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1. Introduction 
 

Functionally graded materials (FGMs) are a novel type 

of composite materials. It has been widely employed in 

many engineering uses and environments, especially in 

large temperature gradients. The metal provides 

considerable roughness while the ceramic gives high 

temperature-resistant and high corrosion-resistant. Thus, 

they are extensively employed in aerospace engineering, 

aircraft structures, high-speed vehicle frames and so on. The 

concept of FGM was first presented by a group of material 

scientists in Japan in mid-1980s (Koizumi 1993, 1997). 

Since the main applications of FGMs have been in high 

temperature environments, most of the research on FGMs 

has been restricted to thermal stress analysis, thermal 

stability, fracture mechanics and optimization (Attia et al. 

2015, Bakora and Tounsi 2015, Barati and Shahverdi 2016, 

Barka et al. 2016, Benferhat et al. 2016, Abdelhak et al. 

2016, Bousahla et al. 2016, Chikh et al. 2016, El-Hassar et 

al. 2016, Fahsi et al. 2017, El-Haina et al. 2017).  

A number of studies dealing with thermal stability of FG 

plates have been presented in the published literature. 

Javaheri and Eslami (2002a, b) studied stability analysis of 

FG plates under four types of thermal loads based on the 

CPT and the HSDT, respectively. Lanhe (2004) analytically 

investigated the thermal stability problem of a FG plate 

with moderately thickness and simply supported boundary 

conditions based on the FSDT. Matsunaga (2005) proposed 

a two-dimensional global HSDT for thermal stability of FG  
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plates. He computed the critical stability temperatures of a 

simply supported FG plate subjected to uniformly and 

linearly distributed temperatures. Zhao et al. (2009) studied 

the stability behavior of FG plates under mechanical and 

thermal loads with arbitrary geometry, considering plates 

that contain square and circular holes at the center, is 

studied by employing the element-free kp-Ritz method. 

Bouazza et al. (2010) investigated the thermoelastic 

stability of FG plate using FSDT. Influences of varying 

plate characteristics, material composition and volume 

fraction of constituent materials on the critical temperature 

difference of FG plate with simply supported edges are also 

examined. Lee et al. (2010) have used element-free Ritz 

technique to investigate the post-buckling of FG plates 

under compressive and thermal loads. Tung and Duc (2010) 

developed a simple accurate analytical solution to study the 

buckling and post-buckling response of thin FG plates. By 

considering the initial imperfection for an FG plate, they 

proved that imperfect plates do not follow bifurcation-type 

buckling and commence to deflect by initiation of 

compression. They studied possible combinations of 

movable and immovable simply supported edges for each 

case of thermo-mechanical loading. Ahmed (2014) 

investigated the post-buckling behavior of FG sandwich 

beams by employing a consistent HSDT. Swaminathan and 

Naveenkumar (2014) proposed an analytical formulation for 

the stability analysis of simply supported FG sandwich 

plates based on two higher-order refined computational 

models. Additional works on buckling and post-buckling 

investigation of laminated composite and FG structures 

under thermomechanical load are presented in the literature 

by Panda and his co-workers (Kar and Panda 2015a, b, 

2016a, b, Katariya and Panda 2016). Recently, Bouderba et 

al. (2016) discussed the thermal stability of FG sandwich 

 
 
 

Mechanical and thermal stability investigation of functionally graded plates 
resting on elastic foundations 

 

Ali Houari1, Mohamed Benguediab1, Ahmed Bakora2 and Abdelouahed Tounsi2,3 
 

 1Département de Génie Mécanique, Faculté de Technologie, Université Sidi Bel Abbes, Algérie 
2Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department, Algeria 

3Laboratoire de Modélisation et Simulation Multi-échelle, Département de Physique,  
Faculté des Sciences Exactes, Département de Physique, Université de Sidi Bel Abbés, Algeria 

 
(Received May 25, 2017, Revised September 10, 2017, Accepted September 18, 2017) 

 
Abstract.  In present work, both the hyperbolic shear deformation theory and stress function concept are used to study the 

mechanical and thermal stability responses of functionally graded (FG) plates resting on elastic foundation. The accuracy of the 

proposed formulation is checked by comparing the computed results with those predicted by classical plate theory (CPT), first-

order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Moreover, results demonstrate that 

the proposed formulation can achieve the same accuracy of the existing HSDTs which have more number of governing 

equations. 
 

Keywords:  functionally graded materials; mechanical-thermal buckling; plate; hyperbolic shear deformation theory; 

stress function 

 

mailto:tou_abdel@yahoo.com


 

Ali Houari, Mohamed Benguediab, Ahmed Bakora and Abdelouahed Tounsi 

 

plates using a simple FSDT.  

The components of structures widely employed in 

aircraft, reusable space transportation vehicles and civil 

engineering are often supported by an elastic foundation. 

