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1. Introduction 
 

Due to its high optical quality, laminated glass is an 

important material for safe transparent elements in the 

automobile, aircraft, and civil engineering industries. The 

lamination of brittle glass with a ductile interlayer, typically 

made of polymer foil, significantly improves the post-

fracture behavior of the member; on the other hand, it also 

affects the response of unfractured laminated glass plate 

because the foil is time/temperature-dependent (Huang et 

al. 2014) and soft (the glass-to-polymer stiffness ratio is 103 

or greater). Moreover, laminated glass plates are very 

slender, and therefore the effect of geometric nonlinearity 

can be significant (Xenidis et al. 2015). All these aspects 

should be captured in analysis of laminated glass structures. 

Numerous theories for laminated composite plates have 

been developed and reported in literature; a general review 

of numerical models is provided by e.g., (Reddy and 

Robbins 1994), (Carrera 2002), or (Zhang and Yang, 2009). 

A more specific overview of numerical approaches for 

laminated glass plates can be found in (Liang et al. 2016), 

(Eisenträger et al. 2015a), or (Eisenträger et al. 2015b). 

Generally, these methods can be broadly divided into the 

following categories:  

• effective thickness or stiffness approaches,  
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• layer-wise (or multi-layered) theories, and  

• detailed models based on 3D continuum theories.  

For plate structures, a closed form analytical solution is 

possible for specific boundary conditions and loading, such 

as a simply-supported plate strip under uniformly 

distributed tangential loading in (Naumenko and Eremeyev 

2014) for arbitrary boundary conditions, only approximate 

analytical solutions can be derived, (Wu et al. 2016), and 

numerical techniques are preferred. In effective thickness 

approaches, a reduced thickness of a monolith with 

equivalent bending properties in terms of the largest value 

of deflection or stress is derived; the effective thickness 

expressions for plate structures can be found for example in 

(Galuppi and Royer-Carfagni 2012). The results of some of 

those relatively undemanding single-layer approaches are 

not always on the side of safety or these methods can 

overestimate the deflection for very soft core layers 

(Eisenträger et al. 2015a). However, some of them may 

provide a precise prediction of the behavior of laminated 

glass, see the comparison in (Galuppi and Royer-Carfagni 

2013a) for a static loading and in (Schmidt et al. 2017) for a 

dynamic analysis.  

On the other hand, detailed 3D numerical simulations 

are computationally expensive because they require a large 

number of elements due to the large span/thickness ratio of 

laminated plates. Layer-wise theories provide sufficiently 

accurate stresses and strains distributions at the ply levels, 

and can reduce the computational cost, which will be 

discussed in this paper. Zig-zag theories stand in between 

effective thickness and layer-wise approaches. The in-plane 

displacements are expanded over the cross-section by 

adopting a piecewise linear (zig-zag) function; for more 

details see (Carrera 2004). These methods give relatively 
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low-cost, accurate estimates of structural response and are 

well-suited for laminated plates with a higher number of 

layers.  

Regarding the material model for polymer foil, the 

majority of the approaches available in literature assume the 

elastic behavior of interlayer material because the 

time/temperature-dependent iterative solution increases the 

computational cost even more. One of the first analyses 

accounting for the time/temperature-dependency of polymer 

foil behavior can be found in (Duser et al. 1999) belonging 

to the last group of detail numerical 3D simulations; a 

recent paper by (Liang et al. 2016) is an example of a zig-

zag model including the relaxation effects for interlayer 

material. In both of them, the polymer foil is assumed as a 

linear viscoelastic material with the constant bulk modulus. 

The objective of this paper is the formulation of a finite 

element model for laminated glass plates taking into 

account the time/temperature dependency of polymer foil 

behavior and geometrically nonlinear effects, its 

verification against detailed 3D solid model in an 

established finite element solver, and a brief parametric 

study. The proposed viscoelastic formulation is an extension 

of the elastic one for laminated glass plates from 

(Zemanová et al. 2015), and it belongs to the group of 

layer-wise approaches. We decided to treat each layer 

independently because this scheme can be naturally 

extended towards the post-fracture response when 

individual glass layers are fractured. Moreover, the 

Lagrange multipliers (with a physical meaning of nodal 

forces holding the neighboring layers together) offer a 

convenient way to capture possible delamination, which can 

occur during a post-fracture stage or due to a low velocity 

impact (Flocker and Dharani 1998). However, this 

contribution analyzes unfractured plates in bending under 

static loading, therefore no delamination is assumed in this 

paper. Unlike other authors, we assume the constant 

Poisson ratio in our viscoelastic formulation for the 

polymer interlayer in a laminated glass plate. This results in 

easier formulation but gives the same results for laminated 

glass structures as shown in (Zemanová et al. 2017).  

The structure of this paper is as follows. In Section 2, 

the variational formulation for a laminated glass plate with 

time/temperature-dependent behavior of interlayers is 

introduced, starting from kinematic and constitutive 

assumptions and relations. Then, the energy functional is 

derived, discretized, and the solution procedure is outlined. 

In Section 3, the layer-wise model is verified against 3D 

simulations in ADINA solver, its convergence and 

computational cost is discussed, and the effects of 

temperature, loading duration, and relaxation are studied 

and demonstrated by examples. Conclusions from this 

comparison are made in Section 4. Finally, the detailed 

derivation of the nodal internal forces and the stiffness 

matrix can be found in Appendix A.  
 

 

2. Formulation of viscoelastic model for laminated 
glass plate 
 

Models for laminated glass beams under different 

kinematic and constitutive assumptions were derived and  

 

Fig. 1 Scheme of a three-layer laminated glass plate with 

kinematic variables for the top layer (𝑖 = 1) 

 

 

compared in (Zemanová et al. 2017), and the conclusions 

are used for the laminated glass plate formulation.  

• The finite element model is based on the refined 

laminated plate theory by (Mau 1973). The plate consists of 

N layers. Each layer has independent kinematics, and the 

compatibility conditions are ensured via Lagrange 

multipliers.   

• Due to the combination of stiff and soft material, non-

negligible shear strains occur in the polymer interlayer. 

These shear strains are accounted in a simple way via the 

shear deformable Reissner-Mindlin plate theory (also the 

first-order shear deformation theory of plates) applied for 

each layer independently and complemented with the von 

Kármán assumptions for large deflections.1 

• For constitutive equations, the constant Poisson ratio 

is assumed for viscoelastic behavior of foil whereas the 

glass layers behave in an elastic manner. 

The following nomenclature is used in the text. Scalar 

quantities are denoted by lightface letters and the bold 

letters are reserved for matrices. The Cartesian coordinate 

system is set on each mid-surface of an undeformed layer so 

that the in-plane coordinates 𝑥 and 𝑦 are the same for all 

layers, whereas out-of-plane coordinate 𝑧(𝑖) is associated 

with the 𝑖-th layer (the zero value is set in the middle of 

this layer). However, the formulation is valid in general, we 

discuss and verify the most common case of laminated glass 

plates with three layers (glass/interlayer/glass) in this paper. 

The time-dependence of a quantity is denoted as • (𝑡𝑛) 

or • (𝑡𝑛+1); if convenient, it is shortened as •𝑛 or •𝑛+1.  

