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1. Introduction 
 

Small scale beams are the basic structures used in 

several applications such as nano-electro-mechanical 

systems, nano-probes, atomic force microscope (AFM), 

nanoactuators and nanosensors. At nano scale, the physical 

and mechanical properties of small scale structures render 

evident size effects, which are quite different from their 

bulk counterparts. Such micro/nano structural components 

are constructed from nanostructured materials due to 

possessing small size. It is known that nanostructured 

materials such as nanocrystalline materials (NcMs) and 

nanoparticle composites (NpCs) have an inhomogeneous 

structure and their properties are significantly influenced by 

the essence of their material structure (Shaat and Abdelkefi 

2016, Shaat 2015).  In fact, nanocrystalline materials are 

multi-phase composites consist of grain phase, porosities 

and interface phase. In NcMs, several atoms are separated 

from the grains and create a new phase which is called as 

the interface. The interface phase shows a softening impact 

on the structure by reducing the elastic moduli (Wang et al. 

2003). Also, properties of nanocrystalline materials depend 

on the grain and porosity size which can change from 0.5 to 

100 nm (Kim and Bush 1999).  

Recently, some physical phenomena have been reported 

in micro/nano scale structures such as the translation and 

rotation of grains or crystals within the material structure. 

Translational motion of grains is the observable degree of 

freedom in macro-size structures. However, rotational  
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motion of grains inside the material shows an important 

influence on the behavior of a micro/nano structure. Several 

higher-order continuum theories are suggested accounting 

for the size influences by considering additional degrees of 

freedom. The modified couple stress theory (Yang et al. 

2002) has been implemented to examine the influences of 

the grains rigid rotations on the behavior of nanobeams 

(Shaat and Abdelkefi 2015). Analysis of mechanical 

response of nanocrystalline nanobeams are very limited in 

the literature. Shaat et al. (2016) examined vibration 

behavior of a cracked nanocrystalline nanobeam based on 

modified couple stress theory. Also, Shaat and Abdelkefi 

(2015) researched pull-in instability of multi-phase 

nanocrystalline nanobeams exposed to an electrostatic 

force. Nanostructures are also significantly influenced by 

their surface tension and surface energy (Gurtin and 

Murdoch 1975, Ebrahimi et al. 2016). The free surfaces 

(external surfaces creating the outer boundary of materials) 

and interfaces (interfacial surfaces between the non-

homogeneities) have a major role on the behavior of 

nanostructures made of nano-structured materials (Shaat 

and Abdelkefi 2015). Moreover, surface effects have a 

major role in dynamic behavior of nanostructures (Ebrahimi 

et al. 2016, Wang and Feng 2009). The free surfaces 

(external surfaces creating the outer boundary of materials) 

and interfaces (interfacial surfaces between the non-

homogeneities) have a major role on the behavior of 

nanostructures made of nano-structured materials (Shaat 

and Abdelkefi 2015b). Gurtin and Murdoch (1975) 

suggested a surface elasticity theory for modeling of the 

continuum surface as a two-dimensional membrane having 

zero thickness lying on the material bulk. In the literature, 

there is no relevant paper to surface elasticity effects on 

vibration and buckling behavior of multi-phase 
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nanocrystalline nanobeams. However, there are many 

papers on vibration and buckling of homogenous 

nanobeams incorporating surface effects. Gheshlaghi and 

Hasheminejad (2011) investigated surface stress effects on 

nonlinear vibrational behavior of homogenous nanobeams. 

Also, Ansari et al. (2014) presented vibration analysis of 

Timoshenko nanobeams based on surface stress elasticity 

theory. Ansari et al. (2014) performed post-buckling 

analysis of homogenous nanoscale beams considering 

surface stress effects. Also, Sahmani et al. (2014) explored 

surface energy effects on vibrational behavior of post-

buckled higher order nanobeams. Ebrahimi and Boreiry 

(2016) examined various surface effects on vibrational 

behavior of nanobeams based on classical beam theory.  
In fact, literature survey indicates that all of previous 

