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1. Introduction 
 

It is well-known that the analysis of dynamic behaviors 

of mechanical or structural systems is an essential research 

area for providing successful design of structures, machines 

or mechanisms (Salarieh and Ghorashi 2006, Auciello 

1996). Among these systems vibrating structures have 

significant place. Many vibrating structures can be modeled 

as beam with mass attachments such as robot arms, tall 

buildings, towers, mast antennas, space crafts, satellites, 

aircraft wings, the Space Shuttle Remote Manipulator 

System and the Space Station Mobile Manipulator System 

(Auciello 1996, Abramovich and Hamburger 1991, Joshi 

1995, Kirk and Wiedemann 2002). Furthermore, dynamical 

behaviors of systems would be improved because of the 

increased flexibility properties of the system with the 

attachment of the tip mass (Esmailzadeh and Nakhaire-

Jazar 1998). In majority of the studies reported in the 

literature, the center of tip mass is assumed to be coincident 

with the beam end point while the dimensions of tip mass 

are neglected. However, Oguamanam (2003) studied the 

vibration of an Euler-Bernoulli beam with an eccentric 3D 

tip mass, and defined the closed form expressions for the 

orthogonality of modes, and obtained the frequency  

                                           

Corresponding author, Ph.D. Candidate 

E-mail: hilal.doganay@btu.edu.tr 
aAssociate Professor 

E-mail: hakan.gokdag@btu.edu.tr 

 

 

equation. The eccentricity of the payload was presented in 

three spatial coordinates for the first time in his study. Later, 

Oguamanam and Arshad (2005) investigated the similar 

system considering bending of the beam in two orthogonal 

planes. Salarieh and Ghorashi (2006) reconsidered the study 

of Oguamanam (2003) by changing the Euler-Bernoulli 

Beam with a Timoshenko beam. In another study Gökdağ 

and Kopmaz (2005) extended the Oguamanam’s work to 

monosymmetric open cross section beam with tip mass and 

springs, and analyzed the forced and free vibration of the 

system using Euler-Bernoulli beam theory. Later other 

studies on beam with mass attachment appeared though 

none of them considered the tip body exactly as in the 

previous cases. For instance, Vakil et al. (2013) modeled a 

Timoshenko beam with eccentric tip mass mounted on a 

cart in order to explain the behavioral analysis of flexible 

manipulators used in robots and machines. Hamilton’s 

Principle was used to derive the equations of motion and the 

method of separation of variables was implemented to 

obtain the closed-form (analytical) expressions. Matt (2013) 

developed a theoretical model for the transverse vibration of 

a cantilever beam carrying an axially eccentric tip mass. 

The governing equations were solved by an integral 

transform approach based on implicit filter scheme and 

eigenfunction expansion. 

In the relevant literature, the governing equations have 

been solved analytically although the analytical solution is 

generally complicated and lengthy.  Alternatively, 

approximate/numerical techniques such as He’s variational 

iteration technique, Galerkin, Frobenius, Adomian 

decomposition and Rayleigh-Ritz methods have been  
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Table 1 Some fundamental DTM rules (Yesilce 2010, 

Arikoglu and Ozkol 2006) 

Original Function Transformed Function 

( ) ( ) ( )f x g x h x   [ ] [ ] [ ]F k G k H k   

( ) ( )f x cg x  [ ] [ ]F k cG k  
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n

n

d g x
f x
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k n
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Table 2 Boundary condition transform rules (Yesilce 2010, 

Arikoglu and Ozkol 2006) 

