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1. Introduction 
 

Ductility is a measure of the ability of a structural element 

or system to sustain plastic deformations before collapse, 

without substantial loss of load resistance (Warner et al. 

1998). Ductility is an essential property of concrete 

structures, and many of the assumptions made routinely in 

their analysis and design depend on the structure being 

ductile. Ductility allows for redistribution of internal forces 

from highly stressed regions to less stressed areas, so that 

structures can develop the full strength of the critical sections 

considered in design. On the other hand, brittle structures 

may not be able to do so. Ductile structures experience 

relatively large deformations before failure, and this provides 

warning of impending failure prior to collapse. Ductility also 

provides robustness and resilience in dissipating the internal 

energy generated by loading. 

The trend in the construction industry to provide more 

cost-effective materials has led to the use of higher strength 

reinforcing steel and concrete, fiber reinforced polymers 

(FRP), fiber reinforcement and high-strength strands. 

Unfortunately, the use of such materials often has an adverse 

impact on the ductility of reinforced concrete structures (Ho 

Park 2017, Bank 2013, Ma et al. 2016, Mousa 2015, Wang 

and Belarbi 2011, Dancygier and Berkover 2016, Sakka  
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2009, Mohammadhassani et al. 2013). 

In Australia (Standards Australia 2009), reinforcing steels 

are classified as either Class N (normal ductility) or Class L 

(low ductility). For each class of reinforcement, minimum 

limits are set for the strain at peak stress (or uniform 

elongation, εsu) and the ratio of tensile strength to yield stress 

(fsu / fsy). For Class L reinforcement, εsu = 1.5% and fsu / fsy = 

1.03. These limits are considerably lower than the 

corresponding limits set in any other design code.  

Concrete slabs usually have small flexural 

reinforcement ratios and are generally considered to be very 

ductile structural members. However, the use of low 

ductility reinforcing steel in the form of welded wire mesh in 

one-way slabs loaded to failure has been shown to produce 

sudden and catastrophic failures caused by fracturing of the 

tensile reinforcement with very little plastic deformation prior 

to collapse (Gilbert 2005, Gilbert and Smith 2006, Gilbert 

and Sakka 2007, Gilbert et al. 2006, 2007, Sakka and Gilbert 

2008a, Sakka and Gilbert 2008c, Gilbert and Sakka 2009, 

Gilbert and Sakka 2010, Munter and Patrick 2012a, 2012b). 

As a result of this work, the Australian Standard AS3600-

2009 reduced the strength reduction factor for flexural 

elements from  = 0.8 for members containing normal 

ductility steel reinforcement (with εsu  5%) to  = 0.64 for 

member containing low-ductility (Class L) reinforcement. 

This decision has been vindicated for one-way slabs by 

subsequent experimental and theoretical work (Foster and 

Kilpatrick 2008, Sakka and Gilbert 2008a, 2008b, 2008c, 

Goldsworthy et al. 2009, Tuladhar and Lancini 2014). 

This paper presents a numerical model that was 

developed for predicting the ultimate load behavior of slabs 

containing low ductility reinforcement. The model was 
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calibrated using the results of laboratory tested two-way 

slabs. A parametric investigation was conducted to 

investigate the various factors influencing the structural 

behavior of two-way slabs at the strength limit state. 

Different values of steel uniform elongation (εsu) and 

ultimate to yield strength ratios (fsu / fsy) are considered. Two 

types of boundary conditions were considered; corner and 

edge-supported slabs. Recommendations on the minimum 

ductility limits for reinforcement used in two-way slabs are 

also presented. 

 

 

2. Finite element model 
 

The commercially available finite element software 

ATENA is used for the numerical analysis. The fracture-

plastic constitutive model is used in developing the 

numerical model for the two-way concrete slabs. The model 

combines constitutive models for concrete in tension 

(fracturing) and concrete in compression (plastic behavior). 

The fracture model is based on the classical orthotropic 

smeared crack formulation and crack band model. The 

model employs Rankine failure criterion for concrete 

cracking. The hardening/softening plasticity model is based 

on Menetrey-Willam failure surface (Menetrey and Willam 

1995). The model uses a return mapping algorithm for the 

integration of constitutive equations. The method of strain 

decomposition, as introduced by De Borst (1986), was used 

to combine fracture and plasticity models. Both models 

were developed within the framework of the return mapping 

algorithm proposed by Wilkins (1964).  