papers on nanocrystalline nanobeams have not considered 
nonlocal effects in their analysis. It is reported that the 
mechanical behavior of nanobeams is significantly 
influenced by the presence of nonlocality. Therefore, there 
is a strong scientific need to investigate the behavior of 
nanocrystalline nanobeams incorporating both surface 
elasticity and nonlocal effects. Up to now, several 
investigations are performed to incorporate the nonlocal 
effects in vibration and buckling analysis of nanobeams 
based on nonlocal elasticity theory of Eringen (Eringen 
1972, 1983, Ebrahimi and Barati 2016a, b, Ebrahimi et al. 
2016b, Li et al. 2016, Li and Hu 2017). Reddy (2007) 
presented nonlocal modeling of nanobeams for static, 
buckling and vibration analysis of small scale beams based 
on Euler-Bernoulli, Timoshenko and third-order theories. 
Eltaher et al. (2013) explored both nonlocal and surface 
energy effects on vibrational response of nanobeams. 
Şimşek (2014) examined nonlocal effects on nonlinear free 
vibration of nanobeams under different boundary 
conditions. Also, Eltaher, et al. (2013) performed vibration 
analysis of nonlocal nanobeams employing finite element 
approach. Berrabah et al. (2013) proposed different higher 
order nonlocal beam models for static, vibration and 
buckling analysis of nanoscale beams. Also, Tounsi et al. 
(2013) investigated thermal buckling response of 
nanobeams by developing a nonlocal higher order beam 
model. Investigation of vibration behavior of preloaded 
nonlocal coupled nanobeams is performed by Murmu and 
Adhikari (2012). In another research, Zenkour et al. (2015) 
studied vibration of nanobeams via a nonlocal 
thermoelasticity model without energy dissipation 
implementing a state space method. Ebrahimi et al. (2015) 
examined the application of differential transformation 
approach in vibration analysis of nonlocal inhomogeneous 
nanobeams. Also, Ansari et al. (2016) carried out nonlocal 
nonlinear free vibration analysis of fractional viscoelastic 
nanobeams. Ebrahimi and Barati (2016c, d, e, f) proposed a 
nonlocal third-order shear deformable beam model for 
vibration and buckling analysis of nanobeams under various 
physical fields. Most recently Ebrahimi and Barati (2016g, 
h, i) explored thermal and hygro-thermal effects on 
nonlocal vibration behavior of small scale of temperature-
dependent nonhomogeneous nanoscale beams. All these 
papers based on nonlocal elasticity theory of Eringen only 
introduced a stiffness-softening effect. In the recent area of 
nanoscience and nanotechnology, some factors are 
responsible for the deficiency of nonlocal elasticity theory. 
Among of them are the effects of microstructure degrees of  

 

Fig. 1 Configuration of an embedded nanocrystalline 

nanobea 
 
 

freedoms and the surface energy. In only one paper, Attia et 
al. (2016) investigated combined effects of nonlocal stress 
field, couple stress and surface energy on mechanical 
behavior of nanobeams. 

Also, it is evident that all of afore-mentioned papers 

related to vibration and buckling of nonlocal nanobeams 

have not used size-dependent material properties and they 

are independent of grains and voids size. So, it is crucial to 

consider size-dependent material properties in analysis of 

nonlocal nanobeams by using a micromechanical model in 

which the effects of nano-grains, nano-voids and interface 

size are considered. Based on above discussions, analysis of 

buckling behavior of nanocrystalline nanobeams 

considering combined effects of nonlocal stress field, 

couple stress and grains surface energy is very important for 

accurate analysis nanoscale beams by taking into account 

both size-dependency of structure and material properties. 

This research deals with the buckling analysis of 

nanocrystalline nanobeams resting on Winkler-Pasternak 

foundation based on nonlocal couple stress theory 

incorporating grains surface energy effects. The model 

contains the modified couple-stress theory to explore the 

influence of rotational degree of freedom of particles. 

Moreover, nonlocal elasticity theory is employed to study 

the nonlocal and long-range interactions between the 

particles. A micromechanical model is employed to describe 

a multi-phase nanobeam with grain and void size dependent 

material properties. The governing differential equations of 

motion are derived by using Hamilton’s principle and an 

analytical approach is employed to solve the equations for 

various boundary conditions. The results of present study 

are compared with those of previously published papers. 

The influences of couple stress, nonlocality, 

nanograin/nanopore size, nanopore percentage, elastic 

foundation and shear deformation on buckling loads of 

nanocrystalline nanobeam are discussed in detail. 

