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1. Introduction 
 

The development of the nanostructure in sciences such 

as communication, electronics, medicine, aerospace 

science, military science, robotics, chemistry, and optics has 

resulted in new achievements. In all these applications, 

according to experimental results, size effects play a 

significant role in proper study of the behavior of such 

structures. Therefore, since classical continuum theories, 

due to their lack of intrinsic length scales, are unable to 

correctly predict the behavior of these structures, use of 

higher order theories, such as nonlocal continuum theory, 

strain gradient theory and couple stress theory, which are 

able to account for size effects in computations, has become 

popular (Li et al. 2011a, b, c, Şimşek 2014, Zhang et al. 

2014, Ghayesh et al. 2013, Sahmani and Ansari 2013, Li et 

al. 2015a, Fattahian and Tadi Beni 2017, Tadi Beni et al. 

2015, Arash and Ansari 2010, Li 2014a, b, Pradhan and 

Phadikar 2009). 

The classical couple stress theories was presented by 

Tiersten and Mindlin (1962), Toupin (1962), Koiter (1964) 

and Mindlin (1964). Using couple stress theory, Kang and 

Xi (2007) investigated the micro-beam resonant frequency 

and demonstrated the dependency of natural frequency on 
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size effects. Also, using the couple stress theory, Zhou and 

Li (2001) investigated the mechanical and static behavior of 

a microbar subjected to torsional loading. Regarding the 

difficulties of determining length scale parameters, which 

classical couple stress theories consist of couple of them, 

Yang et al. (2002) proposed modified couple stress theories 

in which a new additional equilibrium equation and the 

equilibrium of the couples of moments, besides classical 

equilibrium equations of forces and their moments, exist 

and lead to one length scale parameter. This theory 

introduces a new equilibrium equation, i.e., the equilibrium 

of moments of couples, in addition to equations of 

equilibrium and momentum of forces. Many studies have 

employed modified couple stress theory. For instance, using 

Timoshenko beam model and modified couple stress theory, 

Ma et al. (2008) investigated the formulation of axial and 

transverse deformation of microstructures. In another study 

using modified couple stress theory, Reddy and Berry 

(2012) examined the bending of axisymmetric circular 

plates, demonstrating the possibility of use of the equations 

developed for extending the analytical response to free 

vibrations, bending, and buckling of linear cases. 

Afterwards, Mindlin (1964) introduced the general higher 

order stress theory by only considering the second order 

deformation gradient as supplementary deformation matrix, 

therefore the five linear elastic parameters are deduced from 

this additional part. Subsequently, Fleck and Hatchinson 

(1997) modified Mindlin’s formulation and named it as 

strain gradient theory. In this new formulation, the stretch 

gradient tensor and rotation gradient tensor, are taken into 

account as the constitutive parts of second order 

 
 
 

Finite element vibration analysis of nanoshell 
based on new cylindrical shell element 

 

Iman Soleimani1a, Yaghoub T. Beni2 and Mohsen B. Dehkordi2b 
 

1Mechanical Engineering Department, Shahrekord University, Shahrekord, Iran 
2Faculty of Engineering, Shahrekord University, Shahrekord, Iran 

 
(Received April 20, 2017, Revised September 21, 2017, Accepted October 12, 2017) 

 
Abstract.  In this paper, using modified couple stress theory in place of classical continuum theory, and using shell model in 

place of beam model, vibrational behavior of nanotubes is investigated via the finite element method. Accordingly classical 

continuum theory is unable to correctly compute stiffness and account for size effects in micro/nanostructures, higher order 

continuum theories such as modified couple stress theory have taken on great appeal. In the present work the mass-stiffness 

matrix for cylindrical shell element is developed, and by means of size-dependent finite element formulation is extended to more 

precisely account for nanotube vibration. In addition to modified couple stress cylindrical shell element, the classical cylindrical 

shell element can also be defined by setting length scale parameter to zero in the equations. The boundary condition were 

assumed simply supported at both ends and it is shown that the natural frequency of nano-scale shell using the modified coupled 

stress theory is larger than that using the classical shell theory and the results of Ansys. The results have indicated using the 

modified couple stress cylindrical shell element, the rigidity of the nano-shell is greater than that in the classical continuum 

theory, which results in increase in natural frequencies. Besides, in addition to reducing the number of elements required, the use 

of this type of element also increases convergence speed and accuracy. 
 