 

2.1 Material model formulations 
 

2.1.1 Rankine-fracturing model for concrete cracking 
The Rankine-Fracturing model for concrete cracking 

assumes that strains and stresses are transformed into the 

material directions. In the case of fixed crack model, strains 

and stresses are given in the principal directions at the onset 

of cracking. The Rankine criterion is shown in Eq. (1), and 

the trial stress is computed by the elastic predictor shown in 

Eq. (2). 
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the substitution into Eq. (3), a formula for the increment of 

the fracturing multiplier λ is derived and shown in Eq. (5). 
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where w is crack opening,    f
kktt Lw 'max ˆ , f

kk
'̂  is the 

total fracturing strain in direction k, Δλ is the increment in 

fracturing strain; and Lt is the characteristic length. In 

ATENA, the crack band size Lt is calculated as the size of 

the element projected into the crack direction as shown in 

Fig. 1 (Bazant and Oh 1983, Cervenka et al. 1995). 

 

2.1.2 Plasticity model for concrete crushing 
In the plastic model, the stress state is computed using 

Eq. (6). The plastic corrector p
ij  is computed from the 

yield function shown in Eq. (7). The return direction lij in 

Eq. (7). is defined as shown in Eq. (8). Menetrey-William 

failure surface is expressed using Eq. (9). 
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where (ξ, ρ, θ) are Heigh-Vestergaard coordinates; '
cf  and 

'
tf  are the concrete compressive and tensile strength, 

respectively and e  is a parameter that defines the 

roundness of the failure surface 0.1,5.0 . 

 

2.1.3 Concrete combined model 
In the combined model, plasticity is used for concrete 

crushing and the Rankine fracture model is used for 

concrete cracking. Two sets of simultaneous inequalities are 

solved for plastic and fracture strains as shown in Eq. (10). 
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Fig. 1 Tension softening and characteristic length 
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2.2 Steel model 

 

The steel reinforcement is modelled using discrete truss 

elements. A multi-linear stress-strain relationship (Fig. 2) is 

used in the numerical model. This allows modelling all 

stages of steel behavior (elastic state, yield plateau, 

hardening, and fracture). The perfect reinforcement bond 

model was used to simulate the observed behavior of the 

test slabs containing Class L WWF. The mechanical 

anchorage provided by the welded cross-wire in the fabric, 

coupled with the deformations on the small diameter wires 

proves to provide outstandingly good bond between the 

cracked concrete and the longitudinal reinforcing wires. 

Full details on the computational approach are found in 

Cervenka et al. (2016). 

 susy002.0
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Fig. 2 The multi-linear stress-strain curve used in the model 

 

 
3. Parametric study 
 

To investigate the impact of steel ductility on the 

behavior of two-way slabs, a range of different support 

conditions, aspect ratios (Lx/Ly), steel uniform elongations 

εsu, and steel ultimate to yield stress ratios fsu / fsy, were 

investigated. Two types of support conditions were 

investigated as follows:  

(i) Panels with free edges and supported at each corner. 

  

 
(a) Corner-supported slabs 

 
(b) Edge-supported slabs 

Fig. 3 Numerically modelled portion of the slabs using 

symmetry. 

 

 

(ii) Panels continuously supported on all four edges.  

The structural ductility factor µ can be expressed either 

by the deflection ratio as expressed in Eq. (11) or by 

absorbed work ratio as expressed in Eq. (12). In this paper, 

Eq. (12) is used to measure the ductility. 

1yud   (11) 

01 WWw   (12) 

where 

d  = the ductility factor calculated from deflections; 

w = the ductility factor calculated from absorbed work; 

1y = the the mid-panel deflection when the first wire 

yields at the critical section; 

u = the the mid-panel deflection at peak load; 

W0 = the elastic absorbed work; 

W1 = the plastic absorbed work. 

Taking advantage of symmetry in the slab geometry, the 

support conditions and the loading arrangement, it was 

necessary to model only one-quarter of the slab panel, 

thereby reducing the size of the numerical problem (Fig. 3). 

Isoparametric tetrahedral 3-D elements with 4 nodes were 

used in the finite element model. The plan dimension of 

each element was typically 50 mm. The element size 

selection was based on the size that produced convergant 

results with the fewest number of elements. The 15 mm 

thick steel plates at the corner support points and at the load 

application point are modeled as a 3-D elastic isotropic 

material. 