In order to avoid a profusion of notation, we omit the 

dependence of quantities of interest on the time variable 𝑡 

in Section 2.1 because the equations are valid also for 

elastic layers, while in Section 2.2 we omit the layer index 

•(𝑖) because the constitutive description holds only for the 

interlayer. 

 

2.1 Kinematics 
 

Under the von Kármán assumptions, the membrane 

displacements 𝐮(𝑖) = [𝑢(𝑖), 𝑣(𝑖)]T  are treated as small 

whereas the transverse displacements 𝑤(𝑖) as large. The 

equations for the displacement field 

                                           
1A comparison of the von Kármán large deflection model 

with the finite-strain Reissner model for laminated glass 

beams can be found in (Zemanová et al. 2017). 
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𝐮(𝑖)(𝑥, 𝑦, 𝑧(𝑖)) = 𝐮0
(𝑖)(𝑥, 𝑦) + 𝐒𝛗(𝑖)(𝑥, 𝑦)𝑧(𝑖), 

𝑤(𝑖)(𝑥, 𝑦, 𝑧(𝑖)) = 𝑤0
(𝑖)(𝑥, 𝑦), 

(1) 

are composed of the displacements of the mid-surface 

𝐮0
(𝑖)

= [𝑢0
(𝑖)

, 𝑣0
(𝑖)

]T complemented with the contribution of 

the straight line segment rotations about corresponding axis 

𝛗(𝑖) = [𝜑𝑥
(𝑖)

, 𝜑𝑦
(𝑖)

]T,  where matrix 𝐒 = [0, 1; −1, 0],  and 

the mid-surface deflection 𝑤0
(𝑖)

, Fig. 1. 

The compatibility conditions of the displacements 

across interfaces 

𝐜(𝑖,𝑖+1)(𝑥, 𝑦) = 𝐮(𝑖) (𝑥, 𝑦,
ℎ(𝑖)

2
) − 𝐮(𝑖+1) (𝑥, 𝑦, −

ℎ(𝑖)

2
), 

𝐜(𝑖,𝑖+1)(𝑥, 𝑦) = 𝟎, 

𝑐𝑧
(𝑖,𝑖+1)(𝑥, 𝑦) = 𝑤(𝑖) (𝑥, 𝑦,

ℎ(𝑖)

2
)

− 𝑤(𝑖+1) (𝑥, 𝑦, −
ℎ(𝑖)

2
), 

𝑐𝑧
(𝑖,𝑖+1)(𝑥, 𝑦) = 0 

(2) 

correspond to the assumption of a perfect bond of 

neighboring layers (for a three-layered plate 𝑖 = 1,2). 

The strains field is composed of the membrane 

components 𝛆𝑚
(𝑖)

= [𝜀𝑥
(𝑖)

, 𝜀𝑦
(𝑖)

, 𝛾𝑥𝑦
(𝑖)

]T  and the transverse 

shear strains 𝛄(𝑖) = [𝛾𝑥𝑧
(𝑖)

, 𝛾𝑦𝑧
(𝑖)

]T, 

𝛆𝑚
(𝑖)

(𝑥, 𝑦, 𝑧(𝑖)) = 𝛆𝑚0
(𝑖) (𝑥, 𝑦) + 𝛋(𝑖)(𝑥, 𝑦)𝑧(𝑖), 

𝛄(𝑖)(𝑥, 𝑦) = 𝛁𝑤0
(𝑖)

(𝑥, 𝑦) + 𝐒𝛗(𝑖)(𝑥, 𝑦). 
(3) 

The mid-surface membrane strains 

𝛆𝑚0
(𝑖)

(𝑥, 𝑦) = 𝛛𝐮0
(𝑖)

(𝑥, 𝑦) + 𝛆𝐾
(𝑖)

(𝑥, 𝑦) (4) 

include also the nonlinear contributions, which depend only 

on the deflections  

𝛆𝐾
(𝑖)(𝑥, 𝑦) =

[
 
 
 
 
 
 1

2
(

𝜕𝑤0
(𝑖)

𝜕𝑥
(𝑥, 𝑦))

2

1

2
(

𝜕𝑤0
(𝑖)

𝜕𝑦
(𝑥, 𝑦))

2

𝜕𝑤0
(𝑖)

𝜕𝑥
(𝑥, 𝑦)𝜕𝑤0

(𝑖)

𝜕𝑦
(𝑥, 𝑦)

]
 
 
 
 
 
 

. (5) 

The pseudo-curvatures 𝛋(𝑖) = [𝜅𝑥
(𝑖)

, 𝜅𝑦
(𝑖)

, 𝜅𝑥𝑦
(𝑖)

]T  are 

provided by 

𝛋(𝑖)(𝑥, 𝑦) = 𝛛𝐒𝛗(𝑖)(𝑥, 𝑦), (6) 

and the differential operators read 𝛁 = [
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
]T and 𝛛 =

[
𝜕

𝜕𝑥
, 0;  0,

𝜕

𝜕𝑦
;  

𝜕

𝜕𝑦
,

𝜕

𝜕𝑥
]. 

 

2.2 Constitutive relations 
 

Glass is supposed to behave in an elastic manner like 

in (Zemanová et al. 2015). Therefore, the following 

constitutive description holds only for the interlayer; the 

layer index •(2) is, thus, omitted in this section to shorten 

the notation. 

 

2.2.1 Time/temperature-dependent behavior of 
polymer foil 

At the time 𝑡, the stress vector at the material point 

𝛔(𝑡) = [𝜎𝑥(𝑡), 𝜎𝑦(𝑡), 𝜎𝑧(𝑡), 𝜏𝑥𝑦(𝑡), 𝜏𝑥𝑧(𝑡), 𝜏𝑦𝑧(𝑡)]T can be 

expressed from the smooth strain history 𝛆(𝑡) =
[𝜀𝑥(𝑡), 𝜀𝑦(𝑡), 𝜀𝑧(𝑡), 𝛾𝑥𝑦(𝑡), 𝛾𝑥𝑧(𝑡), 𝛾𝑦𝑧(𝑡)]T with 𝛆(0) = 0 

assuming the constant Poisson ratio as 

𝛔(𝑡) = �̅�𝜈 ∫𝐺(𝑡 − 𝑡′)
d𝛆

d𝑡′
(𝑡′)d𝑡′,

𝑡

0

 (7) 

where the matrix �̅�𝜈 is given by  

�̅�𝜈 =

[
 
 
 
 
 
 
2(1−𝜈)

1−2𝜈

2𝜈

1−2𝜈

2𝜈

1−2𝜈
0 0 0

2𝜈

1−2𝜈

2(1−𝜈)

1−2𝜈

2𝜈

1−2𝜈
0 0 0

2𝜈

1−2𝜈

2𝜈

1−2𝜈

2(1−𝜈)

1−2𝜈
0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 
 

. (8) 

The shear relaxation modulus of the generalized 

Maxwell chain can be represented by the Prony series, 

page 32 in (Christensen 1982), 

𝐺(𝑡 − 𝑡′) = 𝐺∞ + ∑𝐺𝑝 (exp
−

𝑡−𝑡′

𝜃𝑝 )

𝑃

𝑝=1

= 𝐺0 − ∑𝐺𝑝 (1 − exp
−

𝑡−𝑡′

𝜃𝑝 ) ,

𝑃

𝑝=1

 

 

(9) 

where 𝑃 is the number of viscoelastic units, 𝐺𝑝 denotes 

the shear modulus of the 𝑝-th unit, 𝜃𝑝 = 𝜂𝑝/𝐺𝑝  is its 

relaxation time related to the viscosity 𝜂𝑝, 𝐺∞ the shear 

modulus of the elastic spring, and 𝐺0 = 𝐺∞ + ∑ 𝐺𝑝
𝑃

𝑝=1
 

the instantaneous shear modulus of the chain. 