 

 

2. Theory and formulation 
 

2.1 Effective elastic constants of nanocrystalline 
nanobeam  

 

Consider a nanocrystalline silicon nanobeam which is a 

three-phase composite having nano-grains and nano-voids 

randomly distributed in the interface region, as indicated in 

Fig. 1. In this figure, a Representative Volume Element  
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Table 1 Material properties of nanocrystalline nanobeam 

Phase-1 (Interface) Ein=45.56 GPa, vin=0.064, ρin=2004.3 kg/m3 

Phase-2 (Si-nanograins) Eg=169 GPa, vg=0.064, ρg=2300 kg/m3 

Phase-3 (nanovoids) Ev=0 

Surface coefficients of grains and voids λs=-4.488 N/m, μs=-2.774 N/m 

 

Table 2 Effective material properties of nanocrystalline 

nanobeam for various grain size 

Rg=Rv Tin fv fg KNcM γNcM ENcM ρNcM 

100 nm 1.02  0.97 61.72 75.33 160.66 2291.1 

20 nm 3.7126 0% 0.6 37.34 43.54 94.07 2181.7 

0.5 nm 0.13  0.5 28.09 35.85 75.46 2152.2 

100 nm 1.02  0.873 45.55 52.06 113.1 2062 

20 nm 3.7126 10% 0.54 29.12 32.51 71.10 1963.5 

0.5 nm 0.13  0.45 6.570 58.10 44.16 1936.9 

 

 

(RVE) is proposed in which distinct surface phases of 

inhomogeneities are indicated. A size-dependent 

micromechanical model is used to describe the effective 

material constants (Shaat and Abdelkefi 2015).  

In this model, influences of the size of grains and voids 

and their surface energies are included in the Mori-Tanaka 

micromechanical model. Elastic properties of interface or 

grain boundary, nano-grains and nano-voids are presented in 

Table 1.  

According to the suggested model, the elastic properties 

of a two-phase RVE considering nano-grains can be 

expressed by 

( ) ( )( ) k s k

in g g iff n g ge kk f k k A f k B     (1) 

( ) ( )( ) s

in g g in ge f gf f A f B 
        (2) 

in which 
( )kA ,

( )kB ,
( )A 

 and 
( )B 

 are four scalars 

which are determined in the context of the used 

micromechanical model. Based on Mori-Tanaka model for 

two-phase composites having spherical inclusion, the 

effective bulk modulus keff and shear modulus μeff can be 

defined as (Shaat 2015) 
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(8) 

in which 
* /s

s g g ink k R   and 
* /s

s g g inR   are 

surface bulk modulus and shear modulus, respectively and 

2( )s s s

g g gk    . Also, Rg is average radius of nano-

grains.  

The present form of Eqs. (3) and (4) cannot be used for 

multi-phase composites, since it is unable to capture the 

effect of nano-voids or other inclusions. To overcome this 

problem, the decoupling method introduced by Huang et al. 

(1994) is implemented to decompose a multi-phase 

composite into a set of two-phase composites. Based on 

decoupling method, a two-phase composite for every kind of 

inclusion is considered with a matrix material as the matrix of 

multi-phase composite. Hence, the effective bulk KMP and 

shear μMP moduli of a multi-phase composite can be 

represented by 
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in which 
nHk  and 

nH  are effective elastic constants of 

each two-phase composite. Also, N is number of phases in 

multi-phase composite. It should be mentioned that multi-

phase composite is decoupled into N-1 two-phase composite. 

For a nanocrystalline material, the atoms inside the 

crystallites vibrate at their equilibrium positions r0 with a 

elastic modulus of E(r0) which is identical to that of a 

perfect crystal, Eg. Also, the average atomic spacing r in the 

grain boundary regions is larger than r0, with a elastic 

modulus of Ein=E(r) which has the following relation with 

elastic modulus of the perfect crystal as 

3
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in which interatomic spacing r is related to the mass density 

of interface ρ(r) by 
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r
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where ρ(r0) is mass density of perfect crystal. Also, for a 

nanocrystalline Si, the values of m and n are identical to 8 
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and 12, respectively. 

By defining η=Ein/Eg, the shear and bulk moduli of 

interface should be related to those of the grain as 

,in g in gk k     (13) 

Hence, implementing decoupling method leads to the 

following relations for the elastic properties of 

nanocrystalline material (NcM) as 
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Hence, the effect of nano-voids is included in the present 

size-dependent micromechanical model. Also, the grain 

volume fraction fg as a function of porosity percent fv can be 

determined as follows 

3
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in which Rg and Tin are average radius of grain and interface 

thickness, respectively. Finally, Young’s modulus and 

Poisson’s ratio of NcM can be obtained as 
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Also, the effective mass density of nanocrystalline is 

determined by the following relation 

(1 )NcM g v in g gf f f       (23) 

So, using Eqs. (21)-(23) the size-dependent material 

properties of multi-phase composites could be obtained 

incorporating the surface energy effects of inclusions. 