 

L
x
 

L
y
 

Modelled 

portion 

L
y
 

Modelled 

portion 

L
x
 

Gf 

'

tf

Crack width, w 
wct 

t

f

t Lw 

tL

225



 

Zafer Sakka and R. Ian Gilbert 

 

 

Fig. 4 Boundary conditions at the roller support and lines of 

symmetry in the corner-supported slabs 

 

 

Fig. 5 Boundary conditions at the edges and the lines of 

symmetry in the edge-supported slabs 

 

Table 1 Load increments used to in the numerical solution 

Slab 
ΔP 

(kN) 
No. of Steps 

ΔP 

(kN) 
No. of Steps 

ΔP 

(kN) 
No. of Steps 

Corner-supported 1.0 9 0.5 7 0.125 Up to failure 

Edge-supported 1.0 16 0.5 6 0.05 Up to failure 

 

Table 2 Dimensions and reinforcement quantities of the 

quarter panels 

Dimensions Reinforcement 

Lx / 2 

(mm) 

Ly / 2 

(mm) 

D 

(mm) 

x-direction y-direction 

Asx (mm2) dx (mm) p (%) Asy (mm2) dy (mm) p (%) 

Corner-supported slabs 

1,100 1,100 100 6x40=240 85 0.26 6x40=240 79 0.28 

1,100 800 100 4x60=240 85 0.35 6x40=240 79 0.28 

1,100 1,100 100 4x80=480 85 0.51 6x80=480 79 0.55 

1,100 800 100 4x120=480 85 0.71 6x80=480 79 0.55 

edge-supported two-way slabs 

1,100 1,100 100 5x40=200 85 0.21 5x40=200 79 0.23 

1,100 800 100 4x40=160 85 0.24 5x40=200 79 0.23 

1,100 800 100 4x50=200 85 0.29 5x40=200 79 0.23 

 

 

The boundary conditions of the panels modeled in the 

investigation are shown in Figs. 4 and 5. Two aspect ratios, 

namely Lx/Ly = 1.0 (square) and 1.375 (rectangular), were 

considered for each panel type. All slab panels contained 

bottom steel in the x and y directions and no top steel. For 

each support condition and each aspect ratio, four values of 

steel uniform elongation (1.5%, 2.5%, 5.0% and 8.0%) and 

two values of ultimate to yield stress ratio (1.03 and 1.05) 

were investigated. A range of values of bottom steel 

reinforcement ratios, p (0.21% to 0.71%) were also 

investigated. 
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(a) Corner-support square slabs 
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(b) Corner-support rectangular slabs 
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(c) Edge-support square slabs 
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(d) Edge-support square slabs 

Fig. 6 Reinforcement layout of the modelled two-way slabs 
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Table 3 Properties of the corner-supported two-way slab 

S2S-2 

Slab 

Name 

Ly  

(mm) 

Lx  

(mm) 

D 

(mm) 

Steel 

Class 

& Type a 

Bar 

dia. 

(mm) 

x - direction y - direction 

n 
Astx 

(mm2) 

dx 

(mm) 

px 

(%) 
n 

Asty 

(mm2) 

dy 

(mm) 

py 

(%) 

S2S-2 2080 2080 101.4 L - SL82 7.6 12 544 76.2 0.30 12 544 83.8 0.27 

aL-Class L; N-Class N; n = number of bars or wires 

 

Table 4 Properties of concrete and reinforcement of slab 

S2S-2 

Slab 
f'c 

(MPa) 
c 

(%) 

ft 

(MPa) 

fcf 

(MPa) 

Ec 

(GPa) 
fsy (MPa) fsu (MPa) fsu/fsy 

su 

(%) 

S2S-2 44.3 - 3.61 3.87 29.20 600 641 1.07 2.11 

 

 
(a) Slab S2S-2 while testing 

 
(b) Slab S2S-2 after collapsing 

Fig. 7 Slab S2S-2 during and after the test 

 

Table 5 Comparison between experimental and numerical 

results 

 Experimental Numerical Difference (%) 

Peak load, P (kN) 65.8 64.3 -2.36 

Deflection at peak load, Δ (mm) 30.1 31.6 4.98 

Total absorbed Work (kN.mm) 1,620 1,680 3.80 
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Fig. 8 Experimental versus numerical results for slab S2S-2 

 

 

Each slab was loaded at the mid-panel by a single point 

load. The load was applied incrementally up to failure. The 

load increment was reduced near first cracking and as the 

peak load was approached in order to accurately capture the 

load-deflection response at first cracking and at peak loads. 

Load increments for the corner-supported and edge-

supported slabs are listed in Table 1. 