Keywords:  modified couple stress theory; FEM; cylindrical shell element; size dependent; Thin Shell Theory 

 



 

Iman Soleimani, Yaghoub T. Beni and Mohsen B. Dehkordi 

 

deformation tensor. Afterwards, the modified strain gradient 

theory, which considered only the symmetric parts of strain 

gradient in the equations, was proposed by Lam et al. 

(2003). According to this theory, the five length scale 

parameters presented by Mindlin was reduced to three 

length scale parameters. These three parameters can be 

combined and reduced to only one single measurable 

parameter under the assumptions of modified couple stress 

theory. 
In the recent years, the application of nonlocal 

continuum theory, the modified strain gradient theory and 

couple stress theory has attracted considerable attention in 

the investigation of the dynamic behavior of micro/nano 

electromechanical systems and nanotubes. Li et al. (2015a) 

demonstrated that the equivalent stiffness of a nanostructure 

predicted by the non-local theory may be larger or smaller 

than that by the classical theory, depending on the category 

of applied loads and showed that both the nano structural 

stiffness strengthening and reducing effects exist in nano 

mechanics and they are related to different surface 

properties, or the long range attractive and long range 

repulsive interactions on the surface of nanostructures cause 

the stiffness reducing and stiffness strengthening models, 

respectively. Ma et al. (2008) showed that the effects of 

Poisson’s coefficient and size parameter on beam deflection 

and beam vibration are considerable. In another study, Tadi 

and Abadyan (2013) investigated the pull-in instability 

effect in a nano beam under torsion through strain gradient 

theory. Taking into consideration the Casmir forces, they 

compared their findings with couple stress theory. 

Considering the fact that the components of nano-devices 

could be modeled through the nano shell, it is essential to 

learn the correct model of the nano shell. Also, it is 

important to know that as dimensions are scaled down, 

many essential phenomena appear at the micro/nano-scale, 

which is not important at macro-scale. 

The longitudinal dynamic behaviors of some common 

one-dimensional nanostructures were examined using the 

hardening nonlocal approach by Li et al. (2015b). The 

effects of a dimensionless nonlocal small scale parameter at 

molecular level unavailable in classical rods/tubes were 

investigated. The correlations between natural frequencies 

and the nonlocal nano scale parameter were obtained. 

Within the framework of hardening nonlocal stress theory, it 

concludes for the first time that the longitudinal free 

vibration frequencies of nano rods/nanotubes are higher 

than those based on the classical continuum mechanics but 

they are quite different from the softening nonlocal model. 

The strengthening effects on nonlocal stiffness of nano 

rods/nanotubes are observed and a comparative calculation 

for dimensional natural frequencies with respect to length of 

CNTs by different methodologies was provided to explain 

why the softening and hardening nonlocal models are both 

correct in nonlocal elasticity theory. 

In order to correctly predict the behavior of 

micro/nanostructures, in addition to considering the length 

scale parameter, it is also necessary to use an appropriate 

geometric model to correctly model structures and 

elements. In recent years, in addition to laboratory 

experiments, methods such as molecular dynamic 

simulations and classical continuum theory have been used 

to simulate and study nano-structures and examine size 

effects. Besides, given the fact that methods such as MD are 

costly and include lengthy calculations, in order to examine 

the mechanical behavior in nanostructure, researchers have 

used non-classical continuum theories such as the nonlocal 

theory, strain gradient theory, and couple stress theory, 

which have ability to model size effects (Lim et al. 2012, 

Zeighampour and Tadi 2015, Kong et al. 2008, Abadyan et 

al. 2011, Noghrehabadi et al. 2011, Mohammadi and Tadi 

2014, Tadi et al. 2014, Yang et al. 2008, Akgöz and Civalek 

2013, Berrabah et al. 2013, Ji and Chen 2009, Kocaturk and 

Akbas 2013, Li 2013, Wang et al. 2013, Ebrahimi and Tadi 

2016).  