0x   x L  

Original Boundary 

Conditions 

Transformed 

Boundary 

Conditions 

Original Boundary 

Conditions 
Transformed Boundary Conditions 
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employed. In recent years, much attention has been devoted 

to solve vibration problems by using a semi-

analytical/numerical method called DTM because of its 

simplicity and accuracy. For instance, Kaya and Ozgumus 

(2007) adopted DTM to solve governing equations of 

motion of flexural-torsional-coupled axially loaded 

composite Timoshenko beam. Yesilce (2010) investigated 

vibration characteristics of a moving Bernoulli beam with 

axial force solving governing equations with DTM. Çatal 

(2008) implemented DTM in order to solve equations of a 

beam on elastic soil. Chen and Ho (1998) analysed 

eigenvalue problems of a rotating twisted Timoshenko 

beam subjected to the axial loading by DTM. DTM has 

been used to solve some other boundary value problems, 

vibration problems, differential-difference equations, 

control theory, etc. by many researchers (Salehi et al. 2012, 

Liu et al. 2013, Ho and Chen 2006, Balkaya et al. 2008, 

Rajasekaran and Tochaei 2014, Ebrahimi and Mokhtari 

2015). 

In this study, after a brief history and theory of DTM, 

governing equations of motion and boundary conditions of 

a Timoshenko beam carrying 3D eccentric tip mass are 

obtained by Hamilton’s principle. Later DTM solution is 

introduced for the first time to solve the equations of motion 

of this beam-tip mass system. Then, DTM results are 

compared with those obtained by ANSYS and experimental 

solutions.  

 

 

Fig. 1 Clamped-Free Timoshenko beam with 3D tip mass 

 

 

2. Differential transform method (DTM) 

 

The DTM was introduced by Pukhov (1981, 1982) to 

solve nonlinear and linear initial value problems, and then it 

is developed by Zhou (1986) to study electrical circuit 

problems (Hwang et al. 2009, Liu et al. 2015). DTM is 

based on the Taylor’s series expansion. By this method 

some transformation theorems are applied to convert 

differential equations from the space or time domain into a 

transformed domain. DTM is an effective method to solve 

linear/nonlinear boundary and initial value problems, and 

gives accurate results provided sufficient number of terms 

in the series expansion is employed. In addition to its 

accurateness, DTM is easy to code in computer 

environment. 

The differential transform of the 
thk derivative of a 

function ( )f x  at 
0x x  is (Yesilce 2010) 

 
0

1 ( )

!

k

k

x x

d f x
F k

k dx


 
  

 
 (1a) 

where ( )f x  is the original function while [ ]F k  is the 

transformed function. The differential inverse 

transformation of [ ]F k  is given as 

  0

0

( )
k

k

f x F k x x




   (1b) 

Substituting Eq. (1a) into (1b) 

 

0

0

0

( )
( )

!

k k

k
k x x

x x d f x
f x

k dx



 

  
  

 
  (1c) 

In practical applications the first N terms in the series 

expansion is considered: 

 
0 0

1 ( )
( ) , [ ]

!

kN
k

k
k x

d f x
f x F k x F k

k dx 

 
   

 
  (1d) 

Tables 1 and 2 include other properties of DTM. 

 

 

3. Formulation 
 

3.1 The governing equations 
 

The Timoshenko beam model shown in Fig. 1 performs 
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two flexural deformations denoted by ( , )v x t and ( , )w x t  in 

the orthogonal planes along with torsional deformation 

( , )x t  about the longitudinal axis X. There are several 

frames with unit vectors denoted by ai, bi, ci, di, ei, i=1, 2, 3 

to describe the motion of tip mass and beam deformation. 

The total kinetic (T) and potential (V) energies of the 

whole system as follows 

 

2 2 2

0 0 0

2 2 2

1 1 2 2

0 0

1 1

2 2

1 1 1

2 2 2

1

2

L L L
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I dx I d r

T

x dM
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 
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   

  

 (2a) 
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2 2
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0 0
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1 1
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L L L

L L
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kGA v kGA w
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 

  

    

  

 

 (2b) 

in which   is density, 
Pr  is the position vector of a 

differential element P of the 3D tip mass, E  is Young 

modulus, A  is the cross section area of the beam, 
1I  and

2I  are area moments of inertia with respect to relevant 

axes, 
PI  is the mass moment of inertia per unit length with 

respect to beam axis, k is shape factor, GJ  is torsional 

stiffness. 