The dimensions and reinforcement quantities of the 

slabs corresponding to the portion of the slab analyzed by 

the finite element model (i.e., one-quarter of the slab panel) 

are listed in Table 2 and shown in Fig. 6. In all the models, 

250 mm×250 mm×15 mm steel plates were used at the 

loading point. The plate dimensions at the roller support in 

Fig. 6 are 100 mm×100 mm×10 mm. 

For both types of boundary conditions, the square and 

rectangular slabs had the same area of reinforcement in both 

directions. This enabled a direct comparison of the 

numerical results for the square and rectangular slabs. For 

the edge-supported slabs, an additional case was examined 

where the area of secondary reinforcement in the long 

direction was less than the area of main reinforcement in the 

short direction. In all the numerical simulations, the 

reinforcement spacing was kept constant. Four different 

cross-sectional areas were considered for each of the 

reinforcing bars (wires): either 40 mm2, 50 mm2, 80 mm2 or 

120 mm2. 

 

 

4. Calibration of numerical model  
 

The numerical model was calibrated using the results of 

the laboratory tested two-way slab S2S-2 found in Sakka 

and Ian (2017) and Sakka (2009). The slab reinforcement 

details and material properties are shown in Table 3 and 

Table 4, respectively. Fig. 7 shows the slab during and after 

testing.  

Table 5 and Fig. 8 present a comparison between the 

experimental and the numerical results for slab S2S-2. The 

good agreement provides confidence in the results obtained 

in the subsequent parametric study and the conclusions 

drawn from them. 
 

 

5. Numerical results and discussion 
  

In the numerical model, a perfect bond between steel 

and concrete was assumed and the following concrete 

materials properties were used: 

fc’ = 45.0 MPa; ft = 3.61 MPa; fsy = 500 MPa; ν = 0.20; εc 

= -2.4×10 -3; and Eo = 29.20 GPa 
 

5.1 Corner-supported slabs 
 

Square and rectangular two-way edge-supported slabs 

were investigated numerically with different values of steel 

uniform elongation (εsu = 1.5, 2.5, 5.0 or 8.0%) and strength 

to yield stress ratio (fsu / fsy = 1.03 or 1.05). The results of the 

parametric study for the corner-supported slabs are 

summarized in Table 6 and Fig. 9 shows the detailed load 

deflection curves for the case of a square slab with fsu / fsy = 

1.03, Asx = Asy = 240 mm2, and fsy = 500 MPa at εsu = 1.5, 

2.5, 5.0 and 8.0%. Deflections Δy1 and Δy2 in the figures 

represent the mid-panel deflections when the first wire 

yields at the critical section and the mid-panel deflection 

when all the wires across the critical section yield, 
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respectively. The deflection Δu in the figures correspond to 

the mid-panel deflection at the peak load. W0 represents the 

work done by the applied load in deforming the slab in the 

elastic range from first loading up until yielding of the first 

reinforcing wire at a mid-panel deflection of Δy1. W1 

represents the work done in deforming the slab in the plastic 

range between the deflection Δy1 and the deflection Δu at 

peak load point. The measure of the ductility of the slab is 

the ratio W1/W0 and this ratio is also given in Table 6. 
Table 6 shows that the ultimate load at failure was not 

significantly affected by εsu. This is due to the determinate 
nature of the corner-supported slabs, where there are no 
load paths to transfer additional loads to the supports after 
the yield of the reinforcement in the critical direction. As 
the plastic hinge forms (i.e., the yield line across the slab), a 
failure mechanism develops and strains are localized at the 
critical section. It can also be seen that the ductility factor 
increases as the steel uniform elongation εsu increases 
almost linearly. For any value of εsu, the square slabs have 
higher ductility factors than the rectangular slabs.  
 

5.2 Edge-supported slabs 
 

Square and rectangular two-way edge-supported slabs 

were investigated numerically with different values of steel 

uniform elongation (εsu = 1.5, 2.5, 5.0 or 8.0%) and stress 

ratio (fsu / fsy = 1.03 or 1.05). The results of the parametric 

study for the edge-supported slabs are summarized in Table 

7 and Fig. 10shows the detailed load deflection curves for 

the case of a square slab with fsu / fsy = 1.03, 

Asx = Asy = 200 mm2, and fsy = 500 MPa at εsu = 1.5, 2.5, 

5.0 and 8.0%. The deflections Δy and Δu in the figures 

correspond to the mid-panel deflection when the first 

reinforcing wire yields and at ultimate load, respectively. 

