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1. Introduction 
 

Infrastructures, such as bridges, roads, and tunnels affect 

the services and necessities essential to maintaining our 

lives. During the life-cycle, infrastructures have been 

exposed to unexpected loads due to earthquakes, wind and 

traffic. Also, deterioration of materials can cause the 

performance degradation. Therefore, structural condition 

assessment is important to accurately express the state of 

structures. In order to evaluate the performance of the 

infrastructure, numerical models have been widely used 

recently. A finite element (FE) method is one of the 

representative numerical models. Typically, the FE model is  
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constructed based on a physical law (e.g., equations of 

motion). Therefore, the FE model can provide the predictive 

capability for simulating the physical system of interest 

(i.e., fatigue life prediction, failure probability). 

It should be noted that the FE models are a concise and 

simple representation of the physical system in the 

mathematical and numerical expression. Uncertainties 

related to modal properties always exist. In addition, 

infrastructures are exposed to various loadings and external 

environments. These also result in additional uncertainties 

between real structure and FE model. As a result of the 

abovementioned reasons, FE models which can reflect real 

structures are not sufficient to represent the actual behavior. 

Therefore, FE models inherently have model parameters 

that cannot be directly known, so that they must be 

expected from measurement (parameter inference). This 

procedure is also known as FE model updating. FE model 

can represent the actual behavior of the infrastructure by FE 

model updating. 

Typically, FE model updating is a procedure to 

minimize the discrepancy between model predictions and 

measurements. This discrepancy is referred to residual. 

Minimizing the residual can simply perform FE model 

updating. This is also known as residual minimization. In 

the residual minimization, multiple residuals are calculated 

according to weighting factors of the objective function. 

Weighting factors should be assigned based on the 

uncertainties related to numerical model and measurement. 

 
 
 

Experimental validation of FE model updating based on multi-objective 
optimization using the surrogate model 

 
Yongmoon Hwang1a, Seung-seop Jin1b, Ho-Yeon Jung1c, Sehoon Kim2d,  

Jong-Jae Lee2e and Hyung-Jo Jung1 
 

1Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology,  
291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea 

2Department of Civil and Environmental Engineering, Sejong University,  
209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea 

 
(Received December 15, 2017, Revised December 17, 2017, Accepted December 18, 2017) 

 
Abstract.  In this paper, finite element (FE) model updating based on multi-objective optimization with the surrogate model for 
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considerably because a lot of iteration are performed during the updating process. This issue can be addressed by replacing FEA 
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to obtain the most preferred model; but it needs considerable computation cost. In this study, the FE model updating method 

consisting of the surrogate model and multi-objective optimization, which can construct the Pareto-optimal front through a 

single run without considering the weighting factors, is proposed to overcome the limitations of the single-objective 

optimization. To verify the proposed method, the results of the proposed method are compared with those of the single-objective 
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Therefore, assignment of the optimal weighting factors in 

the objective function is one of the most important issues in 

the residual minimization based FE model updating. 

However, assigning the optimal weighting factors in 

objective function have not been known. Generally, trial-

and-error strategy, genetic algorithm, or user’s preference 

have been used to impose the weighting factors (Kim and 

Park 2004). To avoid the limitation of the residual 

minimization based FE model updating, the multiple-

objective function has been employed recently. From the 

multi-objective function, multiple alternative solutions 

which are called as ‘Pareto-optimal front’ or ‘non-

dominated solutions’ are obtained. The multi-objective 

function does not need weighting factors to calculate the 

multiple objective functions compared with residual 

minimization. But, there is one limitation to apply the 

multi-objective function in FE model updating. That is a 

computational issue. In order to minimize the multiple 

objective and obtain Pareto-optimal front simultaneously, 

the optimization process consumes computational resource 

highly over the residual minimization based FE model 

updating. 

The FE model is a very important part to minimize the 

systematic errors due to modeling simplifications (Goulet et 

al. 2014, Erdogan et al. 2013a), FE discretization errors 

(Steenackers and Guillaume. 2006), and the omission of 

structural components (Eamon and Nowak 2004). Bias in 

the model prediction can occur due to systematic errors 

(Erdogan et al. 2013b), and this can result in incorrect 

estimations of the updating parameters (Goulet and Smith 

2013). When the sophisticated modeling or finer FE 

discretization with full geometric description (a high-

fidelity model) is used to minimize systematic errors (i.e., 

modeling and discretization errors), the computational 

burden increases. Such a high fidelity FE model can require 

high computational burden from seconds to minutes for a 

simple analysis (e.g., modal analysis). For a single run, this 

would not be important; however, when the numerical 

simulation will be iterated, the computational cost would be 

significantly increased. This computational issue can be 

addressed by either high-performance computing (HPC) 