 

2.2 The modified couple stress theory 
 

According to the modified couple stress model, the 

strain energy, U of an elastic material occupying region 

Ω is related to the strain and curvature tensors as 

𝑈 =
1

2
∫ (𝜎𝑖𝑗𝜀𝑖𝑗 + 𝑚𝑖𝑗𝜒𝑖𝑗)𝑑𝑉

Ω
, 

(𝑖. 𝑗 = 1.2.3) 

(24) 

where 𝜎, 𝜀, 𝑚 and χ are Cauchy stress tensor, classical 

strain tensor, deviatoric part of the couple stress tensor and 

symmetric curvature tensor, respectively. The strain and 

curvature tensors can be defined by 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖.𝑗 + 𝑢𝑗.𝑖) (25a) 

𝜒𝑖𝑗 =
1

2
(𝜃𝑖.𝑗 + 𝜃𝑗.𝑖) (25b) 

where u and θ are the components of the displacement and 

rotation vectors written by 

𝜃𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘.𝑗 (26) 

in which eijk is the permutation symbol. The constitutive 

relations can be expressed as 

𝜎𝑖𝑗 = 𝜆𝜖𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜖𝑖𝑗 (27a) 

𝑚𝑖𝑗 = 2𝜇𝑙2𝑋𝑖𝑗 (27b) 

where δij is the Kroenke delta, l is the material length scale 

parameter which reflects the effect of couple stress. Also, 

the Láme’s constants can be defined by 

𝜆 =
𝑣𝐸

(1 + 𝑣)(1 − 2𝑣)
 (28) 

 =
𝐸

2(1 + 𝑣)
 (29) 

 

2.3 The refined nanobeam model 
 

The displacement field of FG nanobeam according to 

the refined shear-deformable beam model can be expressed 

by 

𝑢𝑥(𝑥, 𝑧, 𝑡) = −𝑧
𝜕𝑤𝑏

𝜕𝑥
− 𝑓(𝑧)

𝜕𝑤𝑠

𝜕𝑥
 (29a) 

𝑢𝑦(𝑥, 𝑧, 𝑡) = 0 (29b) 

𝑢𝑧(𝑥, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑡) + 𝑤𝑠(𝑥, 𝑡) (29c) 

in which u is displacement component of the mid-axis and 

wb and ws denote the bending and shear transverse 

displacement, respectively. 

Also: 

• For the classical beam theory (CBT) 

𝑤𝑠(𝑥. 𝑡) = 0 (30a) 

• For the first order beam theory (FBT) 
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𝑓(𝑧) = 0 (30b) 

• For the new parabolic beam theory (PBT) 

𝑓(𝑧) = 𝑧 −
1

2
𝑧[

ℎ2

4
−

1

3
𝑧2] (30c) 

Finally, the non-zero strains of the present refined beam 

model are achieved as 

𝜖𝑥 = −𝑧
𝜕2𝑤𝑏

𝜕𝑥2
− 𝑓(𝑧)

𝜕2𝑤𝑠

𝜕𝑥2
 (31a) 

𝜖𝑦 = 𝜖𝑧 = 𝛾𝑥𝑦 = 𝛾𝑦𝑧 = 0 (31b) 

𝛾𝑥𝑧 = 2𝜖𝑥𝑧 = 𝑔(𝑧)
𝜕𝑤𝑠

𝜕𝑥
 (31c) 

where 𝑔(𝑧) = 1 − 𝑓′(𝑧). In addition, Eqs. (26) and (31) 

give 

𝜃𝑦 = −
𝜕𝑤𝑏

𝜕𝑥
−

1

2
𝜓(𝑧)

𝜕𝑤𝑠

𝜕𝑥
, 

𝜃𝑥 = 𝜃𝑧 = 0 

(32) 

with, 𝜓(𝑧) = 1 + 𝑓′(𝑧). 

Substitution of Eq. (32) into (25b) leads to the following 

expression for the non-zero components of the symmetric 

curvature tensor 
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𝜒𝑥𝑥 = 𝜒𝑦𝑦 = 𝜒𝑧𝑧 = 𝜒𝑥𝑧 = 0 

(33) 

 

2.4 The nonlocal constitutive relations  
 

Through the nonlocal elasticity model (Eringen 1983), 

the stress state at a point inside a body is regarded to be 

function of strains of all points in the neighbor regions. The 

equivalent differential form of nonlocal constitutive 

equation can be expressed by 

0
2(1 ( ) ) kl kle a t    (34) 

where 2 is the Laplacian operator. Thus, the scale length 

e0a considers the influences of small scale on the response 

of nano-structures. Finally, the constitutive relations of NL-

CS nanobeams can be expressed as 
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(38) 

where μ=(e0a)2.  