Using total kinetic and potential energies of the system 

the Lagrangian is formed. Then, applying Hamilton’s 

principle, i.e.,  
2

1

0
t

t

T V dt   , and after some algebra (see 

Oguamanam 2003, Oguamanam and Arshad 2005 for 

similar details) the governing equations of motion and 

boundary conditions of a uniform Timoshenko beam with 

tip attachment are obtained as follows: 

1( ( )) 0Av kGA v      (3a) 

2( ( )) 0Aw kGA w     (3b) 

 1 1 1 11
0f EI kGA v       (3c) 

 2 2 2 2 2 0f EI kGA w      (3d) 

0PI GJ    (3e) 

where 
1 1f I   and 

2 2f I  . Prime and overhead dot 

symbols denote derivatives with respect to x and t, 

respectively.  

The boundary conditions depending on the left end of 

the beam being clamped (C) and free (F) are  

 1 1 , 0Lzz xz yzI M x I I EI L tv         (4a) 

 2 2 , 0Lyy xy yzI M x I I EI L tw         (4b) 

 , 0

L Lxx xy xzI M z M y I Iv w

GJ L t

  



   

 
 (4c) 

    1, ,

0

LM M z kGA v L t L tv

M x

 



  

 
 (4d) 

    2, ,

0

LM M x kGA w L t L tw

M y

 



   

 
 (4e) 

 1 0, 0t 
 

or 
1 1

(0, ) 0EI t   (4f) 

 2 0, 0t 
 

or 
2 2

(0, ) 0EI t   (4g) 

 0, 0t 
 

or (0, ) 0GJ t   (4h) 

 0, 0v t 
 

or 
1(( )(0, )) 0kGA v t   (4i) 

 0, 0w t 
 

or 
2(( )(0, )) 0kGA w t   (4j) 

where 
2 2 2 2( ), ( )xxxx yy yyM z y I I M x zII      

2 2( )zz zzI I M x y   ,
xy xyI I Mxy  , xz xzI I Mxz 

yz yzI I Myz  .M denotes tip mass 
xxI ,

xzI , yyI ,
zzI ,

xyI ,

yzI are components of the tip mass inertia tensor. , ,x y z  

are the coordinates of the tip mass center of gravity G with 

respect to the beam end point C. 

The method of separation of variables

1 1( ( , ) ,  ( , ) ,  ( , ) ,  ( , )i t i t i t i tv x t Ve w x t We x t e x t e         

,
2 2( , ) )i tx t e    is applied to rewrite the equations of 

motions and boundary conditions 

1 1 0V V      (5a) 

 2 3 1 31
0V          (5b) 

1 2 0W W      (5c) 

 4 52 2 5 0W          (5d) 

2

6 0     (5e) 

where 

22 2

1

1 2 3 4

1 1 2

1/ 2
2

5 6

2

, ,  ,  ,  

,  P

f kGA

kG EI EI EI

I wkGA

EI GJ
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   

 

   

 
   

 

 (6) 

with the associated boundary conditions for the C and F 

beam at  ;x L  
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     

     
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1

2
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  
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1
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 
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      

     

2 2

2

2 0

M W L Mx kGA x L

My L kGA x W L
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



   
 (7e) 

at 0;x   

   1 1 10 0 or 0 0EI    (7f) 

   22 20 0 or 0 0EI    (7g) 

   0 0 or 0 0GJ      (7h) 

  1(00 0 or ( (0) ) 0)V kGA V    (7i) 

  2(00 0 or ( (0) ) 0)W kGA W     (7j) 

 

3.2 DTM formulation 
 

DTM theorems presented in Tables 1 and 2 are applied 

to the governing Eqs. (5a)-(5e) and boundary condition Eqs. 

(7a)-(7j) in order to obtain recurrence expressions and 

transformed boundary conditions, respectively. 