The true time 𝑡true  is replaced by the adjusted value 

𝑡 = 𝑡true/𝑎𝑇 taking into account the temperature dependence 

of the shear modulus of the interlayer. According to the 

time-temperature superposition principle  (Williams et al. 

1955), the time duration is modified by the temperature-

dependent shift function 𝑎𝑇 

log𝑎𝑇 = −
𝐶1(𝑇 − 𝑇0)

𝐶2 + 𝑇 − 𝑇0

, (10) 

where 𝐶1  and 𝐶2  are material constants, and 𝑇 and 𝑇0 

are the current and reference temperatures, respectively. 

 

2.2.2 Incremental formulation at material point 
According to the exponential algorithm by (Zienkiewicz 

et al. 1968), we decompose the time interval of interest 

〈0; 𝑡max〉 into non-equidistant time instants. The goal is to 

determine the stresses at the end of the time interval 

〈𝑡𝑛; 𝑡𝑛+1〉 
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𝛔𝑛+1 = 𝛔𝑛 + 𝛥𝛔, (11) 

when the values 𝛔𝑛 at the beginning of the time step are 

known and the strains vary linearly over the time interval.  

The increments of the stresses between the time instants 

𝑡𝑛 and 𝑡𝑛+1 are written as 

𝛥𝛔 = �̅�𝜈�̂�𝛥𝛆 + 𝛥�̂�, (12) 

where the effective shear modulus over the time interval is 

expressed by the series 

�̂� = 𝐺∞ + ∑𝐺𝑝

𝜃𝑝

𝛥𝑡
(1 − exp

−
𝛥𝑡

𝜃𝑝)

𝑃

𝑝=1

 (13) 

and the stress relaxation effects are represented by  

𝛥�̂� = ∑ 𝛥�̂�𝑝

𝑃

𝑝=1

= −∑ 𝛔𝑝(𝑡𝑛)(1 − exp
−

𝛥𝑡

𝜃𝑝).

𝑃

𝑝=1

 (14) 

 

2.2.3 Specific internal forces increments for plates 
For the assumed plane stress state, the normal stress 

component 𝜎𝑧 = 0  and the nonzero increments can be 

decomposed into the membrane stress components 𝛥𝛔𝑚 =
[𝛥𝜎𝑥 , 𝛥𝜎𝑦 , 𝛥𝜏𝑥𝑦]T and the shear stress components 𝛥𝛕 =

[𝛥𝜏𝑥𝑧 , 𝛥𝜏𝑦𝑧]
T, 

𝛥𝛔𝑚 = �̅�𝑚�̂�𝛥𝛆𝑚 + 𝛥�̂�𝑚, 𝛥𝛕 = 𝐈�̂�𝛥𝛄 + 𝛥�̂�, (15) 

where the membrane and shear relaxation effects 𝛥�̂�𝑚 and 

𝛥�̂� are computed according to Eq. (14). The split of matrix 

�̅�𝜈  in Eq. (8) gives rise to an identity matrix 𝐈 and the 

matrix 

�̅�𝑚 =
2(1 + 𝜈)

1 − 𝜈2
[

1 𝜈 0
𝜈 1 0
0 0 (1−𝜈)

2

]. (16) 

According to the first-order shear deformation theory for 

plates, we assume the constant shear stress increments 𝛥𝛕 

through the thickness of a layer. The membrane stress 

increments 𝛥𝛔𝑚 are split into the stress increments due to 

the membrane forces 𝛥𝛔𝑚
𝑛  and the stress-gradient 

increments due to the bending 𝛥𝛔𝑚
𝑚 

𝛥𝛔𝑚(𝑧) = 𝛥𝛔𝑚
𝑛 + 𝛥𝛔𝑚

𝑚𝑧

= (�̅�𝑚�̂�𝛥𝛆𝑚0 + 𝛥�̂�𝑚
𝑛 )

+ (�̅�𝑚�̂�𝛥𝛋 + 𝛥�̂�𝑚
𝑚)𝑧. 

(17) 

The increments of the specific normal forces 𝛥𝐧 =
[𝛥𝑛𝑥, 𝛥𝑛𝑦 , 𝛥𝑛𝑥𝑦]T , the specific bending moments 𝛥𝐦 =

[𝛥𝑚𝑥, 𝛥𝑚𝑦 , 𝛥𝑚𝑥𝑦]T , and the specific shear forces 𝛥𝐯 =

[𝛥𝑣𝑥 , 𝛥𝑣𝑦]T are provided by 

𝛥𝐧(𝑥, 𝑦) = ℎ�̅�𝑚�̂�𝛥𝛆𝑚0(𝑥, 𝑦) + ∫𝛥�̂�𝑚
𝑛 (𝑥, 𝑦)d𝑧

ℎ

= ℎ�̅�𝑚�̂�𝛥𝛆𝑚0(𝑥, 𝑦) + 𝛥�̂�(𝑥, 𝑦), 

(18) 

𝛥𝐦(𝑥, 𝑦) =
ℎ3

12
�̅�𝑚�̂�𝛥𝛋(𝑥, 𝑦) + ∫𝛥�̂�𝑚

𝑚(𝑥, 𝑦)𝑧d𝑧

ℎ

=
ℎ3

12
�̅�𝑚�̂�𝛥𝛋(𝑥, 𝑦) + 𝛥�̂�(𝑥, 𝑦), 

𝛥𝐯(𝑥, 𝑦) = ℎ𝑘𝐈�̂�𝛥𝛄(𝑥, 𝑦) + 𝑘 ∫𝛥�̂�(𝑥, 𝑦)d𝑧

ℎ

= ℎ𝑘𝐈�̂�𝛥𝛄(𝑥, 𝑦) + 𝛥�̂�(𝑥, 𝑦), 

where ℎ is the layer thickness, 𝑘 is the shear correction 

factor, see Chapter 13 in (Zienkiewicz et al. 2013), and the 

increments of the specific internal forces due to relaxation 

are expressed as 

𝛥�̂� = ℎ𝛥�̂�𝑚
𝑛 , 𝛥�̂� =

ℎ3

12
𝛥�̂�𝑚

𝑚, 𝛥�̂� = ℎ𝑘𝛥�̂�, (19) 

where the stress increments due to relaxation follow from 

Eqs. (14) and (17).  