Therefore, it is necessary to consider the influences of 

elastic foundation for a better understanding of the stability 

behavior of plates. To describe the interactions of the plate 

and foundation we found various types of foundation 

models. The simplest model for the elastic foundation is 

Winkler or one-parameter model (Winkler 1867), which 

considers the foundation as a series of separated springs 

without coupling influences between each other. Pasternak 

(1954) improved this model by introducing a shear layer to 

Winkler model. Pasternak or two-parameter model is 

widely employed to describe the mechanical behavior of 

structure-foundation interactions. In spite of practical 

importance and increasing use of FG structures, 

investigation on stability of FG plates supported by elastic 

media is limited in number (Wang and Shen 2011, Duc and 

Tung 2011, Kiani et al. 2011, Naderi and Saidi 2011, Sobhy 

2013, Yaghoobi and Torabi 2013, Yaghoobi and Yaghoobi 

2013, Yaghoobi and Fereidoon 2014, Ait Amar Meziane et 

al. 2014, Belkorissat et al. 2015, Tounsi et al. 2016, 

Besseghier et al. 2017, Bellifa et al. 2017). 
The problem of the choice of the models employed in 

the expansion of the different variables is important to 
adequately approximate the real response of a considered 
structure. In the past few decades, various shear 
deformation theories have been developed and implemented 
to investigation of plates. Moreover, increased employ of 
advanced materials in primary structures requires the 
development of precise mathematical model to accurately 
study the response of the structures. The researchers have 
paid much attention for modeling of the plates over the past 
few decades and a variety of plate models have been 
proposed. The CPT can only give reasonable results for thin 
plates since it neglects the influences of the transverse shear 
deformation and transverse normal stress. The FSDT 
(Reissner 1945, Mindlin 1951, Adda Bedia et al. 2015, 
Hadji et al. 2016, Bellifa et al. 2016) introduces the 
influence of transverse shear deformation, but this model 
needs a shear correction coefficient in order to respect zero 
transverse shear stress boundary conditions on the top and 
bottom. The various HSDTs were proposed to investigate 
the plates by Ambartsumian (1958), Levinson (1980), 
Touratier (1991), Soldatos (1992), Karama et al. (2003), 
Reddy (2004), Xiang et al. (2011), Akavci (2014), Mahi et 
al. (2015), Ait Yahia et al. (2015), Abdelbari et al. (2016), 
Houari et al. (2016). On the other hand, Shimpi (2002) has 
proposed a novel refined plate theory (RPT) which is 
simple to utilize. The RPT proposed by Shimpi is based on 
the supposition that the in-plane and vertical displacements 
consist of bending and shear components in which the 
bending components do not contribute toward shear forces 
and, likewise, the shear components do not contribute 
toward bending moments. Recently, various RPTs are 
proposed for composite structures with and without 
thickness stretching effect (Bouderba et al. 2013, Tounsi et 
al. 2013, Bessaim et al. 2013, Zidi et al. 2014, Bousahla et 
al. 2014, Hebali et al. 2014, Belabed et al. 2014, Fekrar et 
al. 2014, Bousahla et al. 2014, Bourada et al. 2015, Taibi  
et al. 2015, Hamidi et al. 2015, Bousahla et al. 2016, 

Bennoun et al. 2016, Beldjelili et al. 2016, Bounouara et al. 
2016, Hebali et al. 2016, Bourada et al. 2016, Benbakhti et 
al. 2016, Boukhari et al. 2016, Draiche et al. 2016, 
Raminnea et al. 2016, Zidi et al. 2017, Khetir et al. 2017, 
Klouche et al. 2017, Chikh et al. 2017, Benchohra et al. 
2017, Benahmed et al. 2017, Bouafia et al. 2017).  

In the present work, the mechanical and thermal stability 

responses of FG plates are studied by employing a new 

HSDT with four unknowns in which instead of derivative 

terms in the displacement field, integral terms are utilized. 

Such kinematic, which can be further implemented in 

HSDTs, may require new mathematical strategies to 

analytically solve the proposed theory because of its 

novelty. Governing equations are obtained from the 

principle of minimum total potential energy. Analytical 

solutions for mechanical and thermal stability investigation 

of FG plates resting on elastic foundations are determined. 

Numerical results are presented to check the accuracy of the 

proposed theory. The present HSDT is reported for the first 

time and can be served as benchmark results for researchers 

to validate their models in the future.  

