vibration frequency of nonlocal S-S 

piezoelectric nanobeams under uniform and linear thermal 

loading with respect to temperature rise for various nonlocal 

parameters (L/h=20) 

 

 

7. Conclusions 
 

In this research, thermal vibration characteristics of a 

flexoelectric/piezoelectric nanobeam under uniform and 

linear thermal loadings are investigated based on nonlocal 

elasticity theory considering surface effects. This non-

classical nanobeam model contains flexoelectric effect to 

capture coupling of strain gradients and electrical 

polarizations. Moreover, the nonlocal elasticity theory is 

employed to study the nonlocal and long-range interactions 

between the particles. The present model can degenerate 

into the classical model if the nonlocal parameter, 

flexoelectric and surface effects are omitted. Hamilton’s 

principle is employed to derive the governing equations and 

the related boundary conditions which are solved applying a  

442



 

Thermo-mechanical vibration analysis of nonlocal flexoelectric/piezoelectric beams incorporating surface effects 

 

 
(a) UTR 

 
(b) LTR 

Fig. 8 Variation of vibration frequency of nonlocal C-S 

piezoelectric nanobeams under uniform and linear thermal 

loadings with respect to temperature rise for various 

nonlocal parameters (L/h=20) 

 

 

Galerkin-based solution. From the results analyzed above, it 

is found that inclusion of nonlocal parameter leads to lower 

vibration frequencies by reducing the bending stiffness of 

flexoelectric/piezoelectric nanobeam. Besides, the non-

dimensional vibration frequencies are found to be decreased 

by increasing the thickness value, however effect of 

flexoelectricity on vibration frequencies is more prominent 

at lower thicknesses. Increase of temperature reduces the 

stiffness of flexoelectric/piezoelectric nanobeam and leads 

to lower vibration frequencies. However, a 

flexoelectric/piezoelectric nanobeam under linear 

temperature rise has larger vibration frequencies compared 

with a flexoelectric nanobeam under uniform temperature 

rise. 
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