 

2.3 Variational formulation and finite element 
implementation 
 

2.3.1 Energy functional 
The governing equations are derived by minimizing the 

potential energy functional. The total energy of the 

laminated plate is the sum of the internal and external 

component of the potential energy of individual layers, 

see (Zemanová et al. 2015). For a three-layered system at 

the time 𝑡𝑛+1, we get 

𝛱𝑛+1 = (𝛱𝑖𝑛𝑡
(1)

+ 𝛱𝑖𝑛𝑡,𝑛+1
(2)

+ 𝛱𝑖𝑛𝑡
(3)

) + ∑ 𝛱𝑒𝑥𝑡
(𝑖)

3

𝑖=1

, (20) 

where 𝛱𝑒𝑥𝑡
(𝑖)

 is the potential energy of external loading 

acting on the 𝑖-th layer at the time 𝑡𝑛+1 and 𝛱𝑖𝑛𝑡
(𝑖)

 is the 

internal energy of the 𝑖-th layer.  

For elastic glass layers (𝑖 = 1,3) with the mid-surface 

𝛺(𝑖) 

𝛱𝑖𝑛𝑡
(𝑖) (𝐮0

(𝑖), 𝑤0
(𝑖), 𝛗(𝑖))

=
1

2
∫ (𝛆𝑚0

(𝑖) (𝐮0
(𝑖), 𝑤0

(𝑖)))
T

ℎ(𝑖)�̅�𝑚
(𝑖)𝐺(𝑖)𝛆𝑚0

(𝑖) (𝐮0
(𝑖), 𝑤0

(𝑖))

𝛺(𝑖)

+ (𝛋(𝑖)(𝛗(𝑖)))
T (ℎ(𝑖))

3

12
�̅�𝑚

(𝑖)𝐺(𝑖)𝛋(𝑖)(𝛗(𝑖))

+ (𝛄(𝑖)(𝑤0
(𝑖), 𝛗(𝑖)))

T

ℎ(𝑖)𝑘(𝑖)𝐈𝐺(𝑖)𝛄(𝑖)(𝑤0
(𝑖), 𝛗(𝑖)) d𝛺(𝑖). 

(21) 

Due to the viscoelastic behavior of foil, the potential 

energy of the interlayer (𝑖 = 2)  has to be computed 

incrementally. The internal potential energy at the time 

𝑡𝑛+1 

𝛱𝑖𝑛𝑡,𝑛+1
(2)

(𝐮0
(2)

, 𝑤0
(2)

, 𝛗(2))

= 𝛱𝑖𝑛𝑡,𝑛
(2)

+ 𝛥𝛱𝑖𝑛𝑡
(2)

(𝐮0
(2)

, 𝑤0
(2)

, 𝛗(2)) 
(22) 

consists of the constant value of the internal potential 
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energy 𝛱𝑖𝑛𝑡,𝑛
(2)

 from the previous time 𝑡𝑛 (with 𝛱𝑖𝑛𝑡,0
(2)

= 0 

for 𝑡0 = 0) and the increment of the internal potential 

energy 

 

(23) 

The shear correction factor 𝑘 was assumed 5/6 for the 

glass layers and 1 for the interlayer, because we achieved 

the best agreement with the response of detailed two-

dimensional model from the ADINA solver for laminated 

glass beams for these values, see (Zemanová et al. 2017). 
 

2.3.2 Discretization 

The domain of each layer 𝛺(𝑖) is discretized with finite 

elements 𝛺𝑒
(𝑖)

. Then, the internal and external energy is 

approximated and the total potential energy for an arbitrary 

kinematically admissible vector of all generalized nodal 

displacements 𝐝 holds 

𝛱𝑛+1(𝐝) = ∑( ∑ 𝛱𝑖𝑛𝑡,𝑒
(𝑖) (𝐝𝑒

(𝑖))

𝑖=1,3

𝑁𝑒

𝑒=1

+ 𝛱𝑖𝑛𝑡,𝑛+1
(2)

(𝐝𝑒
(2)

)

+ ∑𝛱𝑒𝑥𝑡,𝑒
(𝑖) (𝐝𝑒

(𝑖))

3

𝑖=1

), 

(24) 

where the internal potential energy of the second layer of 

the 𝑒-th element 𝛱𝑖𝑛𝑡,𝑒
(2)

 is computed from the previous 

time level according to discretized form of Eq. (23). For 

bilinear approximations of unknown fields, the vector of 

generalized nodal displacements 𝐝𝑒
(𝑖)

 for the 𝑒 -th four-

node quadrilateral element of the 𝑖-th layer consists of four 

vectors 

𝐝𝑗
(𝑖)

= [𝑢0,𝑗
(𝑖)

, 𝑣0,𝑗
(𝑖)

, 𝑤0,𝑗
(𝑖)

, 𝜑𝑥,𝑗
(𝑖)

, 𝜑𝑦,𝑗
(𝑖)

]T, (25) 

where 𝑗 acquires four different numbers belonging to the 

nodes of the 𝑒-th element. 
 

2.3.3 Lagrange function and Karush-Kuhn-Tucker 
optimality conditions 

The Lagrange function for arbitrary kinematically 

admissible generalized nodal displacements 𝐝 at the time 

𝑡𝑛+1 

ℒ𝑛+1(𝐝, 𝛌) = 𝛱𝑛+1(𝐝) + 𝛌T𝐂𝐝, (26) 

includes the discretized total potential energy, Eq. (24), and 

the complementary conditions enforcing the compatibility 

𝐜 = 𝐂𝐝 = 𝟎, Eq. (2), discretely at all corresponding nodes. 

The vector 𝛌  represents the admissible Lagrange 

multipliers (forces linking the neighboring layers) and the 

block of matrix 𝐂 associated with 𝑗-th node has the form  

𝐂𝑗
(𝑖,𝑖+1)

=[

1 0 0 0 ℎ(𝑖)

2
… −1 0 0 0 ℎ(𝑖+1)

2

0 1 0 −
ℎ(𝑖)

2
0 … 0 −1 0 −

ℎ(𝑖+1)

2
0

0 0 1 0 0 … 0 0 −1 0 0

]. (27) 

The vectors of true nodal degrees of freedom 𝐝𝑛+1 and 

Lagrange multipliers 𝛌𝑛+1 fulfill the Karush-Kuhn-Tucker 

optimality conditions, e.g., (Bonnans et al. 2006), 

𝛻𝐝ℒ𝑛+1(𝐝𝑛+1, 𝛌𝑛+1) = 𝛻𝛱𝑛+1(𝐝𝑛+1) + 𝐂T𝛌𝑛+1 = 𝟎, 

𝛻𝛌ℒ𝑛+1(𝐝𝑛+1, 𝛌𝑛+1) = 𝐂𝐝𝑛+1 = 𝟎. 
(28) 

 

2.3.4 Solution procedure 
The resulting system of nonlinear equations is linearized 

and solved iteratively via the Newton method. The (𝑘 +
1)-th value of nodal displacements is expressed as  

𝐝𝑘+1
𝑛+1 = 𝐝𝑘

𝑛+1 + 𝛿𝐝𝑘+1 , (29) 

where the 𝑘-th iterate of nodal displacements 𝐝𝑘
𝑛+1  is 

known and it is set to 𝐝𝑛 at the beginning of the new 

iteration step. The displacement increment 𝛿𝐝𝑘+1  is 

determined together with the vector of Lagrange multipliers 

𝛌𝑘+1  from the linearized system  

[ 𝐊𝑘 𝐂T

𝐂 𝟎
] [

𝛿𝐝𝑘+1

𝛌𝑘+1 ] = − [ 𝐟𝑖𝑛𝑡
𝑘 − 𝐟𝑒𝑥𝑡

𝟎
]. (30) 

The stiffness matrix and the nodal internal forces are 

computed from the previous 𝑘-th iterate values of nodal 

displacements 

𝐊𝑘 = 𝛻2𝛱𝑖𝑛𝑡,𝑛+1( 𝐝𝑘
𝑛+1), 𝐟𝑘

𝑖𝑛𝑡 = 𝛻𝛱𝑖𝑛𝑡,𝑛+1( 𝐝𝑘
𝑛+1), (31) 

see Appendix A, whereas the nodal external forces 𝐟𝑒𝑥𝑡 =
𝐟𝑒𝑥𝑡,𝑛+1 are expressed for the loading level corresponding 

to the time 𝑡𝑛+1. 