(such as parallel or distributed computing) or the use of a 

surrogate model. In the case of HPC, it is not always 

possible, owing to computational and message passing 

interface programming requirements. In such cases, the 

surrogate model can provide an alternative solution for 

addressing computational burden in FE model updating 

using a high-fidelity model (Jin and Jung 2016b). 
The surrogate model has recently been drawing attention 

as a faster option for iterative FE analysis. Surrogate 
modeling is a method of emulating a computer simulation 
model in the form of mathematical/statistical 
approximations to fit the relationship between input and 
output. In reliability, the surrogate model is not a new 
approach. However, FE model updating with a surrogate 
model has been recently employed, especially in the field of 
civil engineering (Fen and Chen 2010). Some studies based 
on surrogate models have been conducted in field such as 
polynomial models, multilayer perception, and so on 
(Marwala 2007). 

The conventional method of the surrogate model can 

proceed with trial and error based on different designs. In 

the conventional method, complicated response surfaces are 

also difficult to represent under local variations of response 

behaviors, since the conventional method makes samples 

spread out equally in parameter space. In addition, it is not 

enough to apply the identical training samples to all target 

outputs. To deal with these issues, the sequential surrogate 

model based on the Kriging surrogate model has been 

proposed. The sequential surrogate model can address the 

abovementioned difficulties of the conventional approach. 

One important advantage of the sequential surrogate model 

is the ability to statistically interpret the uncertainty in the 

prediction, so that this approach can use the measure of 

infill criteria and update a surrogate model by adding a new 

sample (Jin and Jung 2016a). 

FE model updating with multi-objective optimization 

based on the surrogate model is proposed in this study. Jin 

and Jung 2016b have been performed FE model updating 

based on surrogate model in lab-scale structure. In this 

paper, the verification of the proposed method was 

performed in full-scale structure. To validate the proposed 

method, a steel plate girder bridge is selected as a test-bed 

bridge, and the ambient vibration test is performed to obtain 

the modal properties of the target bridge. From the field 

test, 4 natural frequencies (i.e., the 1st bending and torsion, 

the 2nd bending and torsion modes) are obtained. These 

frequencies are set as the calibration values (i.e., the 1st 

bending, 2nd bending and torsion) and the validation value 

(i.e., the 1st torsion) when FE model updating is conducted. 

The initial FE model is constructed by ANSYS APDL and 

updated using the obtained modal properties by single-

objective function with various cases of weighting factors 

and the proposed multi-objective function. Finally, the 

updated results of MOF are compared those of SOF with 

regard to the most preferred model and the number of 

iterations. 

 

 

2. Theoretical background 
 

2.1 Weighted sum for residual minimization 
 

In mathematics, the generalized minimal residual 
method is an iterative method for the numerical solution of 
a non-symmetric system of linear equations. The method 
approximates the solution by the vector in a Krylov space 
with minimal residual. FE model updating is a process of 
modifying updating parameters within determined boundary 
condition. It is a matter of mathematical optimization that 
finds residual-based objective functions numerically 
minimal, which fundamentally reflects the discrepancy 
between the FE derived predictions and the measured data. 
Traditionally, uncertainties are defined for the residual 
value between predicted and measured values. In most 
applications, when uncertainties associated with model 
simplifications are included, they have been modeled 
through assuming independent Gaussian distributions 
having a mean value of zero. Combining these uncertainties 
leads to symmetrical combined probability curves. While 
such an assumption may be reasonable for measurement 
errors such as noise and sensor resolution, it is rarely 
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justifiable for uncertainties related to model simplifications 
that are common in structural engineering. 

The conventional FE model updating employs an 

optimization technique with the single-objective function 

(SOF). General equation of SOF can be stated as follows 

(Jin et al. 2014) 

𝑚𝑖𝑛  = ∑ 𝜔𝑖

𝑛

𝑖=1
𝐹𝑖(𝑿) = 𝜔𝑇𝐹(𝑿) (1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑗(𝑿) < 0, 𝑗 = 1,2, ⋯ (2) 

ℎ𝑘(𝑿) = 0, 𝑘 = 1,2, ⋯ (3) 

𝑿𝐿 ≤ 𝑿 < 𝑿𝑈 , ∑ 𝜔𝑖 , 𝜔𝑖 ≥ 0 (4) 

where X is an updating parameter vector; 𝐹𝑖(𝑋) is the sub-

objective function that returns a scalar value; n is the 

number of the sub-objective functions; 𝜔𝑖  is the 

corresponding weighting factor to each sub-objective 

functions; 𝑔𝑖(𝑋)  and ℎ𝑗(𝑋) are inequality and equality 

constraints, respectively; and 𝑋𝐿  and 𝑋𝑈  are lower and 

upper constraint vectors of the updating parameter vector, 

respectively. The weighting factors play an important role in 

balancing the significance of the sub-objective functions in 

the SOF, whereas they are generally selected by a user 

based on experience and expertise. 