 

2.5 The governing equations 
 

The governing equations and boundary conditions of a 

nanocrystalline nanobeam could be derived via Hamilton’s 

principle as 

0
( ) 0

t

U V dt    
(39) 

In which U is strain energy and V is the work done by 

applied loads. The variation of the strain energy can be 

stated as 

𝛿𝑈 = ∫ ∫(𝜎𝑖𝑗𝛿𝜖𝑖𝑗 + 𝑚𝑖𝑗𝛿𝑋𝑖𝑗)𝑑𝑧𝑛𝑠𝑑𝑥

ℎ

2

−
ℎ

2

𝐿

0

= ∫ ∫(𝜎𝑥𝛿𝜖𝑥 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧

ℎ

2

−
ℎ

2

𝐿

0

+ 2𝑚𝛿𝑋𝑥𝑦 + 2𝑚𝑦𝑧𝛿𝑋𝑦𝑧)𝑑𝑧𝑑𝑥

= ∫ (−(𝑀𝑏 + 𝑌1)
𝑑2𝛿𝑤𝑏

𝑑𝑥2

𝐿

0

− (𝑀𝑠 +
1

2
𝑌1 +

1

2
𝑌2)

𝑑2𝛿𝑤𝑠

𝑑𝑥2

+ (𝑄 −
1

2
𝑌3)

𝑑𝛿𝑤𝑠

𝑑𝑥
) 𝑑𝑥 

(40) 

where the stress resultants are presented as 

(𝑀𝑏, 𝑀𝑠) = ∫ (𝑧, 𝑓)𝜎𝑥𝑑𝑧
ℎ

2

−
ℎ

2

, 

𝑄 = ∫ 𝑔𝜏𝑥𝑧𝑑𝑧𝑛𝑠

ℎ

2

−
ℎ

2

 

(41) 

(𝑌1, 𝑌2) = ∫ (1, 𝑓′)𝑚𝑥𝑦𝑑𝑧𝑛𝑠

ℎ

2

−
ℎ

2

, 

𝑌3 = ∫ 𝑓′′𝑚𝑦𝑧𝑑𝑧𝑛𝑠

ℎ

2

−
ℎ

2

 

(42) 

Also, the work done variation by external loads can be 

written as 

2 2

0 2 20
[ ]

L

w p

w w
V N k w k dx

x x

 
 

 
   

   (43) 

where kw, kp are Winkler and Pasternak coefficients and N0 

is buckling load. Inserting the expressions from Eqs. (40)-

(43) and integrating by parts versus both space and time 

variables, and collecting the coefficients of 𝛿𝑤𝑏 and 𝛿𝑤𝑠 

, the following equations of motion of the nanocrystalline 

nanobeam are obtained 
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𝛿𝑤𝑏 ∶  
𝑑2𝑀𝑏

𝑑𝑥2
+

𝑑2𝑌1

𝑑𝑥2

2 2

0 2 2w p

w w
N k w k

x x

 
  

 
= 0 (44) 

𝛿𝑤𝑠 ∶  
𝑑2𝑀𝑠

𝑑𝑥2
+

1

2

𝑑2𝑌1

𝑑𝑥2
+

1

2

𝑑2𝑌2

𝑑𝑥2
−

1

2

𝑑𝑌3

𝑑𝑥

+
𝑑𝑄

𝑑𝑥

2 2

0 2 2w p

w w
N k w k

x x

 
  

 
= 0 

(45) 

Integrating Eqs. (35)-(38) over the beam’s cross-section 

area, we obtain the force-strain and the moment-strain of 

the nonlocal couple stress beam theory can be obtained as 

follows 

2 2 2
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sd Y dw
Y E
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    (51) 

and the following boundary conditions are obtained at x = 0 

and x = L. 

Specify 

𝑤𝑏 𝑜𝑟 𝑉𝑏 =
𝑑𝑀𝑏

𝑑𝑥
+

𝑑𝑌1

𝑑𝑥
 

(52) 

Specify   

𝑤𝑠 𝑜𝑟  𝑉𝑠 =
𝑑𝑀𝑠

𝑑𝑥
+

1

2

𝑑𝑌1

𝑑𝑥
+

1

2

𝑑𝑌2

𝑑𝑥
−

1

2
𝑌3 + 𝑄 

(53) 

Specify   
𝑑𝑤𝑏

𝑑𝑥
  𝑜𝑟  𝑀𝑏 + 𝑌1 (54) 