Table 7 lists the yield and peak loads and their 

associated deflections, load deflection ratios, absorbed work 

W0 and W1, and the ductility factors W1/W0. The Ly / Δ 

ratios listed in Table 7 were calculated based on the shorter 

span of the slabs (i.e., 2,200 mm for square and 1600 mm 

for rectangular slabs). 

It can be seen from Table 7 that square slabs are a little 

more ductile than the rectangular slabs and that the ductility 

factor increases as the steel uniform elongation increases. It 

is also noted that ductility of the edge-supported slabs is 

significantly greater than the corner-supported slabs. This is 

due to high available redundancy in edge-supported slabs. 

The high redundancy allows loads to transfer from highly 

stressed areas to less stressed areas, and hence utilizes the 

reserve strength in these locations in both directions. When 

the steel in the short direction starts to yield and the flexural 

strength in that direction is exhausted, additional load can 

be carried by other load mechanisms including torsion in 

the slab and membrane action. This makes edge-supported 

slabs exhibit reasonably ductile behavior even at low values 

of steel uniform elongation, with significant plastic 

deformation before the peak load is reached. 
Table 7 shows also that the span to deflection ratio 

Ly /Δu decreases when increasing the steel stress ratio 
fsu / fsy which means that the deflection at peak load 
increases with increasing  fsu / fsy. The table also shows that 
the slab ductility increases when increasing steel uniform 
elongation εsu and stress ratio fsu / fsy. 
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Fig. 9 Load deflection curves and ductility factor for square 

corner supported slab with Asx = Asy = 240 mm2, Lx / Ly 

=1.0, fsu/fsy=1.03 and fsy = 500 MPa 
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Fig. 10 Load deflection curves and ductility factor for edge-

supported slab with Asx = Asy = 200 mm2, Lx / Ly =1.0, 

fsu/fsy=1.03 and fsy = 500 MPa 
 
 
In the edge-supported slabs, the applied load started to 

plateau only after the formation of the plastic hinge (i.e., 
yield of all the wires across the slab width and the 
formation of a failure mechanism). For the corner supported 
slabs, the point at first cracking corresponded to a 
noticeable kink in the load-deflection curve (i.e., a 
significant change in direction of the curve), similar to the 
behavior of one-way slabs reported in Gilbert and Sakka 
(2010). However, for the edge-supported slabs, the change 
in direction of the load-deflection curve at first cracking 
was relatively small, and the loss of stiffness at first 
cracking was not as significant. 

The two different boundary conditions selected for the 

study represent very different degrees of redundancy. The 

corner-supported two-way slabs have the least redundancy. 

In these slabs, the bending moment at mid-span in each 

direction varied across the slab width, being greatest near 

the column lines. The reinforcement at the critical section 
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therefore yielded progressively across the slab width as the 

applied load approached the peak load. Eventually, all the 

reinforcements across the weaker direction yielded, and a 

failure mechanism formed. The mode of failure of a corner-

supported two-way slab panel was seen similar to that of a 

one-way slab. In the case of the edge-supported slabs, a 

significant part of the load was carried by torsion and in-

plane actions, in addition to bending in both orthogonal 

directions. This created many paths for the applied load to 

transfer to the continuously supported edges.  
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Fig. 11 Ductility ratio (W1/W0) versus uniform elongation 

 

Table 6 Yield and peak loads and their associated 

deflections and absorbed work for corner-supported slabs 

with fsy = 500 MPa, and Asx =  Asy = 240 mm2 

Lx / Ly fsu/fsy εsu Δy1 (mm) Pu (kN) Δu (mm) 
W0 

(kN.mm) 

W1 

(kN.mm) 

W1/W0 

(kN.mm) 

1.0 

1.03 

1.5 

12.3 

59.7 21.5 544 535 0.98 

2.5 59.8 24.8 556 717 1.29 

5.0 59.8 39.7 543 1,623 2.99 

8.0 59.8 53.1 552 2,412 4.37 

1.05 

1.5 

12.4 

60.5 23.1 551 622 1.13 

2.5 60.6 26.5 550 829 1.51 

5.0 60.7 40.5 545 1,682 3.09 

8.0 60.8 53.9 544 2,482 4.56 

1.375 

1.03 

1.5 

8.37 

62.2 13.4 383 247 0.64 

2.5 62.9 16.8 382 459 1.20 

5.0 62.9 26.0 384 1041 2.71 

8.0 62.9 35.8 384 1,677 4.37 

1.05 

1.5 

8.39 

63.3 13.4 382 249 0.65 

2.5 63.8 17.8 386 523 1.35 

5.0 64.0 26.4 385 1081 2.81 

8.0 64.0 34.6 384 1,603 4.17 

 