In the FE model updating method, the objective function 

is formulated in terms of the discrepancy between finite 

element and reference properties. When experimental modal 

properties (i.e., natural frequencies) are used as reference 

properties, the SOF can be formulated as the weighted sum 

of sub-objective function. 

 

2.2 FE model updating based on multi-objective 
function 
 

In multi-objective function (MOF), all objective 

function spaces are considered independently without 

assigning weighting factors. MOF aims to find a set of 

preferred solutions called as Pareto-optimal front or non-

dominated solutions as shown in Fig 1. The practical 

solution can be found during the search of solutions, and the 

black line is considered as the feasible solution domain. In 

the feasible domain, non-dominated solutions, at which an 

objective function value cannot be improved without 

degradation of the other objective function values, 

constitute the Pareto-optimal front (Jin et al. 2014). Multi-

objective function problem can be expressed as 

𝑚𝑖𝑛(𝐹1(𝑿), 𝐹2(𝑿), ⋯ , 𝐹𝑀(𝑿)) (5) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑗(𝑿) < 0, 𝑗 = 1,2, ⋯ (6) 

ℎ𝑘(𝑿) = 0, 𝑘 = 1,2, ⋯ (7) 

𝑿𝐿 ≤ 𝑿 ≤ 𝑿𝑈 (8) 

In contrast to SOF, the solution of MOF consists of sets 

of trade-offs between objectives. In the case of SOF, the 

various results can be obtained depending on the weighting  

 

Fig. 1 Pareto-optimal front 

 

 

Fig. 2 Comparison SOF and MOF (Jin et al. 2014) 

 

 

factors in each objective function. The goal of MOF is to 

generate these trade-offs. Surveying all these trade-offs in 

particularly is important because it provides the system 

designer with the ability to understand and weigh the 

different choices available to them. Fig. 2 shows the 

comparison between SOF and MOF. 

SOF which sets one case of weighting factor provides 

the single solution through a single run, while MOF 

provides a set of solution that, when all the objectives are 

considered, other solutions in the search space are better 

than them. This set is known as the Pareto-optimal front. 

The optimal solution in MOF can be defined from a 

mathematical concept of partial ordering. The Pareto-

optimal front is shown in Fig. 1. 

The Pareto optimal solution is the vectors of the solution 

from SOF. Deb (2008) and Zitzler et al (1999) 

demonstrated that one of the Pareto-optimal solutions is the 

solution of single objective optimization. The effect of 

different weighting factors is also shown. The main goal is 

to obtain the Pareto-optimal solutions and compare each 

optimal solution from FE model updating based on SOF. 

With enough time to update the FE model, MOF can be 

used and effective to acquire multiple solutions in a single 

optimization run. 

In order to obtain the Pareto-optimal front, there are 

many related algorithms such as non-dominated sorting 

genetic algorithm-2 (NSGA-2), simulated annealing, 

particle swarm solver and so on. In this study, a multi-

algorithm, genetically adaptive multi-objective optimization 

(AMALGAM) was used as an optimization algorithm 

(Vrugt and Robison 2007). Compared with the conventional 

optimization algorithms, this method runs multiple different 
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search strategies simultaneously for population and 

adaptively updates the preference of each of these 

individual methods based on their reproductive success 

(Jeong 1996). It consists of 4 types of evolutionary 

algorithms: (1) Differential evolution (DE), (2) Adaptive 

Metropolis sampler (AMS), (3) Particle swarm optimizer 

(PSO), and (4) Genetic algorithm (GA). The goal is to 

determine values for modal parameters that provide the best 

possible solution to an objective function, or a set of 

optimal trade-off values in the case of two or more 

conflicting objectives (Vrugt 2016). 

 

2.3 Surrogate model 
 

In various scientific fields, mathematical models are 

used to describe processes that are very difficult to analysis, 

and these models are usually implemented with computer 

codes (Kennedy and O’Hagan 2001). As the computer 

performance improves and the efficiency of the FE program 

increases, the user can easily model the target structures and 

a more sophisticated modeling method is available (Catbas 

et al. 2013). In spite of the development of technology, 

users tend to construct the model simple to reduce the 

analysis time. When constructing FE model simple, it is 

insufficient to represent the real structure accurately. This 

indicates that poorly constructed FE model can result in 

systematic errors caused by modeling simplifications 

(Goulet et al. 2014). The simple FE models can lead to 

inaccurate prediction (Goulet and Smith 2013). To deal 

with this issue, two options are suggested. One is that using 

analytical solution is to validate the simplified model. The 

other is to construct FE model sophisticated. Generally, the 

former is not available. Therefore, to establish the 

sophisticated model would be better than to construct a 

simple model. 