 

 

2. Material properties of FG plate 
 

In this work, material characteristics of a FG plate are 

assumed to vary according to a rule of mixtures as (Sugano 

1990). Simple power law variation from pure metal at lower 

face (z=−h/2) to pure ceramic at the upper face (z=+h/2) in 

terms of the volume fractions of the constituents is 

considered (Praveen and Reddy 1998). The mechanical and 

thermal characteristics of FGMs are obtained from the 

volume fraction of the material constituents. We consider 

that the material characteristics such as the modulus of 

elasticity (E), the thermal conductivity (K), coefficient of 

thermal expansion (α) and Poisson’s ratio (v) can be 

obtained by (Yaghoobi and Torabi 2013, Yaghoobi and 

Fereidoon 2014, Meksi et al. 2015, Ait Atmane et al. 2015, 

Meradjah et al. 2015, Larbi Chaht et al. 2015, Laoufi et al. 

2016, Ahouel et al. 2016, Meksi et al. 2017, Menasria et al. 

2017, Mouffoki et al. 2017) 
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where k is the gradient index and subscripts M and C denote 

the metallic and ceramic components, respectively. The 

value of k equal to zero and infinity represents a fully 

ceramic and metal plate, respectively. 

 

 

3. New refined plate theory 
 

3.1 Kinematics 
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In this work, the hyperbolic shear deformation plate 

theory is employed. The displacement field can then be 

expressed as (Akavci 2007, 2010) 
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where the shape function is given by Akavci (2007, 2010) 

as  
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where u0, v0 and w0 are generalized displacement at the mid-

plane of the plate in the x, y, and z directions, respectively; 

ϕx, ϕy are the slope rotations in the (x, z) and (y, z) planes, 

respectively; and h  is the plate thickness. 

The non-linear von Karman strain–displacement 

equations are as follows 







































































xy

y

x

xy

y

x

xy

y

x

xy

y

x

z

k

k

k

z



















)(
0

0

0

,  


















0

0

)('
yz

xz

yz

xz
z








, 

(3) 

where 








































yxxy

yx

xx

xy

y

x

wwvu

wv

wu

,0,0,0,0

2

,0,0

2

,0,0

0

0

0

2/)(

2/)(







,  









































xy

yy

xx

xy

y

x

w

w

w

k

k

k

,0

,0

,0

2

,  





































xyyx

yy

xx

xy

y

x

,,

,

,













,  


















y

x

yz

xz








0

0

, 

(4) 

 

3.2 Constitutive equations 
 
The linear constitutive relations of a FG plate can be 

written as  
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(5) 

where ΔT is temperature rise from stress free initial state or 

temperature difference between two surfaces of the FG 

plate. 

By using the principle of minimum total potential 

energy, the expressions for the nonlinear equilibrium 

equations of the plate are obtained as 
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The force and moment resultants (N, Q, S and M) of the 

FG plate are obtained by 
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Substitution of Eqs. (3) and (5) into Eq. (7) yields the 

constitutive relations as 
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The last three equations of Eq. (6) may be rewritten into 

two equations in terms of variables w0 and ϕx,x+ϕy,y by 

substituting Eqs. (4) and (8) into Eqs. (6c)-(6e). 

Subsequently, elimination of the variable ϕx,x+ϕy,y from two 

the resulting equations lead to the following system of 

equilibrium equations 
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For a FG plate, Eq. (10) are modified into form as 
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where f(x, y) is stress function defined by 

xyxyxxyyyx fNfNfN ,,, ,,   (13) 

The geometrical compatibility equation for a FG plate is 

expressed as 
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From the constitutive relations (8) and Eq. (13) one can 

write 
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Introducing Eq. (15) into Eq. (14), the compatibility 

equation of a FG plate becomes 

4 2
1 0, 0, 0,( ) 0xy xx yyf E w w w     (16) 

In this study we are concerned with the exact solution of 

Eqs. (12) and (16) for a simply supported FG plate. In this 

case, the proposed solutions of w and f respecting boundary 

conditions are assumed to be (Librescu and Lin 1997, Lin 

and Librescu 1998)  
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where λm=mπ/a, δn=nπ/b, m, n are odd numbers and W is 

amplitude of the deflection. The coefficients Ai (i = 1, 2, 3) 

are determined by substitution of Eqs. (17a), (17b) into Eq. 

(16) as 

2

2

2
1

1
32

W
E

A
m

n




 ,  

2

2

2
1

2
32

W
E

A
n

m




 ,  0A3   (18) 

Then, setting Eqs. (17a), (17b) into Eq. (12) and by 

employing the Galerkin method for the resulting equation 

yield 
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4. Closed-form solution 
 

Rectangular plates are generally classified in accordance 

with the type of support employed. Here, we are concerned 

with the exact solutions of Eq. (19) for a simply supported 

FG plate resting on elastic foundation. 

 

4.1 Mechanical buckling 
 

Consider a simply supported rectangular plate resting on 

elastic foundation with length a and width b which is 

subjected to in-plane loading in two directions 
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and Eq. (19) leads to 
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4.2 Thermal buckling 
 

A rectangular plate under thermal loads is examined in 

this part. To determine the critical stability temperature, the 

pre-buckling thermal loads should be found. Thus, solving 

the membrane form of the equilibrium equations and by 

employing the method presented by Meyers and Hyer 

(1991), the pre-buckling load resultants of FG plate exposed 

to the temperature distribution within the thickness are 

found to be  
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(25) 

In this work, to study the influence of assumption type 

of temperature variation within the thickness on thermal 

stability behavior of FG plate resting on elastic foundation, 

three types of thermal loading within the plate thickness are 

considered. 