 
1 1
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2 ! !

k k
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Fig. 2 The schematic view of the experimental setup 

 

 

Fig. 3 Photograph of the experimental setup 

 

 

Boundary conditions for the C beam; 
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Steel plate 
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at 0 ;x   

1

2

[0] 0,  [0] 0,  [0] 0,  [0] 0,

 [0] 0

V W 



    


 (9f) 

Boundary conditions at x=0 for the F beam; 

1 2

1 2

 [1] 0,  [1] 0,  [1] 0

[1] [0] 0,  [1] [0] 0V W

 

 

   

   
 (10) 

in which 
1 2,  ,  ,  V W    and   are transformed 

functions and 
1 2,  ,  ,  ,V W     are original functions. 

By incorporating boundary conditions, a set of equations 

is obtained. 
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where  (i=1, 2, 3, 4, 5)ic  are undetermined constants. The 

natural frequencies make the determinant of the coefficient 

matrix equal to zero. 
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  (11b) 

The obtained natural frequencies are inserted into Eq. 

(11b) to find constants  (i=1, 2, 3, 4, 5)ic  which is necessary 

for the mode shapes. 

 
 

4. Experimental procedure 
 

It is difficult to measure angular displacements, while 

linear motions can easily be measured by ordinary modal 

accelerometers. Thus, in this study, only lateral vibration 

modes, i.e., Vi and Wi, are considered. Impact test is applied, 

since it is the cheapest and easiest way of modal data 

acquisition method. Figs. 2 and 3 illustrate the configuration 

used in the experiments. The modal hammer (Endevco 

2302-10) with steel tip is employed to apply impact-like 

force, and the response of the system along the same 

direction is measured by a single axis accelerometer 

(Dytran 3097A2T). For the modal data Vi and 

corresponding frequencies impact and response directions 

are along Y axis, whereas impact and response directions 

are along Z axis for Wi and corresponding frequencies. 

Input and response analog signals are sent to the data  

Table 3 The first three natural frequencies (Hz) of C beam 

with tip mass  

Along Z axis 

Method 1  
2  

3  

DTM (D) 32.43 341.19 979.44 

ANSYS (A) 32.49 339.62 920.83 

Experiment (E) 29.41 311.88 914.37 

Along Y axis 

Method 1  
2  

3  

DTM (D) 45.06 423.11 512.43 

ANSYS (A) 45.5 427.69 514.38 

Experiment (E) 38.75 392.69 469.59 

 

 

acquisition system (OROS OR36), where signals are 

filtered and conditioned. Then, accelerance type frequency 

response functions (FRFs) are computed in the OROS 

NVGate Version 8.00.002 software environment. Finally, 

peak picking method (He and Fu 2001), which is the easiest 

way of modal parameter estimation, is implemented to 

extract modal data such as natural frequencies, damping 

ratios and modal constants. During the experiments a 

rectangular tubular cross section beam with length 0.5 m is 

employed. Twenty measurement points with 1 inch spacing 

are determined on the beam. Thus, twenty FRF curves are 

measured for each Y and Z directions (see Fig. 4). 
 

 

5. Results and discussions 
 

The recursive expressions and the transformed boundary 

conditions in Eqs. (8), (9) are coded in Matlab environment 

to obtain natural frequencies ωi (i=1, 2, 3) and mode shapes. 

As an example, a uniform beam with section sizes 20 mm 

(width), 30 mm (height) and thickness 2 mm is considered. 

Other properties are as follows L=0.5 m, E=205 GPa, 

=7850 kg/m3, v=0.3 (Poisson’s ratio). The 3D tip mass is a 

cubic block with 50 mm side length and made of the same 

material as beam. The center of gravity coordinates of the 

tip mass with respect to the attachment point of the beam 

are 25mm; 10mm; -15mm (X, Y, Z axes respectively). 

Clamped end conditions are satisfied by welding a steel 

plate of thickness 8mm and sizes 220x20 cm  to the left end 

of the beam. Then the plate is screwed to the wall (Fig. 4). 