The more sophisticated FE model exists, the more 

analysis time is needed. In the case of a few times run, it is 

not important; however, many iterations are needed to 

analysis in finite-element analysis (FEA). Therefore, some 

applications become impractical under iterative analysis 

with an expensive computation model.  

To address the computation burden, there are two 

approaches available. The first solution is to use high-

performance computing and the other one is to use a fast 

surrogate of the computation model. The surrogate model 

has recently attracted considerable attentions as fast 

alternatives to the iterative FEA (Jones 2001, Forrester et 

al. 2008). It is also called the response surface or metal 

model. The surrogate model uses a mathematical/statistical 

model to match the input and output relationships. The 

procedure of constructing the surrogate model is as follows: 

(1) model parameters and target outputs are defined; (2) to 

generate training samples, the design of experiments is 

employed; (3) once training samples are generated, model 

simulation is performed to generate model outputs; and (4) 

based on the observed inputs and outputs, the surrogate 

model is constructed. 
In this study, the Kriging surrogate model is used. The 

Kriging surrogate model is a statistical approximation of a 
function as a realization of the Gaussian process, also 
known as Gaussian process model (GPM). Fig. 3 shows the  

 

Fig. 3 Kriging with training samples (Jin and Jung 2016a) 
 
 

Kriging model in one-dimensional space (Jin and Jung 
2016a). The unknown prediction y(𝑥∗) is treated as the 
Gaussian process random variable based on training 
samples (𝑥′) (Kennedy and O’Hagan 2001). Therefore, 
the unknown prediction y(𝑥∗)  is a combination of the 
deterministic and stochastic component. 

𝑦(𝑥∗) = 𝜇(𝑥∗) + 𝑍(𝑥∗) 𝑤𝑖𝑡ℎ 𝑍(𝑥∗) ~ 𝐺𝑃(0, 𝐶(𝑥∗, 𝑥′)) (9) 

where 𝜇(𝑥∗) is a deterministic component to capture the 

global trend 𝑍(𝑥∗) is the stochastic component to capture 

the local variants and is assumed to be the Gaussian process 

with zero mean and covariance 𝐶(𝑥∗, 𝑥′). 

The spatial correlation among the training samples 

derives the covariance function of GPM. In the 

deterministic simulations, the prediction y(𝑥)  being 

modeled is smooth and continuous over the parameter 

space. That is, when the two samples y(𝑥1) and y(𝑥2) 

will have a comparable value if the distance between two 

samples is getting closer. This property can be 

demonstrated statistically that the predictions are correlated 

with a spatial distance. Therefore, the covariance between 

any samples 𝐶(𝑥∗, 𝑥′) derived from the correlation, as 

𝐶(𝑥∗, 𝑥′) = 𝜎2𝜓(𝑥, 𝑥′) (10) 

where the variance 𝜎2 provides overall dispersion relative 

to the mean of the Gaussian process, and 𝜓(∙,∙) denotes the 

spatial correlation matrix. 

A typical choice of the correlation matrix 𝜓(∙,∙) is the k-

dimensional Gaussian correlation function as  

𝜓𝑖𝑗 = 𝑒𝑥𝑝 (− ∑ 𝜃𝑝‖𝑥𝑝
𝑖 − 𝑥𝑝

𝑗
‖

𝑚𝑝
𝑘

𝑝=1
)

= 𝑐𝑜𝑟𝑟[𝑦(𝑥𝑖), 𝑦(𝑥𝑗)] 
(11) 

where subscript ‘p’ denotes the dimension of sample x, the 

superscript ‘i’ and ‘j’ indicate the ‘i’-th and ‘j’-th sample, 

respectively. And ‖𝑥𝑝
𝑖 − 𝑥𝑝

𝑗
‖

𝑚𝑝
 is the relative distance 

measure between two samples in a parameter space with m-

norm. the Gaussian correlation function contains parameters 

corresponding to each dimension (𝜃𝑝  and 𝑚𝑝). These 

parameters determine how fast the correlation decays in 

each dimension, and they reflect the significant importance 

of each dimension (Forrester et al. 2008). The main reason  
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Fig. 3 Flowchart of the proposed method 

 

 

of using Eq. (11) is to express the various shapes of the 

spatial correlation. To reduce the computational complexity, 

Eq. (11) can be expressed as a Euclidean distance (𝑚𝑝 =

2). 