Besides the significance of consideration of size effect 

in micro/nano scales and the shear model in nano shells, it 

should be noted that, for correctly predicting structure 

behavior, it is essential to use an appropriate geometrical 

model in order to model structures and elements used in 

them. In addition, considering the extensive application of 

nanotubes in nano scale structures, it is necessary to use an 

appropriate geometric model (Kheibari and Tadi 2017, 

Mehralian and Tadi 2016). Many researchers have so far 

used beam model in order to model nanotubes (Chong and 

Lam 1999, Mohammadimehr and Alimirzaei 2016, Tadi 

2016, Şimşek and Reddy 2013, Taghizadeh et al 2015, Wu 

et al. 2005). However, their topological structure which is 

in the shape of cylindrical shell is indicative of the 

superiority of the use of the shell model compared to other 

models. Zeighampour and Tadi (2014) investigated the 

dynamic behavior of double-walled carbon nanotubes using 

shell model and modified couple stress theory, 

demonstrating the effects of parameters such as size and 

fluid velocity on the results obtained by classical theory and 

modified couple stress theory. Using the three dimensional 

theory of elasticity and shell model, Alibeigloo and Shaban 

(2013) studied single walled carbon nanotube (SWCNT) 

vibration behavior and incorporated size effects into their 

calculations. Also, using the nonlocal theory, they 

demonstrated the effects of parameters such as the nonlocal 

parameter, thickness to radius ratio, and length to radius 

ratio on the results. 
Since, due to the complexity of micro/nanostructures 

such as complicated loading or geometry, the use of 
analytical method is not always possible, it is especially 
important to use other current methods such as FEM which 
is one of the most common methods for investigating 

micro/nanostructures and which analyzes and simulates 
complex structures through a simple process. Chyuan 
(2008) used the finite element method to investigate the 
levitation of MEMS comb-drive. Metz et al. (2006) 
investigated the bending behavior of conducting polymer 
electromechanical actuators using the numerical method. 

Tajalli et al. (2009) investigated the dynamic pull-in of 
electrostatically actuated micro/nano plate by using the 
nine-node plate element and by calculating the nonlinear 
geometry and pressure of fluid. 

It should be noted that all these studies have been 

conducted on the basis of the classical continuum theory. 

However, as mentioned previously, not only does classical 

continuum theory underestimate the stiffness of micro/nano 

structures, but it also excludes size effects in predicting the  
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Fig. 1 8- node cylindrical shell element 

 

 

behavior of micro/nanostructures. Hence, it is unable to 

correctly predict the behavior of micro/nanostructures. 

Since the study of nanoshells is conducted in nano 

dimensions, the mechanical properties of nanoshells could 

not be correctly predicted by the classical theory; therefore, 

taking into consideration the size effect, higher order 

continuum theories are used.   

Considering the discussion made above, it could be 

argued that no study has to date been conducted on the 

cylindrical shell element formulation by using the modified 

couple stress theory; therefore in the present paper, using 

the finite element method and modified couple stress theory 

which are able to take size effects into account and correctly 

model micro/nanostructures, mass and stiffness matrix are 

developed using cylindrical shell element shape function, 

the application of this cylindrical shell element is outlined, 

and the results are compared with those obtained by 

classical continuum theory and Ansys. The correctness of 

the equations is demonstrated, and the results obtained by 

the modified couple stress theory in comparison with those 

obtained by the classical continuum theory are 

demonstrated. The results reveal using the modified couple 

stress cylindrical shell element, the rigidity of the nano-

shell is greater than that in the classical continuum theory, 

which results in increase in natural frequencies and size-

dependent finite element formulation with shell element is 

very appropriate for more precisely solving vibration of 

nanotubes using modified couple stress theory. It should be 

noted that above conclusion (stiffness strengthening effect 

on nanostructures) have been obtained with a lot of 

researchers in the last years (Liu et al. 2016, Li 2014, Li et 

al. 2011a, b, c) which show the results of this paper is 

correct, qualitatively. 

 

 

2. Preliminaries 
 
2.1 Element definition 
 

A 8-node cylindrical shell element at length L, radius R, 

and thickness h is considered according to Fig. (1). Three 

independent coordinates are required to completely describe 

the position vector. The cylindrical coordinate system (x, α, 

r) is used as global coordinate system where x, r and α 

represent axial, radial and tangential axes (Fig. 1), and the 

element formulation is defined as follows 

The following conditions must exist for the cylindrical 

shell element’s shape function. 