 

4.2.1 Uniform temperature rise (UTR) 
It is considered that the initial uniform temperature of 

the FG plate is Ti, and the temperature is uniformly raised to 

a final value Tf such that the plate buckles. The temperature 

change ΔT=Tf−Ti is considered to be independent from 

thickness variable. The thermal parameter Φ1 is obtained 

from Eq. (9b), and substitution of the result into Eq. (25) 

yields 
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where 
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4.2.2 Linear temperature distribution through the 
thickness (LTD) 

As an approximation, consider the following linear 

temperature variation along the thickness coordinate of the 

FG plate as  
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Same as UTR procedure, the following expression for 

thermal buckling load is obtained 
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4.2.3 Non-linear temperature distribution through the 
thickness (NTD) 

The temperature field considered to be uniform over the 

plate surface but changing along the thickness direction due 

to heat conduction. In such a case, the temperature variation 

within the thickness can be determined by solving the 

steady-state heat transfer equation as  
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The differential Eq. (32) can be easily solved by 

employing the polynomial series. Thus, the temperature 

variation within the plate thickness is determined as 
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Same as UTR procedure, the following expression for 

thermal buckling load is obtained 
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Table 1 Comparison of non-dimensional critical buckling 

load N
~

 of a simply supported thin homogeneous square 

plate resting on elastic foundations (a/h=1000) 

Theory 

(Kw, Ks) 

(0,0) (0,100) (100,0) (100,100) 

CPT (Lam et al. 2000) 4.00000 18.92a 5.027 19.17a 

FSDT (Akhavan et al. 2009) 3.99998 18.9151a 5.02658 19.1717a 

FSDT (Sobhy 2013) 3.99998 18.91506a 5.02658 19.17171a 

(Yaghoobi and Fereidoon 2014) 3.99990 18.91400 a 5.02650 19.17200 

Present 3.99999 18.91513 a 5.02659 19.17178 a 

aMode for plate is (m,n)=21 

 
 
5. Results and discussion 
 

In this section, numerical examples are examined and 

discussed for checking the accuracy of the proposed 

formulation in determining the mechanical and thermal 

stability loads. Analytical solutions are determined by 

employing the Navier solution for simply supported FG 

plates resting on elastic foundation. Critical buckling loads 

are determined and the comparison is carried out with the 

existing results. For numerical results, an Al/Al2O3 plate 

composed of aluminum (as metal) and alumina (as ceramic) 

is considered. The Young’s modulus, thermal conductivity 

and coefficient of thermal expansion are Em=70 GPa, 

αm=23×10-6/°C, Km=204 W/m and those of alumina are 

Ec=380 GPa, αc=7.4×10-6/°C, Kc=10.4, Kc=10.4 W/mK, 

respectively. The Poisson’s ratio of the plate is considered 

to be constant within the thickness and equal to 0.3 

(Javaheri and Eslami 2002b, Lanhe 2004, Yaghoobi and 

Fereidoon 2014). For convenience, the following non-non-

dimensional quantities are used in presenting the numerical 

results in tabular form 
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5.1 Comparisons for mechanical buckling 
 
Example 1: The non-dimensional critical buckling loads 

N
~

 of simply supported thin homogeneous square plate 

without or resting on elastic foundations are given in Table 

1. The computed results are compared with those reported 

by Lam et al. (2000) based on CPT, Akhavan et al. (2009) 

and sobhy (2013) based on FSDT and Yaghoobi and 

Fereidoon (2014) based on Reddy’s theory. It is mentioned 

that the solutions of Lam et al. (2000) are obtained via the 

Green’s function. Good agreement is observed between the 

proposed theory and the published ones. Also, Table 2  
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Table 2 Comparison of non-dimensional critical buckling 

load N̂  of a simply supported homogeneous plate under 

in-plane compression and resting on elastic foundations 

a/b (Kw, Ks) Theory 

a/h 

5 10 100 1000 

0.5 

(0,0) 

FSDT (*) 54.3207 59.6629 61.6641 61.6848 

FSDT (**) 54.0859 59.5887 61.6633 61.6848 

HSDT (***) 54.0737 59.5856 61.6633 61.6848 

Present 54.0802 59.5871 61.6633 61.6848 

(100,10) 

FSDT (*) 144.6952 150.1910 152.1930 152.2130 

FSDT (**) 144.6140 150.1170 152.1920 152.2130 

HSDT (***) 144.6022 150.1141 152.1918 152.2133 

Present 144.6087 150.1156 152.1917 152.2132 

(1000,100) 