The iterative procedure is summarized in Algorithm 1, 

where the residual in the termination criterion is given by 

the norm of residual forces including the influence of the 

Lagrange multipliers according to Eq. (28) 

𝜂𝑘 =
‖ 𝐟𝑘

𝑖𝑛𝑡 − 𝐟𝑒𝑥𝑡 + 𝐂T 𝛌𝑘 ‖2

max(‖𝐟𝑒𝑥𝑡‖2, 1)
. (32) 

The proposed layer-wise model was implemented 

according to this formulation in the MATLAB system 

version R2015b, where the tolerance 𝜖 for the residual 𝜂𝑘  

in the termination criterion was set to 10−5. 
 

 

3. Verification and comparisons 
 

Our verification study is performed in detail on an 

example representing a common loading and boundary 

conditions for laminated glass plate structures. For 

laminated glass beams, the case study focusing on the 

effects of different boundary conditions, loading and 

temperature is presented in (Zemanová et al. 2017). A 
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Algorithm 1 One step of the exponential algorithm  

Data: 

tolerance 𝜖, load 𝐟𝑒𝑥𝑡,𝑛+1, displacements 𝐝𝑛 , internal 

forces 𝐧𝑛
(2)

, 𝐦𝑛
(2)

, 𝐯𝑛
(2)

, Maxwell chain stresses [𝛔𝑚,𝑝,𝑒
𝑛 , 

𝛔𝑚,𝑝,𝑒
𝑚 , 𝛕𝑝,𝑒]𝑝=1,𝑒=1

𝑃,𝑁𝑒  for 𝑖 = 2 and 𝑡𝑛 

Initiation: 

𝑘 ← 0, 𝐝0 ← 𝐝𝑛, 𝛿𝐝0 ← 𝟎, 

assemble 𝐟𝑘
𝑖𝑛𝑡 and 𝐂 in Eq. (31) and Eq. (27) 

while ( 𝜂𝑘 > 𝜖) do 

assemble 𝐊𝑘  from Eq. (31) 

solve for ( 𝛿𝐝𝑘+1 , 𝛌𝑘+1 ) from Eq. (30) 

𝐝𝑘+1
𝑛+1 ← 𝐝𝑘

𝑛+1 + 𝛿𝐝𝑘+1  

assemble 𝐟𝑘+1
𝑖𝑛𝑡 from Eq. (31) 

𝑘 ← 𝑘 + 1 

𝐝𝑛+1 ← 𝐝𝑘+1
𝑛+1 

update internal forces from Eq. (18) and Maxwell chain 

stresses from Eq. (15) 

 

Table 1 Generalized Maxwell series description of the shear 

relaxation modulus for PVB, after (Andreozzi et al. 2014), 

𝐺∞= 0 Pa 

𝑝 𝐺𝑝 [Pa] 𝜃𝑝 [s]  𝑝 𝐺𝑝 [Pa] 𝜃𝑝 [s] 

1 1066280 1.00E-01  6 104767 7.25E+03 

2 560438 5.89E-01  7 134158 7.56E+04 

3 279509 4.32E+00  8 135411 7.38E+05 

4 135178 4.00E+01  9 111062 1.10E+07 

5 87014 5.31E+02  10 125984 1.00E+08 

 

 

validation study for laminated glass plates with different 

types of glasses and polymer interlayers with different 

boundary conditions and loading scenarios will be 

discussed in a subsequent paper. 

 

3.1 Problem description 
 

For verification purposes, a square 1.2 m ×  1.2 m 

three-layered simply supported plate composed of two glass 

layers (6 mm thick) and a PolyVinyl Butyral (PVB) 

interlayer (1.52 mm thick) was analyzed. Due to the 

symmetry, only one quarter of the plate was considered in 

numerical simulations.  

The material parameters were taken from (Andreozzi et 

al. 2014). In particular, the Young modulus 𝐸 = 70 MPa 

and the Poisson ratio 𝜈 = 0.22 are assumed for the linear 

elastic behavior of glass. The parameters of the chain model 

to describe the frequency-dependent behavior of the PVB 

foil are stored in Table 1. The parameters for the 

time/temperature shift, Eq. (10), 𝐶1 = 12.1 and 𝐶2 = 82 

correspond to the reference temperature 𝑇0 = 30∘C. 

The plate was loaded with a uniform pressure 

1,400 N/m2 during the time period 106 s at the temperature 

of 35∘C. This approximately 12-day-long time interval was 

divided into time steps defined by fifteen-time instants 𝑡true 

= [0, 0.1, 0.1778, 0.3162, 0.5623, 1, 1.778, 3.162, 5.623, 10, 

102, 103, 104, 105, 106] s. These values are distributed in 

Table 2 Convergence of the central deflection and the 

maximum principal stresses occurring on the bottom 

surface of laminated glass pane at the center and near the 

corner (in the distance 1 ⁄ 10 of the span from both edges) 

upon uniform mesh refinement for the problem 

from Section 3.1 

number of elements 5 × 5 15 × 15 30 × 30 40 × 40 50 × 50 

error in central deflections 1.14% 0.07% 0.01% 0.00% ‒ 

error in stresses at the center 1.28% 0.04% 0.02% 0.01% ‒ 

error in stresses near the 

corner 
5.92% 1.81% 0.64% 0.16% ‒ 

 

 

three time intervals uniformly in the logarithmic scale. 

More specifically, 5 time steps were used to discretize the 

time intervals 〈10−1; 100〉  and 〈100; 101〉 , whereas the 

time interval 〈101; 106〉 was divided into 6 time steps. Due 

to the temperature effects, the time values have to be shifted 

by parameter 𝑎𝑇, Eq. (10).  

The uniform loading was applied to the top surface of 

laminated glass plate in one second and left constant after 

that. The corresponding relative magnitude function 𝑚 

simulates the rapid loading increment at the beginning 

𝑚(𝑡true) = {
𝑡true for  𝑡true ≤ 1 s,
1 otherwise.

 (33) 

 

3.2 Convergence 
 

The mesh was refined uniformly, and the convergence 

of the response of the proposed model was tested for the 

problem from the previous section. In Table 2, the largest 

absolute values of the percentage error of the layer-wise 

model response for different mesh densities are listed; the 

results are compared with the reference value for the mesh 

density 50 × 50 elements. 