 

2.4 The proposed method 
 

In the proposed approach, FE model updating is 

processed through multi-objective optimization with the 

surrogate model. To construct the Kriging surrogate model, 

initial samples and validation samples are generated with 

upper and lower bounds on parameters. These are used as 

inputs to run FE analysis to obtain the outputs. Then, initial 

Kriging model is constructed. By using the initial Kriging 

surrogate model, the validation sample outputs are 

predicted. Validation measurements such as 𝑅2  and 

𝑅𝑀𝑆𝐸  are evaluated (Jin and Jung 2016). When the 

stopping criteria are met, the process can be stopped. After 

constructing Kriging model, the AMALGAM algorithm is 

used as the MOF algorithm (Vrugt and Robison 2007). The 

algorithm is initiated by an initial population, drawn 

randomly from some prior ranges using, for instance, Latin 

hypercube sampling. Then, each parent is assigned a rank 

using the fast non-dominated sorting algorithm of Deb et al. 

(2002). Instead of implementing a single operator for 

reproduction, four different recombination methods (i.e., (1) 

DE, (2) AMS, (3) PSO, and (4) GA) can be simultaneously 

generated the offspring. After the offspring has been 

created, the parents and children are combined. And the 

objective functions are ranked using the non-dominated 

sorting algorithm. After constructing the Pareto-optimal 

front, the validation process is performed.  

In this study, the 1st torsion mode is set as the validation 

value to compare the updated models between SOF and 

MOF. The advantages of the AMALGAM algorithm are as 

follows: (1) by facilitating direct information exchange 

between individual algorithms, the method merges the 

strengths of different search strategies to increase the speed 

of evolution toward the Pareto-optimal solutions, and (2) by 

adaptively changing preferences to individual search 

algorithms during the course of the optimization, the 

method should adapt quickly to the specific difficulties and 

peculiarities of the optimization at hand. The flowchart of 

FE model updating proposed in this study is shown in Fig. 

3. 

 

 

3. Experimental validation 
 

In this chapter, the proposed method is briefly 

demonstrated and verified using field test data. A field test  

 

Fig. 4 Samseung Bridge and its cross section 

 

 

Fig. 5 Sensor deployment 

 

 

was conducted in a steel plate girder bridge with a single 

span. It is located in Chung-bu inland expressway, where 

many proposed techniques are carried out and there are 

restrictions on vehicle traffic. In the steel plate girder 

bridge, the ambient vibration test was performed to obtain 

the natural frequency of a target bridge. The obtained data 

are set as calibration values and validation value to compare 

the proposed method (i.e., MOF) and the conventional 

method (i.e., SOF). 

 

3.1 Target bridge: steel plate girder bridge 
 

The target bridge investigated for the test is a steel plate 

girder bridge called the Samseung bridge. It is a single span 

with 5 girders and 9 cross girders including 3 diaphragms. It 

is 40.0 m long and 12.6 m wide and also skewed 2%, as 

shown in Fig. 4.  

 

3.2 Ambient vibration test and modal analysis 
 

The dynamic responses were obtained by performing the 

ambient vibration test. The obtained dynamic responses 

were used for the target output and validation value when 

the FE model updating was performed and after 

optimization. A total of 15 accelerometers were arranged as 

shown in Fig. 5 and were used to obtain the dynamic 

responses. The data acquisition system was composed of 

the computer (NI PXI-1000B), the multifunction DAQ (NI 

USB-6353), a sensor signal conditioner (PCB model 481a), 

and 15 accelerometers (PCB 393B12). The data was set to 

100 Hz sampling frequency and collected for 120 minutes. 

Fig. 6 indicates the accelerometer data of the 1st array of the 

sensor (No.1 to No.5). From the ambient vibration data, 

modal identifications, which are stochastic subspace 

identification (SSI) and cross power spectral density 

(CPSD), were used to figure out the modal properties such 

as natural frequencies and mode shapes of the target bridge. 

Fig. 7 shows the data of the SSI chart and the CPSD of the 

target bridge. Several mode shapes were identified and the 

related mode shapes are depicted in Fig. 8.  
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Fig. 6 Obtained ambient vibration data (1st array of the 

sensor) 

 

 
(a) SSI chart 

 
(b) CPSD 

Fig. 7 SSI chart and CPSD of Samseung Bridge 

 

 

4. FE model updating 
 

FE model updating is conducted in two cases: (1) 

single-objective optimization and (2) multi-objective 

optimization. Two cases are based on the surrogate model. 

From the field test, four modes are obtained. In this study, 

three mode shapes (i.e., the 1st bending, and the 2nd bending 

& torsion) are set as the calibration values and the 1st 

torsion mode is set as the validation value.  