FSDT (*) 643.5000b 686.1710a 704.3860a 704.5890a 

FSDT (**) 641.380b 685.567a 704.378a 704.589a 

HSDT (***) 640.9782 b 685.5369 a 704.3775 a 704.5888 a 

Present 641.2294b 685.5529a 704.3776a 704.5887a 

1 

(0,0) 

FSDT (*) 32.4414 37.4477 39.457 39.4782 

FSDT (**) 32.2398 37.3753 39.4562 39.4782 

HSDT (***) 32.2276 37.3721 39.4562 39.4782 

Present 32.2343 37.3737 39.4561 39.4781 

(100,10) 

FSDT (*) 55.0289a 67.5798 69.5891 69.6103 

FSDT (**) 54.6116a 67.5074 69.5883 69.6103 

HSDT (***) 54.5692 a 67.5042 69.5883 69.6103 

Present 54.5945a 67.5058 69.5882 69.6103 

(1000,100) 

FSDT (*) 174.9760b 204.6510 a 211.9610 a 212.0140 a 

FSDT (**) 174.391b 204.416 a 211.928 a 212.014 a 

HSDT (***) 174.2676 b 204.4040 a 211.9285 a 212.0145 a 

Present 174.3451b 204.4105a 211.9285a 212.0144a 

2 

(0,0) 

FSDT (*) 19.2255 b 32.4414 a 39.3930 a 39.4776 a 

FSDT (**) 19.0400 b 32.2398 a 39.3897 a 39.4775 a 

HSDT (***) 18.9794 b 32.2276 a 39.3896 a 39.4775 a 

Present 19.0182b 32.2343a 39.3896a 39.4775a 

(100,10) 

FSDT (*) 22.7476c 37.5182b 45.0262 a 45.1108 a 

FSDT (**) 22.6778c 37.8581 b 45.0229 a 45.1108 a 

HSDT (***) 22.5785 c 37.8358 b 45.0228 a 45.1108 a 

Present 22.6434c 37.8486b 45.0228a 45.1107a 

 
(1000,100) 

FSDT (*) – 72.8290 c 85.0953b 85.2563b 

FSDT (**) 52.2276d 72.4117 c 85.0889b 85.2562b 

HSDT (***) 50.0214 d 72.3694 c 85.0887 b 85.2562 b 

Present 50.1233d 72.3946c 85.0887b 85.2562b 

(*)(Akhavan et al. 2009),(**)(Sobhy 2013),(** *)(Yaghoobi and 

Fereidoon 2014) 
aMode for plate is (m, n) = (2, 1) 
bMode for plate is (m, n) = (3, 1) 
cMode for plate is (m, n) = (4, 1) 
dMode for plate is (m, n) = (5, 1) 

 

shows the non-dimensional buckling loads N̂  of simply  

Table 3 Comparison of non-dimensional critical buckling 

load N  of a simply supported FG plate resting on elastic 

foundations ( 1/ ba , / 10a h  ) 

β (Kw, Ks) Theory 

k
 

0 0.5 1 2 5 10 

0 

(0, 0) 

Present 18.5793 12.1234 9.3394 7.2627 6.0329 5.4475 

HSDT(*) 18.5785 12.1229 9.3391 7.2631 6.0353 5.4528 

(100, 10) 

Present 21.3386 14.8828 12.0987 10.0220 8.7922 8.1992 

HSDT(*) 21.3379 14.8823 12.0985 10.0224 8.7947 8.2122 

(1000, 100) 

Present 40.6510a 31.4625a 27.4333a 24.3459a 22.3527a 21.4341a 

HSDT(*) 40.6477a 31.4605a 27.4319a 24.3470a 22.3602a 21.4516a 

1 

(0, 0) 

Present 9.2896 6.0617 4.6697 3.6313 3.0164 2.7168 

HSDT(*) 9.2893 6.0615 4.6695 3.6315 3.0177 2.7264 

(100, 10) 

Present 10.6693 7.4414 6.0493 5.0110 4.3961 4.0995 

HSDT(*) 10.6689 7.4411 6.0492 5.0112 4.3973 4.1061 

(1000, 100) 

Present 23.0864 19.8584 18.4664 17.4281 16.8132 16.5210 

HSDT(*) 23.0860 19.8582 18.4663 17.4283 16.8144 16.5232 

(*)(Yaghoobi and Fereidoon, 2014) 
a Mode for plate is (m, n) = (2, 1) 

 

 

supported homogeneous plate under uniaxial compression. 

The computed results are compared with those found by 

Akhavan et al. (2009) and sobhy (2013) based on FSDT 

and Yaghoobi and Fereidoon (2014) based on Reddy’s 

theory. Good agreement can be observed for different 

values of foundation coefficients, Kw and Ks, aspect ratio 

a/b and thickness ratio
 
h/a. 