• The shape functions must be differentiable. 

• One, and only one, shape function corresponding to 

each node must be 1 in that node and zero in other 

nodes.  

• In accordance with the cylindrical shape of the shell 

element, all shape functions must by periodic in relation 

to coordinate α, with a period of 2π. 

Based on the above conditions, the following shape 

functions for the cylindrical shell element are defined 
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2.2 Strain-displacement relationships 
 

Considering the shape functions, displacement of a point 

of the cylindrical shell element which can be represented by 

vector U with components u, v, and w along r, α and x is 

expressed as follows 
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where Ni, as the shape functions, are defined according to 

Eq. (1).  

 Strain energy expression in the modified couple stress 

theory, contains a set of equilibrium equations similar to the 

classical equilibrium equations and a non-classical size 

parameter constant, too. Hence, the strain energy in area Λ 

(and element volume V), for the elastic and isotropic 

substance with infinitesimal deformation is obtained as Lam 

et al. (2003) 
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 Classical and non-classical components of the strain 

tensor for the cylindrical shell element are defined as 
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where ui, eipq and ηipq represent the components of 

displacement vector, permutation symbol, and deviator 

stretch gradient tensor, respectively. Also, σij and mij 

respectively stand for the components of Cauchy tensor and 

higher order tensor components, which are defined using 

constitutive equations in modified couple stress theory in 

the elastic material as 
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 Finally μ and Cijkl represent shear modulus, elastic 

constants parameters, respectively. Also, l is the additional 

independent length scale parameter associated with the 

symmetric rotation gradient. 

 To calculate equations of deviator stretch tensor and 

symmetric rotation gradients the definitions of classic and 

higher order strains in orthogonal coordinate system are 

used as follows (Eringen 1980, Zhao and Pedroso 2008) 
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where ui, εij and ηkij are the physical components of 

displacement vector ui, displacement gradient εij and higher 

order displacement gradient ηkij, and gii and Γijk represent 

the components of metric tensor and Christoffel symbols of 

the second kind. The underscores are placed under the 

indices to indicate lack of addition on them. In the 

cylindrical coordinate system, the components of metric 

tensor and Christoffel symbol are expressed as 
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 Classical strain components are obtained by substituting 

Eq. (17) into Eq. (14) as follows 
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 Higher order strain components are obtained by 

substituting Eq. (16) and Eq. (17) into Eq. (15) as follows 
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 In an elastic isotropic thin shell, the stress-strain 

relations for the plane stress condition (σzz=0) are expressed 

as 
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(20) 

And, the components of strain tensor are determined as 

follows 
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(21) 

which can be expressed in the matrix form as 

(22) ε LU  

where 

(23) 
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Therefore, using Eq. (6), Eq. (22) can be expressed as 

(24) ε LU = LNq = B q
 

Therefore,  

(25) 6 24 6 3 3 24  B  = L  N
 

 According to Eq. (11) and Eq. (19), the components of 

higher order strain tensor are determined as 

0rr 
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This can be expressed in matrix form as 

(27) χ L U  

where 

(28) 
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L = 

 

Hence, using Eq. (6), Eq. (27) can be expressed as 

(29) χ LU = LNq = B q  

Therefore 

(30) 6 48 6 3 3 48  B  = L  N
 

 

2.3 Stress-strain relationships & Element stiffness 
and mass matrix 

 

 The components of Cauchy stress tensor and the 

symmetric part of the higher order stress tensor are 

determined as follows 

σ C ε = C Bq  (31) 

m Dχ = D Bq  (32) 

where 
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(33) 
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C =

D = 

 

where E, ν and μ represent elasticity modulus, Poisson’s 

coefficient, and shear modulus, respectively, and l are the 

additional independent material length scale parameter 

related to the symmetric rotation gradient.  