 

4.1 Initial FE model 
 

The initial FE model was constructed by using ANSYS 

APDL as shown in Fig. 9. The initial FE model is composed 

of 131,909 elements with shell and beam elements 

considering the related geometry and structural details of 

the target bridge. Slab, barrier, girders and cross girders 

except the diaphragms were modelled by shell elements. 

The diaphragms were only modelled by beam element. 

Based on the drawing of the target bridge, boundary 

conditions of each end represent roller and hinge, 

respectively. The natural frequencies of the initial FE model  

 
(a) 1st bending (4.419Hz) 

 
(b) 1st torsion (4.787Hz) 

 
(c) 2nd bending (10.683Hz) 

 
(d) 2nd torsion (13.483Hz) 

Fig. 8 Identified mode shapes (the 1st and 2nd bending and 

torsion modes) 

 

 

are compared with the data of experiment results in Table 1. 

As seen from the table, the errors of natural frequencies 

range from 7 to 16 %. The smallest error is 7.29% in the 1st 

bending mode, the biggest error is 16.35% in the 2nd 

torsion. Inferring from the revealed discrepancies of the 

natural frequencies, the initial FE model requires model 

updating to represent the existing bridge accurately. 
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Fig. 9 Initial FE model 

 

Table 1 Comparison the natural frequencies 

Mode 𝑓𝐹𝐸𝑀 𝑓𝐸𝑋𝑃 Error (%) 

1st bending 4.097 4.419 7.29 

1st torsion 4.404 4.787 8.00 

2nd bending 9.539 10.683 10.71 

2nd torsion 11.284 13.483 16.31 

 

Table 2 Updating parameters 

Updating parameter Initial value Lower bound Upper bound 

Elastic modulus of slab 24 GPa 0.7 1.5 

Elastic modulus of girder 211.6 GPa 0.7 1.5 

Elastic modulus of cross girder 211.6 GPa 0.7 1.5 

Normal stiffness 2e8 N/mm 0.1 2.5 

Sticking stiffness 2e8 N/mm 0.1 2.5 

 

 

4.2 Updating parameters for FE model updating 
 

Selecting updating parameters is an important part of FE 

model updating. Mathematically, if the estimation of too 

many parameters is attempted, then the problem may appear 

ill-conditioned or underdetermined because the 

observations are limited in vibration testing (Brownjohn et 

al. 2001). Therefore, it is preferred to select the updating 

parameters as small as users can. In the case of the target 

bridge, uncertainties were caused by the properties of slab, 

girder, cross girder and boundary conditions. When 

considering the effects of aging and damage, five updating 

parameters were selected (i.e., elastic moduli of slab, girder 

and cross girder, and normal/sticking stiffness of boundary 

conditions). Table 2 indicates the initial values of the 

updating parameters and their upper and lower bounds. 

 

4.3 FE model updating with multi-objective 
optimization 

 

The initial FE model was updated by using MOF. In the 

case of MOF, the Pareto-optimal front can be obtained 

through a single run without assigning weighting factors in 

objective function. The objective functions, which were 

used in FE model updating, are as follows 

Table 3 Details of updating in MOF 

Parameters Values Parameters Values 

Population size 500 No. run 1 

Generation 200 No. iteration 100,000 

 

 

F𝑖 = (
𝑓𝑖

𝑒𝑥𝑝
− 𝑓𝑖

𝐹𝐸𝑀

𝑓𝑖
𝑒𝑥𝑝 )

2

 (12) 

where ‘i’ indicates the ‘i’-th natural frequencies. 𝑓𝑖
𝑒𝑥𝑝

 and 

𝑓𝑖
𝐹𝐸𝑀  indicate ‘i’-th experiment and numerical model 

natural frequencies, respectively. Table 3 represents the 

details of FE model updating with MOF. 

In the FE model updating method, basically, the target 

output (fFEM) is found to be the closest to the measured 

value (fexp), but since there may be uncertainty in the 

measured value, it can be dangerous to set the most 

preferred model to the case where the objective function (or 

the relative error between the target output and the 

measured value) is minimum. The proposed method based 

on multi-objective optimization can be more effectively 

applied in such cases because it is able to provide multiple 

solutions (i.e., the Pareto optimal front) in a single 

optimization run. Thus, it would be more effective to use 

the updated models through the multi-optimization in the 

condition assessment of bridges. This is one of the crucial 

advantages of the proposed method from a practical point of 

view. 

Fig. 10 shows the improvement of the 3 target outputs 

(i.e., 𝑓1, 𝑓3 and 𝑓4) and one for the validation value (i.e., 

𝑓2). The square symbol represents the mean value and two 

diamonds are maximum and minimum values in the 

proposed approach. Also, the red dotted line indicates the 

measurement data. According to Table 1, all the initial 

values of target outputs are well below the measured values. 