Example 2: Table 3 provides the non-dimensional 
critical buckling loads N  of simply supported Al/Al2O3 
square plate for different values of material index k and 
foundation parameters Kw and Ks. The predicted non-
dimensional critical buckling loads are compared with those 
reported by Yaghoobi and Fereidoon (2014). In this table, 
two different loading cases are considered, and six arbitrary 
values of the material index k are taken. Three combinations 
of foundation parameters, Kw and Ks are also considered. It 
can be seen that the results calculated using the present 
model are in good agreement with those reported by 
Yaghoobi and Fereidoon (2014) for all loading types, 
material index, and foundation parameters. It should be 
signaled that in this example the dimensionless foundation 
coefficients, Kw and Ks are k1a4/DM and k2a2/DM 
respectively. 

 

5.2 Comparisons for thermal stability  
 

Example 3: In order to verify the thermal buckling 
solutions obtained in this study, the critical stability 
temperature difference, ΔTcr, for FG plates resting on elastic 
foundations for the UTR, LTD and NTD are illustrated in 
Tables 4-6, respectively. It can be seen from Tables 4-6 that 
there is a very good agreement between the proposed theory 
(with four variables) and other HSDTs (with five variables). 
The significant differences between the results of HSDTs 
and those of CPT, is due to the shear deformation influence 
which is neglected by CPT.  
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(a) (Zenkour and Sobhy 2011) 
(b) (Yaghoobi and Torabi 2013) 
(c) (Yaghoobi and Fereidoon 2014) 

 

 

 

 

 

 

 

Table 4 Comparison of critical buckling temperature difference ΔTcr×10-3 of square FG plate resting 

k
 

Theory 

(Kw, Ks)=(0,0) (Kw, Ks)=(10,0) (Kw, Ks)=(10,40) 

a/h=5
 

a/h=10
 

a/h=20
 

a/h=5
 

a/h=10
 

a/h=20
 

a/h=5
 

a/h=10
 

a/h=20
 

0 

Present 5.58461 1.61875 0.42153 5.76015 1.66263 0.43251 9.22515 2.52888 0.64907 

CPT (a) 6.83964 1.70991 0.42748 7.01519 1.75380 0.43845 10.4801 2.62005 0.65501 

FSDT (b) 5.58069 1.61862 0.42153 5.75623 1.66251 0.43251 9.22123 2.52876 0.64907 

HSDT (a) 5.58344 1.61868 0.42154 5.75899 1.66257 0.43251 9.22398 2.52882 0.64907 

TPT (a) 5.58556 1.61882 0.42154 5.76109 1.66270 0.73252 9.22610 2.52896 0.64908 

HSDT (c) 5.58344 1.61868 0.42154 5.75898 1.66257 0.43251 9.22398 2.52882 0.64907 

1 

Present 2.67201 0.75842 0.19626 2.83562 0.79932 0.20649 6.06519 1.60671 0.40834 

CPT (a) 3.17751 0.79438 0.19859 3.34112 0.83528 0.20882 6.57068 1.64267 0.41067 

FSDT (b) 2.67039 0.75837 0.19626 2.83400 0.79928 0.20649 6.06356 1.60667 0.40834 

HSDT (a) 2.67153 0.75840 0.19627 2.83515 0.79930 0.20649 6.06470 1.60669 0.40835 

TPT (a) 2.67241 0.75845 0.19627 2.83603 0.79935 0.20649 6.06558 1.60674 0.40834 

HSDT (c) 2.67153 0.75840 0.19627 2.84312 0.79930 0.20649 6.06470 1.60669 0.40834 

5 

Present 2.27221 0.67903 0.17851 2.49898 0.73573 0.19268 6.97530 1.85481 0.47245 

CPT (a) 2.90629 0.72657 0.18164 3.13305 0.78326 0.19582 7.60938 1.90234 0.47559 

FSDT (b) 2.35948 0.68678 0.17905 2.58625 0.74347 0.19322 7.06257 1.86255 0.47299 

HSDT (a) 2.27501 0.67931 0.17854 2.50179 0.73600 0.19271 6.97810 1.85508 0.47248 

TPT (a) 2.27131 0.67895 0.17851 2.49808 0.73564 0.19268 6.97440 1.85472 0.47245 

HSDT (c) 2.27501 0.67931 0.17854 2.50178 0.73600 0.19271 6.97810 1.85508 0.47248 

10 

Present 2.24045 0.69133 0.18312 2.53163 0.75655 0.19913 7.58372 2.01957 0.51488 

CPT (a) 2.98770 0.74693 0.18673 3.24365 0.81091 0.20273 8.29575 2.07394 0.51848 

FSDT (b) 2.36822 0.70108 0.18373 2.62416 0.76507 0.19972 7.67626 2.02809 0.51548 

HSDT (a) 2.27678 0.69269 0.18314 2.53273 0.75668 0.19914 7.58483 2.01970 0.51490 

TPT (a) 2.27551 0.69254 0.18313 2.53146 0.75653 0.19913 7.58356 2.01955 0.51489 

HSDT (c) 2.27679 0.69269 0.18314 2.53273 0.75668 0.19914 7.58483 2.01970 0.51490 

Table 5 Comparison of critical buckling temperature difference 
310 crT  of square FG plate resting on elastic 