The central deflections and the maximum principal 

stress at the center of the bottom surface exhibit a rapid 

convergence. Due to the geometric nonlinearity, the 

redistribution of stresses occurs. The largest value of the 

maximum principal stresses become localized near the 

corner in a small area, so that the convergence of the 

maximal principal stress on the bottom surface near the 

corner (in the distance 1 ⁄ 10 of the span from both edges) 

shows significant mesh-dependency. Therefore, we can 

achieve the results with an engineering accuracy about 1% 

for the mesh density 25 × 25  elements for our task. 

However, we used a finer mesh 50 × 50  elements for 

verification purposes. These results are fully in agreement 

with those found for laminated glass plates with the 

interlayer modeled as an elastic material, see (Zemanová et 

al. 2015) for more information and graphs. 

 

3.3 Verification 
 

Herein, the proposed layer-wise model, labeled LW‒

VK‒𝜈, was compared with the response of a three-

dimens io na l  mode l  fo r  the  p rob lem d escr ibed 

in Section 3.1. The detailed 3D analysis was performed 

using the finite element program ‒ ADINA system 9.2.2 (by 
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ADINA R&D, Inc.). Five different brick hexahedral 

elements from the ADINA solver were tested for modeling 

of laminated glass plates response, see Table 3. 

The surface of one quarter of the plate was divided into 

 

 

 

50 × 50 elements for both layer-wise and hexahedral 

models. Three brick elements were used through the 

thickness of each glass layer, two for the interlayer, whereas 

only one element through the thickness of each layer was  

  

  
Fig. 2 The time-responses of the layer-wise model LW‒VK‒𝜈 or 3D-models (Table 3) in terms of the deflections at the 

center of the plate, the maximum principal stress occurring on the bottom surface of a laminated glass pane near the 

corner (in the distance of 1 ⁄ 10 of the span from both edges), and the errors of the LW‒VK‒𝜈 response against the 

3D-models 

  

Fig. 3 The relaxation effects demonstrated by the comparison of deflections and maximum principal stresses at the 

center of the bottom surface of the laminated glass plate from Section 3.1 for quasielastic/viscoelastic behavior of PVB 

foil 
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Table 3 The list of brick finite elements used in the ADINA 

solver 

abbreviation nodes per element integration type Gauss points 

3D‒8‒F 8 full 2 × 2 × 2 

3D‒20‒R 20 reduced 2 × 2 × 2 

3D‒20‒F 20 full 3 × 3 × 3 

3D‒27‒F 27 full 3 × 3 × 3 

 

 

considered for the layer-wise model. In both analyses, the 

von Kármán assumptions for large deflections and the 

constant Poisson ratio were used. 

The largest value of deflection and the maximum 

principal stress occurring on the bottom surface of 

laminated glass pane near the corner (in the distance 1 ⁄ 10 

of the span from both edges) are plotted for each time step 

in Fig. 2 (on the left). The principal stresses at the node 

were averaged from values in corresponding elements 

around the node. Because the response of the layer-wise 

model is almost indistinguishable from the results of some 

3D-models, the relative percentage errors of the layer-wise 

model compared to the relevant 3D-model are also shown 

(on the right). 

There is a discrepancy between the response of 3D‒8‒F 

model and the results of the others. The fully integrated 8-

node hexahedral model is too stiff due to the shear locking 

and delivers inaccurate response; the largest value of 

percentage error is about 60% for both displacements and 

stresses. This model is not able to handle large aspect ratio 

(up to 1:16:16 in our case); the explanation can be found for 

example in (Petr Krysl 2015). 

On the other hand, a very good agreement was found for 

the responses of the proposed layer-wise model LW‒VK‒𝜈 

and the 20-node or 27-node models (3D‒20‒R, 3D‒20‒F, 

3D‒27‒F). The largest values of percentage errors are about 

0.1% for 3D-20-R using the reduced integration scheme and 

about 0.3% for the fully integrated models 3D‒20‒F and 

3D‒27‒F for deflections and stresses. As is known, the 

reduced integration, giving a less constrained model, lead to 

better results for thin plates even for a lower number of 

elements. The difference between the 3D‒20‒F and 3D‒27‒ 

 

 

F responses is negligible, but the 3D‒27‒F model is 

significantly more computationally expensive. 

The sum of nodal unknowns was 54,621 generalized 

displacements and Lagrange multipliers in total in case of 

the layer-wise model, 70,227 displacements for the 8-node 

3D-model, 270,351 displacements for the 20-node 3D-

model, and 520,251 displacements for the 27-node 3D-

model. The computational cost of numerical models 

corresponds to the above-mentioned numbers of unknowns. 

The computational time was less than half an hour for the 

layer-wise model LW‒VK‒𝜈 in our unoptimized MATLAB 

solver, two hours for the 20-node 3D-model, and five hours 

for the 27-node 3D-model in ADINA solver on the same 

computer. 
 

3.4 Parametric study 
 

The numerical simulations from this section were 

performed in the developed layer-wise finite element solver 

in MATLAB. The effects of temperature, load duration, and 

relaxation effects are briefly demonstrated by a few 

examples. 

In Fig. 3, the comparison of models assuming 

quasielastic and viscoelastic behavior of the interlayer is 

presented. For quasielastic models, the analysis reduces to a 

series of elastic calculations, where we compute the 

response using constant values of shear modulus for given 

time instants and do not take into account the stress 

relaxation. In the first case, the constant value of shear 

modulus is computed directly from the Prony series in (9). 

In the second case, we use the effective shear modulus 

from (13). Responses of the two quasielastic predictions are 

plot in the graphs: 

• Firstly, we approximated the shear modulus of the 

PVB foil with the equivalent value according to (9). This 

simplified formulation is widely used in the design practice. 

The largest values of the error (6‒10% for the central 

deflections and 4‒5% for the maximum principal stresses) 

appear during the rapid load increment in the time interval 

10-1 s ‒ 1 s, decrease during the constant loading, and 

stabilize at values smaller than 0.5% at the end of the 

loading.  

  

Fig. 4 The effects of temperature and loading time demonstrated on deflections and maximum principal stresses at the 

center of the bottom surface of the laminated glass plate from Section 3.1 
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Fig. 5 The effects of temperature and loading time 

demonstrated on the contours of the maximum principal 

stresses on the bottom surface of the laminated glass plate 

from Section 3.1 for duration of loading 10 s or 106 s and 

the ambient temperature 0∘C, 25∘C, or 50∘C 

 

 

• Then, we also checked the prediction of the 

quasielastic formulation using the effective shear modulus 

according to (13) but neglecting the stress relaxation effects 

from (14). This quasielastic prediction is not on the side of 

safety even for constant loading; it undervalues the 

viscoelastic response approximately by 5%.  

Note that for loading with loading/unloading parts, the 

viscoelastic effects are more significant, see (Galuppi and 

Royer-Carfagni 2013b) and (Zemanová et al. 2017). 