For the free end condition the beam-tip mass structure is 

hanged by strings. In Ansys environment SOLID187 

elements are used to mesh the structure. For the DTM 

computations the first thirty terms in the series expansions 

are regarded (i.e., N=30 in Eq. (9)) since sufficient 

convergence is provided. It was observed that DTM results 

are the same as the analytical results, thus analytical results 

are not given in the following tables and plots. 
Table 3 includes the natural frequencies of the system by 

the three approaches, i.e., DTM, Ansys, experiment. It is 
clear that DTM results are close to the others. The 
difference between the experimental and the other results 
may be attributed to the difficulty of satisfying clamped end 
conditions in laboratory conditions. Moreover, the element  
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(a) First Mode Shapes 

 
(b) Second Mode Shapes 

 
(c) Third Mode Shapes 

Fig. 5 The first three mode shapes of the C beam-tip mass 

system along Z axis 

 

 
(a) First Mode Shapes 

 
(b) Second Mode Shapes 

 
(c) Third Mode Shapes 

Fig. 6 The first three mode shapes of the C beam-tip mass 

system along Y axis 

  

Fig. 4 FRFs of the C beam 
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Fig. 7 FRFs of the F beam along Z axis 
 

 
(a) First Mode Shapes 

 
(b) Second Mode Shapes 

 
(c) Third Mode Shapes 

Fig. 8 Vibration modes of the F beam with-tip mass along 

Z axis 

Table 4 The first three natural frequencies (Hz) of F beam 

with tip mass 

Along Z axis 

Method 1  
2  

3  

DTM (D) 351.8 986.6 1801.5 

ANSYS (A) 354.6 999.8 1851.2 

Experiment (E) 345.0 967.5 1798.5 

Along Y axis 

Method 1  
2  

3  

DTM (D) 496.7 1390.7 1711.7 

ANSYS (A) 497.9 1394.9 1518.0 

 
 
type in the finite element model and the degree of freedom 
of the theoretical model are the probable issues that lead to 
the difference between Ansys and DTM results. 

Figs. 5 and 6 show the comparison of the first three 

normalized mode shapes of the C beam along Z and Y axes. 

It is clear that generally experimental and numerical modes 

are sufficiently compatible. If the bare beam was 

considered, experimental and numerical results would be 

more compatible. However, the complicated effect of the tip 

mass seems lead to some difference between numerical and 

experimental results. 

Another experiment is implemented for the F beam 

along Z axis. Fig. 7 demonstrates the measured FRFs, and 

Table 4 includes numerical results as well as the 

experimental along Z axis. Besides, mode shapes are 

compared in Fig. 8. This time it is observed the 

experimental results are closer to the numerical results, 

since free end condition can accurately be modeled by just 

hanging the beam from two points. The experimental modes 

along the Y axis were not be measured accurately, which 

may be due to the deficiency of the experimental set up, 

thus comparison of DTM with experiment along this axis is 

not given. Only comparison of DTM and ANSYS results 

was given along Y axis. 

 

 

6. Conclusions 
 

In this paper, the free vibration analysis of a 

Timoshenko beam carrying 3D tip mass whose center of 

gravity is not coincident with beam end is considered. The 

governing equations and boundary conditions of the system 

are derived by using Hamilton’s Principle. Later, DTM is 

applied in order to solve differential equations, and obtain 

natural frequencies and normalized mode shapes for C and 

F end conditions. Although, there are some studies on 

vibration analysis of beam where DTM is used, it is the first 

time DTM is used to solve this beam-tip mass system. 

Moreover, ANSYS and vibration experiment are performed 

to compare natural frequency and mode shape results. 

Experimental values are obtained by the impact testing, and 

peak picking approach is employed to extract modal data. It 

is observed that experimental and ANSYS results are 

generally close to DTM results, though some of them 

include remarkable errors. These errors mainly due to the 
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ineffectiveness of impact testing and dissimilarity of 

element type of beam model between theoretical and 

ANSYS. 

It is concluded that, based on the presented results, 

DTM is very efficient and accurate method to solve high 

order differential equations and boundary value problems.  
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