 According to the modified couple stress theory which 

was first developed by Yang et al, strain energy includes the 

following two parts (Yang et al 2002): 

• A classical part, (1/2) σij εij 

• A non-classical part, (1/2) mij χij 

and is defined as follows 

 
1

: :
2

U dV


  σ ε m χ
 

(34) 

in which σ, ε, m and χ are the components of the Cauchy 

stress tensor, strain tensors, the symmetric part of the higher 

order stress tensor and the symmetric part of rotation 

gradient tensor. 

 Using the principle of virtual displacements, the 

following result is achieved 

(35) 

 
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ε σ χ m U f

U f U R
 

where f 
B, f 

S and Rc are body forces per unit volume, surface 

tractions over a very small area and concentrated loads. 

 According to Eq. (6), Eq. (24) and Eq. (29) can be 

concluding 

 U N q
 (36a) 

 ε B q
 (36b) 

 χ B q  (36c) 

Therefore, by substituting Eq. (36) into Eq. (35), and 

using Eqs. (31)- (32), the following result is achieved 
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(38) 

Therefore, assuming fS=0, Eq. (35) is expressed as 
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(39) 

And the stiffness and force matrix is as follows 

(40)  T T

V
dV K B CB B DB

 

(41) 
i T B

c
V

dV F = R N f
 

The infinitesimal volume dv in cylindrical coefficient 

systems as global coordinate system is defined as 

(42) dV rhdxd  

By using Jacobian transfer to transfer the integral in Eq. 

(35) from (x,θ) space to (ξ,γ) space, the following equation 

is made 

(43)  det
2

L
dV rhdxd rhdxd


  J

 

By substitution Eq. (43) into Eq. (40) yields the 

following equation 

(44)  
1 1 1

1 1 1 2

T T L
Rhd d


 

  
   K B CB B DB

 

The mass matrix which expresses the features of an 

element’s mass is developed as follows 

(45) 
T

V
dV M N N

 

In which integral transfer from global coordinate to 

local coordinate is expressed as follows 

(46) 
1 1 1

1 1 1 2

T L
Rhd d


  

  
   M N N

 

 

 

3. Results and discussion 
 

The size-dependent vibration of nano-shell is examined 

using cylindrical shell element based on modified couple 

stress theory for the simply supported boundary conditions. 

The problem of vibration of single walled carbon nanotube 

(SWCNT) is solved at the following geometrical and 

mechanical properties 

(47) 

12

3

12nm  ,   0.34nm  ,   10  Pa

0.25  ,   2300 Kg m  ,   t

R h E

l h 

  

  
 

 A dimensionless natural frequency was defined as 

R
E


   and the effects of material length scale and shell 

length are obtained by using modified couple stress theory 

and the classical theory. Considering the equation of motion 

Eq .  (48)  and  Eq .  (4 9) ,  t he  na tura l  f req uency  
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Fig. 2The effect of L/R on dimensionless natural frequency 

 

 

Fig. 3The effect of l/h on dimensionless natural frequency 

 

 

equation was obtained according to Eq. (50) as follow 

0 MQ KQ  (48) 

sin( )i
i

Q A
 (49) 

2 0i  M K
 

(50) 

where M, K, Q and Ai respectively are, the system mass, the 

stiffness matrices, the global degree of freedom vector and 

the amplitude vector. The effect of length to radius ratio on 

dimensionless natural frequency of the SWCNT for the first 

two frequency modes shown for different theories in Fig. 2. 

As it is clear from Fig. 2, the increase of length-radius 

ratio results in the decrease of SWCNT natural frequency, 

which is due to reduction in SWCNT rigidity at higher 

length-radius ratios. It is shown that in the second mode the 

increase in shell length has a weaker effect on the decrease 

of the natural frequency than in the first mode. In addition, 

in shorter lengths, there is smaller difference between the 

values of the natural frequency. It is concluded from Fig. 2 

that the variation of natural frequency in the second mode 

between the couple stress theory and the classical theory is 

more than that in the first mode. 