The effects of the time/temperature-dependency of the PVB 

foil are demonstrated in Figs. 4 and 5. The 

time/temperature-dependent behavior of the PVB foil 

affects the values of quantities of interest, Fig. 4, and partly 

their distribution as well, Fig. 5, which is caused by the 

redistribution of stresses due to the geometrically non-linear 

behavior of plate. 
For the central deflections in Fig. 4, the largest values at 

the end of loading are doubled due to the different 
temperature, they are about 2 mm for 0∘C, 3 mm for 25∘C, 
and 4 mm for 50∘C; for the maximum principal stresses at 
the center of the bottom surface in Fig. 4, the relative errors 
are slightly smaller. For lower temperature, the values are 
almost constant and the increase in values is visible for 
loading duration exceeding 105 s. For room and higher 
temperature, the significant increase in values during the 
time is visible for both deflections and stresses. 

In Fig. 5, the contours of the maximum principal 
stresses on the bottom surface of one quarter of the plate are 

plotted for different loading times and temperatures. The 
top and right edge was modeled as simply-supported; the 
symmetry boundary conditions were prescribed for the 
bottom and left edge. For low temperature, the contours are 
almost the same for 10 s and 106 s; for room and higher 
temperature, there are small differences. In our testing 
example, the largest value of the maximum principal stress 
remains at the center of plate. The intensity of loading 
corresponds to the deflection of 1 ⁄ 300 of the span of 
plate for the largest temperature 50∘C at 106 s; for higher 
loading intensity, the differences in graphs would be more 
significant. More details on the stress redistribution due to 
the geometric non-linearity for elastic plates can be found 
in (Zemanová et al. 2015). 
 

 

4. Conclusions 
 

In this paper, the layer-wise theory was applied to 

examine the behavior of laminated glass plates. The 

formulation of a geometrically nonlinear multi-layered plate 

combining stiff elastic material with soft time/temperature-

dependent interlayers was performed under the von Kármán 

assumptions for large deflections with the constant Poisson 

ratio entering the constitutive equations. This model was 

verified against 3D simulations in ADINA solver using 8-

node, 20-node, and 27-node hexahedral brick elements with 

reduced or full numerical integration. Further, the 

computational cost, the relaxation effects, and the 

time/temperature-dependency of the results were 

demonstrated with examples and discussed. Based on this 

comparison, the following conclusions can be made:  

• The layer-wise model for laminated glass plates gives 

very accurate results and reduces the computational time 

significantly. 

• The best agreement was achieved with the 20-node 

hexahedral finite element model with the reduced 

integration scheme, which is well-known for its good 

performance for modeling thin plates under bending. A very 

good agreement was also found for the fully integrated 

models using 20-node or 27-node brick elements. The 

difference in the results of these two models was negligible, 

but the 27-node finite element model doubled the 

computational time. 

• The viscoelastic effects are significant for loading with 

changing intensity; for long-term constant loading, the error 

of the quasielastic solution decreased from the initial value 

of 5-10% to 0.5%.  
• The effects of temperature on the behavior of the PVB 

foil and therefore the whole laminated glass plate response 
were significant; the value of the central deflection for 0∘C 
is one half of that for 50∘C for the present example. 
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Layer-wise numerical model for laminated glass plates with viscoelastic interlayer 

 

A. Numerical aspects 

 

Each layer is discretized by four-node quadrilateral 

elements. The vector of generalized nodal displacements for 

𝑗-th node and 𝑖-th layer 

𝐝𝑗
(𝑖) = [𝑢0,𝑗

(𝑖)
, 𝑣0,𝑗

(𝑖)
, 𝑤0,𝑗

(𝑖)
, 𝜑𝑥,𝑗

(𝑖)
, 𝜑𝑦,𝑗

(𝑖)
]T (34) 

consists of two membrane displacements of mid-surface, a 

deflection, and two rotations, so that for the 𝑒-th element 

with nodes 𝑗=1,2,3,4 we get 

𝐝𝑒
(𝑖) = [𝑢0,1

(𝑖) , 𝑣0,1
(𝑖), 𝑤0,1

(𝑖), 𝜑𝑥,1
(𝑖) , 𝜑𝑦,1

(𝑖) ,

𝑢0,2
(𝑖) , ⋯ 𝑢0,4

(𝑖) , 𝑣0,4
(𝑖), 𝑤0,4

(𝑖), 𝜑𝑥,4
(𝑖) , 𝜑𝑦,4

(𝑖) ]T.
 (35) 

Each unknown displacement or rotation within an 

element is approximated as a function of four discrete nodal 

values 

[𝐮0
(𝑖)

, 𝑤0
(𝑖)

, 𝛗(𝑖)]T ≈ ∑ 𝑁𝑗𝐈𝐝𝑗
(𝑖)

4

𝑗=1

= 𝐍𝑒𝐝𝑒
(𝑖)

 (36) 

where 𝑁𝑗  are bi-linear shape functions, 𝐈  is the 5 × 5 

identity matrix, and 𝐍𝑒 is then the 5 × 20 matrix storing 

the element basis functions. 

Similarly to (Pica et al. 1980), the mid-surface 

membrane strain components Eq. (4), pseudo-curvatures 

Eq. (5), and transverse shear strains Eq. (3) are given in 

terms of nodal displacements, respectively, 

𝛆𝑚0
(𝑖) ≈ ∑(𝐁𝑛,𝑗 +

1

2
𝐁𝐾,𝑗(𝐝𝑗

(𝑖)))𝐝𝑗
(𝑖)

4

𝑗=1

= (𝐁𝑛,𝑒 +
1

2
𝐁𝐾,𝑒(𝐝𝑒

(𝑖)))𝐝𝑒
(𝑖), 

𝛋(𝑖) ≈ ∑𝐁𝑏,𝑗𝐝𝑗
(𝑖)

4

𝑗=1

= 𝐁𝑏,𝑒𝐝𝑒
(𝑖)

, 

𝛄(𝑖) ≈ ∑𝐁𝑠,𝑗𝐝𝑗
(𝑖)

4

𝑗=1

= 𝐁𝑠,𝑒𝐝𝑒
(𝑖)

, 

(36) 

where 𝐁•,𝑒 = [𝐁•,1, 𝐁•,2, 𝐁•,3, 𝐁•,4]  and the submatrices 

containing the derivatives of shape functions are written as 

 

(38) 

The expressions in 𝐁𝐾,𝑒 are linearly dependent on 𝐝𝑒
(𝑖)

 

whereas the other submatrices are independent of 𝐝𝑒
(𝑖)

. The 

values of nodal displacements for the evaluation of the 

(𝑘 + 1)-th iterate of shape functions, their derivatives, and 

internal nodal forces are taken from the previous 𝑘-th step 

in the Newton method, we omitted the symbol 𝑘  to 

simplify the notation.  

The 2 × 2  Gauss quadrature, with four integration 

points [𝑥𝑔, 𝑦𝑔]𝑔=1
4 , was used to determine the normal and 

the bending terms of the internal nodal forces, and 1 × 1  

quadrature at the center for the shear terms. This selective 

integration scheme treats shear locking. For corner 

supported plates, a stabilization technique has to be used, 

e.g., (Belytschko et al. 1981), to avoid zero-energy modes. 