 

Fig. 11 shows the ductility ratio W1/W0 versus the 

uniform elongation, εsu for the data in Tables 6 and 7. The 

figure shows that edge-supported slabs are more ductile 

than corner-supported slabs. It also shows that the slope of 

the best fit lines for the edge-supported slabs is higher than 

the slope of the lines of the corner-supported slabs 

indicating that the change in the uniform elongation affects 

the ductility of slabs with high redundancy more than the 

less redundant slabs. The figure also shows that as the slab 

aspect ratio Lx/Ly increases (i.e., redundancy decreases), the 

slab ductility decreases significantly. Furthermore, it can be 

seen that the slab ductility increases as the stress ratio 

(fsu / fsy) increases. This can be seen for both edge-supported 

and corner-supported slabs.  

 

 

Table 7 Yield and peak loads and their associated 

deflections and absorbed work for edge-supported slabs 

with Asx = Asy = 200 mm2, fsy = 500 MPa, and  fsu / fsy = 

1.03 

Lx / Ly fsu/fsy 
εsu 

(%) 

Py 

(kN) 

Δy 

(mm) 

L y/ 

Δy 

Pu 

(kN) 

Δu 

(mm) 
Ly / Δu 

W0 

kN.mm 

W1 

kN.mm 

W1/ 

W0 

1.0 

1.03 

1.5 

88.8 6.03 365 

94.8 15.95 138 465 909 1.95 

2.5 96.2 21.74 101 465 1,461 3.14 

5.0 96.8 36.24 60.7 465 2,859 6.15 

8.0 97.0 47.03 46.8 465 3,905 8.40 

1.05 

1.5 

88.8 6.03 365 

95.0 16.4 134 465 949 2.04 

2.5 96.4 22.6 97.2 465 1,546 3.32 

5.0 97.2 36.7 59.9 465 2,906 6.25 

8.0 97.4 47.6 46.2 465 3,964 8.52 

1.375 1.03 

1.5 

101.2 4.72 339 

105.0 9.77 164 416 511 1.23 

2.5 109.8 13.7 117 416 944 2.27 

5.0 110.0 22.8 70.2 416 1,946 4.68 

8.0 110.0 32.6 49.1 416 3,052 7.34 

 

 

6. Summary and conclusions 
 

The main conclusions drawn are as follows:  

1. The two-way corner supported slabs reinforced with 

low ductility (Class L) welded wire fabric fail in a brittle 

mode by fracture of the tensile reinforcement and, 

generally, not by crushing of the compressive concrete. 

2. The current ultimate limit procedures for the design 

and analysis of reinforced concrete have been developed 

based on the assumption that the reinforcing steel is elastic-

plastic. This is not the case when using low ductiy 

reinforcing steel and the usual procedures and the 

conventional understanding of the ultimate load behavior of 

under-reinforced slabs are not applicable. 

3. The uniform elongation of the reinforcement (εsu) has 

a significant effect on the ductility of two-way reinforced 

concrete slabs. However, the effect of the reinforcement 

ductility is much more prominent in the slabs with high 

reducndancy than those with less reducndancy.  

4. The change in slab aspect ratio Lx/Ly affects the 

ductility of edge-supported slabs much more than the 

corner-supported slabs. 

5. The ductility of the two-way slabs is increased, as the 

stress ratio (fsu / fsy ) is increased. 

6. The load deflection curves for the corner-supported 

square and rectangular two-way slabs were unsatisfactorily 

brittle when εsu < 3.0% and < 4.0%, respectively. These 

slabs had little ability to undergo significant plastic 
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deformation at or close to the peak load. In all cases, 

fracture of the steel occurred at deformations not much 

larger than the deformation at peak load. 

7. The square panels of the corner-supported and edge-

supported two-way slabs have higher ductility factors than 

the rectangular panels. 

8. A change in the steel uniform elongation εsu has a 

higher impact on the ductility factor than a change in the 

stress ratio fsu / fsy. 

9. Edge-supported slabs have reasonable ductile 

behavior even at low values of εsu. This is due to the high 

redundancy and load transfer by mechanisms other than 

bending. 
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