foundation under LTD 

k Theory 

(Kw, Ks)=(0,0) (Kw, Ks)=(10,0) (Kw, Ks)=(10,10) 

a/h=5
 

a/h=10
 

a/h=20
 

a/h=5
 

a/h=10
 

a/h=20
 

a/h=5
 

a/h=10
 

a/h=20
 

0 

Present 11.15922 3.22750 0.83307 11.51030 3.31527 0.85502 18.44031 5.04777 1.28814 

CPT (a) 13.66929 3.40982 0.84496 14.02036 3.49759 0.86690 20.95037 5.23009 1.30002 

FSDT (b) 11.15138 3.22725 0.83307 11.50246 3.31502 0.85501 18.43246 5.04752 1.28814 

HSDT (a) 11.15688 3.22736 0.83307 11.50796 3.31513 0.85501 18.43797 5.04764 1.28814 

TPT (a) 11.16112 3.22764 0.83309 11.51220 3.31541 0.85503 18.44220 5.04791 1.28816 

HSDT (c) 11.15688 3.22736 0.83307 11.50796 3.31513 0.85501 18.43797 5.04764 1.28814 

1 

Present 5.00190 1.41302 0.35871 5.30874 1.48973 0.37789 11.36568 3.00396 0.75645 

CPT (a) 5.94993 1.48045 0.36308 6.25678 1.55716 0.38226 12.31372 3.07140 0.76082 

FSDT (b) 4.99885 1.41292 0.35871 5.30570 1.48964 0.37789 11.36263 3.00387 0.75645 

HSDT (a) 5.00099 1.41297 0.35871 5.30784 1.48968 0.37789 11.36477 3.00391 0.75645 

TPT (a) 5.00264 1.41307 0.35872 5.30948 1.48978 0.37789 11.36642 3.00402 0.75645 

HSDT (c) 5.00099 1.41297 0.35871 5.30784 1.48968 0.37789 11.36477 3.00391 0.75645 
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(a) (Zenkour and Sobhy 2011) 
(b) (Yaghoobi and Torabi 2013) 
(c) (Yaghoobi and Fereidoon 2014) 

 

(a) (Zenkour and Sobhy 2011) 
(b) (Yaghoobi and Torabi 2013) 
(c) (Yaghoobi and Fereidoon 2014) 

 

 

 

 

 

 

 

Table 5 Continued 

5 

Present 3.90254 1.16021 0.29867 4.29288 1.25780 0.32306 11.99794 3.18406 0.80463 

CPT (a) 4.99396 1.24204 0.30405 5.38430 1.33962 0.32845 13.08936 3.26588 0.81002 

FSDT (b) 4.05274 1.17354 0.29959 4.44308 1.27113 0.32399 12.14814 3.19739 0.80555 

HSDT (a) 3.90735 1.16069 0.29871 4.29770 1.25827 0.32310 12.00275 3.18453 0.80467 

TPT (a) 3.90098 1.16006 0.29866 4.29132 1.25765 0.32306 11.99637 3.18391 0.80462 

HSDT (c) 3.90735 1.16069 0.29871 4.29770 1.25827 0.32310 12.00275 3.18453 0.80467 

10 

Present 4.02381 1.21841 0.31566 4.47735 1.33180 0.34401 13.43104 3.56850 0.90341 

CPT (a) 5.28555 1.31474 0.32204 5.73910 1.42813 0.35039 14.69174 3.66629 0.90993 

FSDT (b) 4.18778 1.23350 0.31672 4.64132 1.34688 0.34506 13.59396 3.58504 0.90460 

HSDT (a) 4.02576 1.21864 0.31568 4.47930 1.33203 0.34403 13.43194 3.57019 0.90357 

TPT (a) 4.02350 1.21837 0.31566 4.47705 1.33176 0.34401 13.42969 3.56992 0.90355 

HSDT (c) 4.02576 1.21864 0.31568 4.47930 1.33203 0.34403 13.43194 3.57019 0.90357 

Table 6 Comparison of critical buckling temperature difference 
310 crT  of square FG plate resting on elastic 

foundation under NTD
 

k
 

Theory 

(Kw, Ks)=(0,0) (Kw, Ks)=(10,0) (Kw, Ks)=(10,10) 

a/h=5
 

a/h=10
 

a/h=20
 

a/h=5
 

a/h=10
 

a/h=20
 

a/h=5
 

a/h=10
 

a/h=20
 

0 

Present 11.16922 3.22750 0.83307 11.51030 3.31527 0.85502 18.44031 4.04777 1.28814 