After FE model updating, however, all the updated models 

were improved in target outputs as shown in Fig. 10. Also, 

in the case of the validation value, the values of 𝑓2 were 

well distributed covering the measurement data. This means 

that the proposed FE model updating is able to give 

multiple feasible solutions with a reasonable computational 

cost. 

Fig. 11 shows the distribution of the updated parameters 

in MOF. To match the measurement data from the initial FE 

model, the values of updating parameters were increased 

because the natural frequencies of the initial FE model are 

lower than the natural frequencies of measurement. Since 

all target outputs after FE model updating were higher than 

those in the initial FE model, the updating parameters 

tended to move slightly toward the upper bound to be stiff; 

however, some parameters (e.g., elastic moduli of slab and 

cross girder and normal stiffness) are widely spread in all 

regions in MOF. To compare the updated values in more 

detail, the Pareto-optimal front was examined in the next 

section (see Fig. 12). 

 

4.4 Comparison between MOF and SOF 
 

The updated models obtained from the proposed method  
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Fig. 10 Updating results of MOF 

 

 

Fig. 11 Distribution of updated parameters in MOF 

 

 

(i.e., MOF) were compared with those obtained from the 

conventional method (i.e., SOF) in order to verify the 

effectiveness of the proposed method in regard to the 

calculation time as well as the relative errors. In the case of 

the calibration values (i.e., f1, f3 and f4), both methods result 

in accurately updated values compared with measurement; 

however, the validation value (i.e., f2) shows that SOF has a 

large relative error compared with MOF. In the case of 

MOF, the validation value is also distributed upper and 

lower bound of measurement data. In the case of updating 

parameters, some parameters of each method are widely  

 

Fig. 12 Pareto-optimal front 

 

Table 4 The most preferred model 

Mode 𝑓𝐸𝑋𝑃 SOF Error (%) MOF Error (%) 

1st bending 4.419 4.517 -2.22 4.499 -1.81 

2nd bending 10.683 10.853 -1.59 10.974 -2.72 

2nd torsion 13.483 12.732 5.57 12.847 4.72 

1st torsion 4.787 4.329 9.57 4.993 -4.30 

 

 

spread in all regions in the cases of SOF and MOF. To 

compare the results of SOF and MOF, the Pareto-optimal 

front is examined as shown in Fig. 12. The distribution of 

updated models can be described in Fig. 12. In the case of 

SOF (i.e., red cross symbols), updated solutions cannot 

express the Pareto-optimal front well compared with MOF. 

On the other hand, the results of MOF (i.e., blue circle 

symbols) can show the non-dominated solution in each 

objective function. 

In Table 4, the most preferred models obtained from 

SOF and MOF are represented. Even in the case of the most 

preferred models, it can be seen that MOF is superior to 

SOF in the validation value as well as in the calibration 

values. Also, to obtain the most preferred model, SOF needs 

229,950 iterations, while MOF needs only 100,000 

iterations. In this study, 46 cases of weighting factors are 

considered in SOF. To obtain the validation value similar to 

MOF, thus, more conditions of weighting factors should be 

considered in SOF, resulting in more calculation burden. 

 

 

5. Conclusions 
 

In this study, FE model updating based on multi-

objective optimization using the surrogate model was 

proposed and performed in full-scale structure. The 

proposed method is able to address the limitations of the 

conventional method such as computational burden due to 

many FE analysis and difficulty in finding an optimal 

weighting factor. To validate the effectiveness of the 

proposed method, the initial FE model of an in-service steel 

plate girder bridge was constructed by ANSYS APDL and 

its modal properties were obtained through the ambient 

vibration test for the FE model updating. According to the 

results of the FE model updating, it was confirmed that 

most of the updated models were well improved in target 

outputs and some of the updating parameters are well 

distributed. Most of the updated models were improved in 

target output. Especially, in the case of the validation value 
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(i.e., f2), its distribution was well spread covering the 

measurement data. Also, through comparison between the 

proposed method (i.e., MOF) and the existing method (i.e., 

SOF), it was demonstrated that the proposed method made a 

better Pareto optimal front than the existing method, and it 

was confirmed that the number of iterations required in the 

proposed method was much smaller than that in the existing 

method (i.e., 100,000 iterations vs. 299,950 iterations). In 

addition, it was found that the proposed method could 

construct an excellent model with a much smaller relative 

error even in finding the most preferred model. 

 

 

Acknowledgments 
 

This study was supported by a grant from the Smart 

Civil Infrastructure Research Program (13SCIPA01) funded 

by the Ministry of Land, Infrastructure and Transport 

(MOLIT) of the South Korean government.  
 