Specify  
𝑑𝑤𝑠

𝑑𝑥
  𝑜𝑟  𝑀𝑠 +

1

2
𝑌1 +

1

2
𝑌2 (55) 

where 𝐴11 , 𝐵11
𝑠  , etc., are the beam stiffness, defined by 

(𝐴11, 𝐷11, 𝐷11
𝑠 , 𝐻11

𝑠 ) = ∫ 𝜆
1 − 𝑣

𝑣
(1, 𝑧2 , 𝑧𝑓, 𝑓2)𝑑𝑧

ℎ

2

−
ℎ

2

 (56) 

(𝐴13, 𝐵13, 𝐷13, 𝐸13) = ∫ 𝜇𝑙2[1, 𝑓′, (𝑓′)2, (𝑓′′)2]𝑑𝑧

ℎ

2

−
ℎ

2

 (57) 

𝐴55
𝑠 = ∫ 𝜇𝑔2𝑑𝑧

ℎ

2

−
ℎ

2

 (58) 

By employing Eqs. (46)-(51), the equations of motion of 

nonlocal couple stress nanobeam in terms of the 

displacements are calculated as 
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(59) 

11 13 13 11 13 13 13 55 1

4 4 2

4 4 2

4 2 4 2 2

0 0 2

3

4 2 4 2

1 1 1
( [ ]) ( [ 2 ]) ( )

2 4 4

) 0( ( )p

s s sb s s

w pw

w w w
D A B H A B D A E

x x x

w w w
k k w

w w

x
N k k

xx x
N

x


  

  
        

  
    

 




 


 



 
(60) 

 

 

3. Solution method 
 

Through this section, solution procedure of the 

governing equations of anonlocal couple stress based 

nanocrystalline nanobeam under different types of boundary 

conditions (S-S, C-S and C-C) is presented. 

Simply-supported (S): 

𝑤𝑏 = 𝑤𝑠 = 𝑀 = 0  at  𝑥 = 0 , 𝐿 

Clamped (C): 

𝑢 = 𝑤𝑏 = 𝑤𝑠 = 0  at  𝑥 = 0 , 𝐿 

Thus, the following expansions of displacements are 

supposed as 

{
𝑤𝑏

𝑤𝑠
} = ∑ {

𝑊𝑏𝑛 𝑋𝑚(𝑥)

𝑊𝑠𝑛 𝑋𝑚(𝑥)
}

∞

𝑛=1

 (61) 

where 𝑊𝑏𝑛 and 𝑊𝑠𝑛 are Fourier coefficients. Substituting 

Eq. (61) into Eqs. (59) and (60) leads to 
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The function 𝑋𝑚 for different boundary conditions is 

defined by 

S-S: 

𝑋𝑚(𝑥) = sin(𝜆𝑛𝑥) 

 

𝜆𝑛 =
𝑛𝜋

𝐿
 

(63) 

C-C: 

𝑋𝑚(𝑥) = sin(𝜆𝑛𝑥) − sinh(𝜆𝑛𝑥)
− 𝜉𝑚(cos(𝜆𝑛𝑥) − cosh(𝜆𝑛𝑥)) 

 

𝜉𝑚 =
sin(𝜆𝑛𝑥) − sinh(𝜆𝑛𝑥)

cos(𝜆𝑛𝑥) − cosh(𝜆𝑛𝑥)
 

 

𝜆1 = 4.730, 𝜆2 = 7.853, 𝜆3 = 10.996, 𝜆4

= 14.137, 𝜆𝑛≥5

=
(𝑛 + 0.5)𝜋

𝐿
 

(64) 

C-S: 

𝑋𝑚(𝑥) = sin(𝜆𝑛𝑥) − sinh(𝜆𝑛𝑥)
− 𝜉𝑚(cos(𝜆𝑛𝑥) − cosh(𝜆𝑛𝑥)) 

 

𝜉𝑚 =
sin(𝜆𝑛𝑥) + sinh(𝜆𝑛𝑥)

cos(𝜆𝑛𝑥) + cosh(𝜆𝑛𝑥)
 

 

𝜆1 = 3.927, 𝜆2 = 7.069, 𝜆3 = 10.210, 𝜆4

= 13.352,   𝜆𝑛≥5

=
(𝑛 + 0.25)𝜋

𝐿
 

(65) 

The following relation is accomplished in order to 

compute the non-dimensional buckling loads and 

foundation parameters 

2 2
0 0

4 ( )
, , ,p p w w

g g g
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K k K k N N

E I E I E I L
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4. Numerical results and discussions 
 

In this section, influences of elastic foundation, shear 

deformation, nonlocality parameter, surface elasticity, grain 

size, grain rotation, porosities and interface on the buckling 

loads of a nanocrystalline nanobeam will be investigated. 