Eq. (31) gives the nodal internal forces in the form 

𝐟𝑖𝑛𝑡,𝑒
(𝑖)

= 𝐟𝑖𝑛𝑡,𝑛,𝑒
(𝑖)

+ 𝐟𝑖𝑛𝑡,𝑏,𝑒
(𝑖)

+ 𝐟𝑖𝑛𝑡,𝑠,𝑒
(𝑖)

, (39) 

where 

𝐟𝑖𝑛𝑡,𝑛,𝑒
(𝑖) = ∑ 𝛼𝑔

4

𝑔=1

(𝐁𝑛,𝑒(𝑥𝑔, 𝑦𝑔)

+ 𝐁𝐾,𝑒(𝑥𝑔, 𝑦𝑔 , 𝐝𝑒
(𝑖)))

T

𝐧𝑒
(𝑖)(𝑥𝑔 , 𝑦𝑔), 

𝐟𝑖𝑛𝑡,𝑏,𝑒
(𝑖) = ∑ 𝛼𝑔

4

𝑔=1

𝐁𝑏,𝑒
T(𝑥𝑔, 𝑦𝑔)𝐦𝑒

(𝑖)(𝑥𝑔, 𝑦𝑔), 

𝐟𝑖𝑛𝑡,𝑠,𝑒
(𝑖) = 𝛼0𝐁𝑠,𝑒

T(𝑥0, 𝑦0)𝐯𝑒
(𝑖)(𝑥0, 𝑦0), 

(40) 

with the nodal forces written as 

𝐧𝑒
(𝑖)(𝑥𝑔, 𝑦𝑔) = ℎ(𝑖)�̅�𝑚

(𝑖)𝐺(𝑖) (𝐁𝑛,𝑒(𝑥𝑔, 𝑦𝑔)

+
1

2
𝐁𝐾,𝑒(𝑥𝑔, 𝑦𝑔 , 𝐝𝑒

(𝑖))) 𝐝𝑒
(𝑖), 

𝐦𝑒
(𝑖)

(𝑥𝑔 , 𝑦𝑔) =
(ℎ(𝑖))3

12
�̅�𝑚

(𝑖)
𝐺(𝑖)𝐁𝑏,𝑒(𝑥𝑔, 𝑦𝑔)𝐝𝑒

(𝑖)
, 

𝐯𝑒
(𝑖)

(𝑥0, 𝑦0) = ℎ(𝑖)𝑘(𝑖)𝐈𝐺(𝑖)𝐁𝑠,𝑒(𝑥0, 𝑦0)𝐝𝑒
(𝑖)

. 

(41) 

Then, the stiffness matrix from Eq. (31) reads as 

𝐊𝑒
(𝑖)

= 𝐊𝑛,𝑒
(𝑖)

+ 𝐊𝑏,𝑒
(𝑖)

+ 𝐊𝑠,𝑒
(𝑖)

, (42) 

where 

𝐊𝑛,𝑒
(𝑖) = ∑ 𝛼𝑔

4

𝑔=1

((𝐁𝑛,𝑒(𝑥𝑔, 𝑦𝑔)

+ 𝐁𝐾,𝑒(𝑥𝑔, 𝑦𝑔, 𝐝𝑒
(𝑖)))

T

ℎ(𝑖)�̅�𝑚
(𝑖)𝐺(𝑖) (𝐁𝑛,𝑒(𝑥𝑔, 𝑦𝑔))

+ 𝐊𝜎,𝑒
(𝑖) (𝑥𝑔, 𝑦𝑔)), 

𝐊𝑏,𝑒
(𝑖)

= ∑ 𝛼𝑔

4

𝑔=1

𝐁𝑏,𝑒
T(𝑥𝑔, 𝑦𝑔)

(ℎ(𝑖))
3

12
�̅�𝑚

(𝑖)𝐺(𝑖)𝐁𝑏,𝑒(𝑥𝑔, 𝑦𝑔), 

𝐊𝑠,𝑒
(𝑖)

= 𝛼0𝐁𝑠,𝑒
T(𝑥0, 𝑦0)ℎ

(𝑖)𝑘(𝑖)𝐈𝐺(𝑖)𝐁𝑠,𝑒(𝑥0, 𝑦0), 

(43) 

and the initial stress matrix is 

 

(44) 
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For the interlayer, the shear modulus in previous 

equations is the effective one, Eq. (13), and additional 

members of the nodal internal forces and the stiffness 

matrix due to the relaxation effects have to be taken into 

account, cf. (Zemanová et al. 2017). In particular, the 

increments of nodal forces follow from 

𝛥𝐟𝑖𝑛𝑡,𝑛,𝑒
(2)

= ∑ 𝛼𝑔

4

𝑔=1

(𝐁𝑛,𝑒(𝑥𝑔, 𝑦𝑔)

+ 𝐁𝐾,𝑒(𝑥𝑔, 𝑦𝑔, 𝐝𝑒
(2)

))
T

𝛿𝐧𝑒
(2)

(𝑡𝑛, 𝑥𝑔, 𝑦𝑔), 

𝛥𝐟𝑖𝑛𝑡,𝑏,𝑒
(2)

= ∑ 𝛼𝑔𝐁𝑏,𝑒
T(𝑥𝑔, 𝑦𝑔)𝛿𝐦𝑒

(2)
(𝑡𝑛, 𝑥𝑔 , 𝑦𝑔),

4

𝑔=1

 

𝛥𝐟𝑖𝑛𝑡,𝑠,𝑒
(2)

= 𝛼0𝐁𝑠,𝑒
T(𝑥0, 𝑦0)𝛿𝐯𝑒

(2)(𝑡𝑛, 𝑥0, 𝑦0), 

(45) 

where the history variables are provided by 

𝛿𝐧𝑒
(2)

(𝑡𝑛, 𝑥𝑔, 𝑦𝑔) = 𝐧𝑒
(2)

(𝑡𝑛, 𝑥𝑔, 𝑦𝑔) + 𝛥�̂�𝑒
(2)

(𝑥𝑔, 𝑦𝑔)

− ℎ(2)�̅�𝑚
(2)

�̂�(2)𝛆𝑚0,𝑒
(2)

(𝑡𝑛, 𝑥𝑔, 𝑦𝑔), 

𝛿𝐦𝑒
(2)

(𝑡𝑛, 𝑥𝑔, 𝑦𝑔) = 𝐦𝑒
(2)

(𝑡𝑛, 𝑥𝑔, 𝑦𝑔) + 𝛥�̂�𝑒
(2)

(𝑥𝑔, 𝑦𝑔)

−
(ℎ(2))3

12
�̅�𝑚

(2)
�̂�(2)𝛋𝑒

(2)
(𝑡𝑛, 𝑥𝑔, 𝑦𝑔), 

𝛿𝐯𝑒
(2)

(𝑡𝑛, 𝑥0, 𝑦0) = 𝐯𝑒
(2)

(𝑡𝑛, 𝑥0, 𝑦0) + 𝛥�̂�𝑒
(2)

(𝑥0, 𝑦0)

− ℎ(2)𝑘(2)𝐈�̂�(2)𝛄𝑒
(2)

(𝑡𝑛, 𝑥0, 𝑦0), 

(46) 

Finally, the stiffness matrix increment for interlayer 

reads as 

 

(47) 

Further details regarding the implementation of general 

quadrilateral elements of an irregular shape can be found 

in (Pica et al. 1980). With minor adjustments, the 

formulation can also be extended to triangular elements, 

e.g., (Zienkiewicz et al. 2013). 
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