CPT (a) 13.66929 3.40982 0.84496 14.02036 3.49759 0.86690 20.95037 5.23009 1.30002 

FSDT (b) 11.15138 3.22725 0.83307 11.50246 3.31502 0.85501 18.43246 5.04752 1.28814 

HSDT (a) 11.15688 3.22736 0.83307 11.50796 3.31513 0.85501 18.43797 5.04764 1.28814 

TPT (a) 11.16112 3.22764 0.83309 11.51220 3.31541 0.85503 18.44220 5.04791 1.28816 

HSDT (c) 11.15688 3.22736 0.83307 11.50796 3.31513 0.85501 18.43797 5.04764 1.28814 

1 

Present 6.94309 1.96140 0.49792 7.36903 2.06788 0.52454 15.77661 4.16978 1.05002 

CPT (a) 8.25905 2.05500 0.50399 8.68499 2.16148 0.53061 17.09257 4.26338 1.05608 

FSDT (b) 6.93886 1.96127 0.49792 7.36479 2.06775 0.52454 15.77238 4.16965 1.05002 

HSDT (a) 6.94183 1.96133 0.49792 7.36777 2.06781 0.52455 15.77535 4.16971 1.05002 

TPT (a) 6.94412 1.96147 0.49793 7.37005 2.06796 0.52455 15.77763 4.16985 1.05003 

HSDT (c) 6.94183 1.96133 0.49792 7.36777 2.06781 0.52455 15.77535 4.16971 1.05002 

5 

Present 4.88065 1.45101 0.37353 5.36883 1.57305 0.40404 15.00050 3.98211 1.00630 

CPT (a) 6.24563 1.55334 0.38026 6.73381 1.67538 0.41077 16.37004 4.08444 1.01304 

FSDT (b) 5.06851 1.46768 0.37468 5.55669 1.58972 0.40519 15.19291 3.99878 1.00745 

HSDT (a) 4.88668 1.45160 0.37357 5.37486 1.57364 0.40408 15.01109 3.98270 1.00635 

TPT (a) 4.87871 1.45082 0.37082 5.36688 1.57286 0.40403 15.00311 3.98192 1.00629 

HSDT (c) 4.88668 1.45160 0.37357 5.37486 1.57364 0.40408 15.01109 3.98270 1.00635 

10 

Present 4.65068 1.40823 0.36484 5.17488 1.53928 0.40784 15.52226 4.12613 1.04432 

CPT (a) 6.10899 1.51957 0.37221 6.63320 1.65062 0.40497 16.98057 4.23746 1.05169 

FSDT (b) 4.84020 1.42567 0.36606 5.36440 1.55672 0.39882 15.71178 4.14356 1.04553 

HSDT (a) 4.65293 1.40849 0.36486 5.17714 1.53954 0.39763 15.52451 4.12639 1.04434 

TPT (a) 4.65033 1.40818 0.36864 5.17453 1.53923 0.39760 15.52191 4.12608 1.04432 

HSDT (c) 5.65293 1.40849 0.36486 5.17714 1.53954 0.39763 15.52451 4.12639 1.04434 
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Fig. 1 Effect of the gradient index on the non-dimensional 

critical buckling load N  of a square FG plate resting on 

elastic foundations. ( 10/ ha , 100wK  , 10sK  ) 
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Fig. 2 Effect of the side-to-thickness ratio on the crT  of a 

square FG plate resting on elastic foundations. ( 100wK  ,

10sK  , 1k ) 

 

 

In Fig. 1, the effect of the material index (k) on the non-

dimensional critical buckling loads N  of a square FG 

plate resting on elastic foundations is investigated. It can be 

observed from this figure that the non-dimensional critical 

buckling load initially decreases, and then the variation of 

curves is not significant by increasing in the value of the 

material index.  

Fig. 2 presents the variation of the ΔTcr versus the 

variation of the a/h for all three types of thermal loads. 

From this figure, it can be seen that ΔTcr is highest for NTD 

compare with two other thermal loads. Moreover, with 

increasing the plate thickness ratio, the ΔTcr decreases. 
 

 

6. Conclusions 
 

The mechanical and thermal stability behaviors of FG 

plates resting on elastic foundation are studied analytically 

by employing the hyperbolic shear deformation and stress 

function concept. Various numerical examples are examined 

to prove the accuracy and efficacy of the proposed 

formulation. Results show that the proposed theory can be 

comparable with the existing HSDTs with a larger number 

of unknowns. Because of the interesting features of the 

proposed theory, the present findings will be a useful 

benchmark for assessing the reliability of other future plate 

models. 
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