The effect of material length scale parameter to 

thickness ratio on dimensionless natural frequency of the 

SWCNT for the first two frequency modes shown for 

modified coupled stress theory and the classical shell theory 

in Fig. 3. It is shown that by increasing the size parameter, 

the SWCNT’s natural frequency will increase too, which is 

due to the increase in SWCNT rigidity. The forecasted 

values of natural frequency from couple stress theory is 

greater than that of classical continuum theory, which is due 

Table 1 Dimensionless natural frequency of SWCNTs with 

different theories 

Ansys (320 

elements) 

Couple stress 

theory (l=h) 

(present study) 

Couple stress 

theory 

(Zeighampour 

2014) 

Classical 

theory 

(Alibeigloo 

2013) 

Natural 

frequency 

0.196 0.198 0.198 0.197 First mode 

0.258 0.271 0.279 0.256 
Second 

mode 

0.292 0.364 0.392 0.277 Third mode 

 

Table 2 Natural frequency 

Ansys 

(320 element) 

Couple stress theory 

(15 cylindrical shell element  (  

Classic 

theory 

Mode 

number 

294 297 312 1 

1310 1323 1339 2 

1474 1492 1548 3 

 

Table 3 Comparison of resonant frequency (THz) 

Couple stress 

theory (FEM  (  

Molecular dynamics method 

(Ansari et al. 2012) 
L/D 

0.2685 0.2476 4.67 

0.1146 0.1079 7.55 

0.0581 0.0562 10.07 

0.0336 0.0312 13.69 

 

 

to the presence of one size parameter in couple stress 

theory. 

 In order to validate the results using this modified 

couple stress cylindrical shell element, the natural 

frequencies of SWCNT using the modified couple stress 

cylindrical shell element were calculated and compared 

with those obtained by other references for simply 

supported boundary conditions in Table 1. The material 

properties of the cylindrical shell were considered to be 

E=1.06 GPa and v=0.3, and cylinder dimensions were 

considered to be R=2.32 nm, L/R=10, h/R=0.02, l=h. It is 

shown that the resonant frequencies calculated have good 

agreement with other references. 

 Table 1 illustrate the natural frequencies obtained from 

couple stress theory using the modified couple stress 

cylindrical shell element are greater than that of classical 

theory and Ansys, which is due to the presence of one size 

parameter in couple stress theory. 

In another case for modal analysis, a nano cylindrical 

shell at radius r=0.05 (mm), length L=0.6 (mm), elasticity 

modulus E=2 ×1011 (MPa), Poisson’s coefficient υ=0.3 and 

density ρ=7800 (Kg/m3) were considered.  

 Table 2 shows the natural frequencies obtained from 

different theories for clamped- free boundary conditions. 

 The resonant frequencies of SWCNTS using this 

cylindrical shell element were compared with the results of 

molecular dynamics method that reported by Ansari et al. 

(2012) at thickness=0.34e-9 and diameter=0.678 nm with 

Clamped-Free boundary conditions. According to the 

results it is obvious that in addition to reducing the number 

of elements required, the use of this type of element also 

increases convergence speed and accuracy.  
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Fig. 4 The effects of length-diameter ratio on natural 

frequency 

 

 

Fig. 4 presents the natural frequencies of SWCNTS 

using this cylindrical shell element obtained from couple 

stress theory are greater than that of molecular dynamics 

method, which is due to the presence of one size parameter 

in couple stress theory. It is shown that increase of length-

diameter ratio results in the decrease of SWCNT natural 

frequency, which is due to reduction in SWCNT rigidity at 

higher length-diameter ratios. 

 

 

4. Conclusions 
 

In this study, by considering the size effect using 

modified couple stress theory and shell model, a modified 

couple stress cylindrical shell element was developed. The 

mass-stiffness matrix for cylindrical shell element is 

developed, and by means of size-dependent finite element 

formulation is extended to more precisely account for 

nanotube vibration. In addition to modified couple stress 

cylindrical shell element, the classical cylindrical shell 

element can also be defined by setting length scale 

parameter to zero in the equations. It is shown that increase 

of length-radius ratio results in the decrease of SWCNT 

natural frequency, which is due to reduction in SWCNT 

rigidity at higher length-radius ratios and by increasing the 

size parameter, the SWCNT’s natural frequency will 

increase too which is due to the increase in SWCNT 

rigidity. Finally, in order to validate the results, the natural 

frequencies of SWCNT using the modified couple stress 

cylindrical shell element were calculated and compared 

with those obtained by other references, and an appropriate 

consistency was demonstrated and it is shown that the use 

of this type of element increases convergence speed and 

accuracy. 
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