The nanocrystalline silicon (Nc-Si) is a three-phase 

composite with two inhomogeneity types. Phase 2 is nano 

crystals (grains) of an average radius Rg and Young’s 

modulus Eg. Phase 3 is nano-void (pores) of an average 

radius Rv=Rg and Young’s modulus Ev= 0. Here, the surface 

of voids could be supposed to have the same surface 

parameters of the grains’ surface. In fact, the surface 

parameters of solids rely on the intermolecular bonds at the 

surface, the nature of the surrounding medium and the bulk 

material parameters. Also, the nanobeam thickness in this  

Table 3 Comparison of the dimensionless buckling load for 

nonlocal couple stress nanobeams (l=0.25h) 

µ L/h=10  L/h=20  

 
CBT (Attia and Mahmoud 

2016) 
present 

CBT (Attia and Mahmoud 

2016) 
present 

0 14.451 14.1174 14.451 14.3658 

2 12.069 11.7901 13.771 13.6902 

3 11.150 10.8923 13.455 13.3757 

4 10.361 10.1216 13.153 13.0753 

 

 
(a) WS 

 
(b) NS 

Fig. 2 Variation of dimensionless buckling load of S-S and 

C-S nanocrystalline nanobeam versus nonlocal parameter 

for different values of average radius (l=0.1h, Kw=Kp=0, 

L/h=10, fv=10%) 

 

 

study is taken as ℎ = 100 𝑛𝑚.  

Buckling loads are compared with those of nonlocal 

couple stress homogenous nanobeams presented by Attia 

and Mahmoud (2016). They considered the material  
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(a) NS, Rave=100 nm 

 
(b) NS, Rave=0.5 nm 

 
(c) WS, Rave=100 nm 

 
(d) WS, Rave=0.5 nm 

Fig. 3 Variation of dimensionless buckling load of 

nanocrystalline nanobeam versus nonlocal parameter for 

different values of porosity percentage (l=0.1h, Kw=Kp=0, 

L/h=10) 

 

 
(a) NS, Kw=Kp=0 

 
(b) NS, Kw=10, Kp=5 

 
(c) WS, Kw=Kp=0 

 
(d) WS, Kw=10, Kp=5 

Fig. 4 Variation of dimensionless buckling load of S-S 

nanocrystalline nanobeam versus length scale parameter for 

different values of average radius (µ=0.1, L/h=10) 
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(a) S-S 

 
(b) C-C 

Fig. 5 Variation of dimensionless buckling load of S-S and 

C-C nanocrystalline nanobeam versus Winkler parameter 

for different values of average radius (l=0.1h, Kp=0, 

L/h=10, fv=10%) 

 

 

properties as: E=90 GPa, v=0.23. Table 3 presents the 

comparison of the buckling load of a nonlocal beam of S-S 

boundary conditions with those of Euler-Bernoulli beam 

model. According to this table, the results are presented for 

different nonlocal parameters and a good agreement is 

observed. Examination of the effect of porosity percentage 

on buckling load of nanobeams versus nonlocal parameter 

for different average radius is showed in Fig. 3 when 

l=0.1h. In this figure, a softening mechanism is illustrated 

due to the porosities or nano-voids inside the material 

structure. 

So, an increase in the porosity percentage leads to 

reduction in the nanobeam rigidity and magnitude of 

buckling load when the surface phase of pores is considered 

(WS). So, the buckling loads of a nanocrystalline  

 
(a) S-S 

 
(b) C-C 

Fig. 6 Variation of dimensionless buckling load of S-S and 

C-C nanocrystalline nanobeam versus Pasternak parameter 

for different values of average radius (l=0.1h, Kw=0, 

L/h=10, fv=10%) 

 

 

nanobeams are overestimated by neglecting the porosity 

effect. But, an opposite trend is observed when Rg=Rv=0.5 

nm and surface phase is neglected (NS). This is due to the 

fact that the effect of surface phase of porosities becomes 

more significant when Rv=0.5 nm. In this case, increase of 

porosity percentage leads to larger buckling loads. 