 

References 
 

Brownjohn, J.M.W., Xia, P.Q., Hao, H. and Xia, Y. (2001), “Civil 

structure condition assessment by FE model updating: 

Methodology and case studies”, Fin. Elem. Analy. Des., 37(10), 

761-775. 

Catbas, F.N., Kijewsk-Correa, T.L., Aktan, A.E. and Structural 

Engineering Institute (2013), Committee on Structural 

Identification of Constructed Systems, Structural Identification 

of Constructed Systems: Approaches, Methods, and 

Technologies for Effective Practice of St-Id. 

Deb, K. (2008), Introduction to Evolutionary Multiobjective 

Optimization, Springer 

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), A Fast 

and Elitist Multiobjective Genetic Algorithm: NSGA-2, IEEE 

Transactions on Evolutionary Computation, 6, 182-197. 

Eamon, C.D. and Nowak, A.S. (2004), “Effect of secondary 

elements on bridge structural system reliability considering 

moment capacity”, Struct. Safety, 26(1), 29-47. 

Erdogan, S.Y., Gul, M., Catbas, F.N. and Bakir, P.G. (2013a), 

“Quantification of parametric model uncertainties in finite 

element model updating problem via fuzzy numbers”, 

Proceedings of the 31st Conference on International Modal 

Analysis, 5, 67-74. 

Erdogan, S.Y., Gul, M., Catbas, F.N., M.ASCE. and Bakir, P.G. 

(2013b), “Investigation of the effect of model uncertainties on 

structural response using structural health monitoring data”, J. 

Struct. Eng., 11, 1-14. 

Forrester, A.I.J., Sobester, A.S. and Keane, A.J. (2008), 

Engineering Design via Surrogate Modeling: A Practical 

Guide, J. Wile, Chichester, West Sussex, England, Hoboken, 

NJ. 

Goulet, J.A. and Smith, I.F.C. (2013), “Structural identification 

with systematic errors and unknown uncertainty dependencies”, 

Comput. Struct., 128, 251-258. 

Goulet, J.A., Texier, M., Michel, C., Smith, I.F.C. and Chouinard, 

L. (2014), “Quantifying the effects of modeling simplifications 

for structural identification of bridges”, J. Brid. Eng., 19(1), 59-

71. 

Jeong, I.K. (1996), “Adaptive simulated annealing genetic 

algorithm for system identification”, Eng. Appl. Artif. Intell., 

9(5), 523-532. 

Jin, S.S., Cho, S.J., Jung, H.J., Lee, J.J. and Yun, C.B. (2014), “A 

new multi-objective approach to finite element model 

updating”, J. Sound Vibr., 333(11), 2323-2338. 

Jin, S.S. and Jung, H.J. (2016a), “Self-adaptive sampling for 

sequential surrogate modeling of time-consuming finite element 

analysis”, Smart Struct. Syst., 17(4), 611-629. 

Jin, S.S. and Jung, H.J. (2016b), “Sequential surrogate modeling 

for efficient finite element model updating”, Comput. Struct., 

168, 30-45. 

Jones, D.R. (2001), “A taxonomy of global optimization methods 

based on response surfaces”, Glob. Optim., 21(4), 345-383. 

Kennedy, M.C. and O’Hagan, A. (2001), “Bayesian calibration of 

computer models”, J. Roy. Stat. Soc. Ser. B, 63(3), 425-450. 

Kim, G.H. and Park, Y.S. (2004), “An improved updating 

parameter selection method and finite element model update 

using multi-objective optimization technique”, Mech. Syst. Sign. 

Proc., 18(1), 5978. 

Marwala, T. (2004), “Finite element model updating using 

response surface method”, Proceedings of the Collection of 

Technical Papers-AIAA/ASME/ASCE/AHS/ASC Structures, 

Structural Dynamics and Materials Conference, 7, 5165-5173. 

Ren, W.X. and Chen, H.B. (2010), “Finite element model updating 

in structural dynamics by using the response surface method”, 

Eng. Struct., 32(8), 2455-2465. 

Steenackers, G. and Guillaume, P. (2006), “Finite element model 

updating taking into account the uncertainty on the modal 

parameters estimates”, Sound Vibr., 296(4), 919-934. 

Vrugt, J.A. (2016), Multi-criteria Optimization Using the 

AMALGAM Software Package: Theory, Concepts, and 

MATLAB Implementation. 

Vrugt, J.A. and Robision, B.A. (2007), “Improved evolutionary 

optimization from genetically adaptive multimethod search”, 

Proc. Nat. Acad. Sci. USA, 104(3), 708-711. 

Zitzler, E. and Thiele, L. (1999), “Multiobjective evolutionary 

algorithms: A comparative case study and the strength pareto 

approach”, IEEE, 3(4), 257-271. 

 

 
CC 

181