Fig. 4 illustrates the effect of couple stress parameter 

(grains rigid rotation) on buckling load of nanocrystalline 

nanobeam for various inhomogeneities sizes at µ=0.1 and 

fv=10%. The plotted curves of this figure reflect the 

prominent influences of the micro-rotations where 

dimensionless buckling loads are obtained by changing of 

couple stress parameter l. It is noticed that enlargement of 

couple stress parameter leads to increment in the buckling 

load values which highlights the stiffness enhancement of  
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(a) S-S 

 
(b) C-S 

Fig. 7 Variation of dimensionless buckling load of S-S and 

C-S nanocrystalline nanobeam versus slenderness ratio for 

classical and higher order beam theories (l=0.1h, µ=0.1, 

Rave=20, fv=10%) 

 

 

nanobeam. Enlargement of dimensionless buckling load 

with respect to couple stress parameter depends on the 

value of inhomogeneities sizes. At large values of couple 

stress parameter, the nanobeam with Rg=0.5 has the 

maximum buckling load because surface energy of nano-

grains when nm has a dominant role by exerting a stiffness-

hardening impact. But, the nanobeam with Rg=0.5 has 

minimum buckling loads when the grains surface energy is 

ignored for all ranges of couple stress parameter. 

Figs. 5 and 6 present the variation of dimensionless 

buckling load of nanocrystalline nanobeam with respect to 

Winkler and Pasternak parameters for various 

inhomogeneities sizes and boundary conditions when µ=0.1 

and fv=10%. As mentioned, by reducing the grains and 

porosities size from 100 nm to 20 nm, the magnitude of 

buckling load will decrease. But, by reducing the average 

radius from 20 nm to 0.5 nm the magnitude of buckling 

load will rise. It can be concluded that the largest and 

smallest critical loads are obtained for Rg=Rv=100 nm and 

Rg=Rv=20 nm, respectively. This figure indicates the 

prominence of accurate modeling of nanobeams by 

incorporating the essential measures to describe the size-

dependency of material structure. It is also found that 

presence of elastic medium has a significant effect on the 

buckling behavior nanocrystalline nanobeam. In fact, elastic 

medium makes the nanocrystalline nanobeam more rigid 

and buckling loads increase at a constant value of 

inhomogeneities size. Another observation is that the shear 

layer or Pasternak foundation has more significant impact in 

enlargement of buckling loads of nanocrystalline nanobeam 

than Winkler foundation. In fact, Pasternak layer has a 

continuous interaction with the nanocrystalline nanobeam, 

while Winkler layer is modeled as parallel springs with a 

discontinuous interaction with nanobeam. 

Variation of dimensionless buckling load of S-S and C-S 

nanocrystalline nanobeams versus slenderness ratio (L/h) 

based on classical and higher order beam models at µ=0.1, 

fv=10% is plotted in Fig. 7. It is found that increase of 

slenderness ration leads to higher buckling loads. However, 

shear deformation effect on buckling loads of 

nanocrystalline nanobeam is important at lower slenderness 

ratios and it is negligible at large slenderness ratios. In fact, 

higher order beam model (HOBT) for nanocrystalline 

nanobeams gives smaller buckling loads compared with 

classical beam model (CBT). So, selecting an appropriate 

beam model is crucial for accurate design of nanocrystalline 

nanostructures. 
 

 

5. Conclusions 
 

In this paper, buckling behavior of porous 

nanocrystalline nanobeams lying on Winkler-Pasternak 

foundation is investigated based on nonlocal couple stress 

elasticity theory. Nanocrystalline nanobeam is composed 

from three phases which are nano-grains, nano-voids and 

interface. Nano-voids or porosities inside the material have 

a stiffness-softening impact on the nanobeam. Nonlocal 

elasticity theory of Eringen is applied in analysis of 

nanocrystalline nanobeams for the first time. Also, modified 

couple stress theory is employed to capture grains rigid 

rotations. Applying an analytical approach which satisfies 

various boundary conditions the governing equations 

obtained from Hamilton’s principle are solved. The 

reliability of present approach is verified by comparing 

obtained results with those provided in literature. It is seen 

that inclusion of nonlocal parameter leads to buckling loads 

by reducing the bending stiffness of nanocrystalline 

nanobeam, regardless of the size of inhomogeneities. Also, 

inclusion of grains surface effects gives larger buckling 

loads than when surface effects are ignored. It is observed 

that couple stress effect leads to larger buckling loads. By 

ignoring the couple stress effect in analysis of 

nanocrystalline nanobeam, the buckling loads are 

underestimated. The buckling loads may increase or 

decrease with the reduction in the inhomogeneities sizes. 
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Also, an increase in the porosity percentage leads to 

reduction in the nanobeam rigidity and magnitude of 

buckling load. Also, it is observed that presence of elastic 

foundation makes the nanocrystalline nanobeam more rigid 

and leads to larger buckling loads. 
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