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Abstract. In this paper, a new quasi-3D sinusoidal shear deformation theory for functionally graded (FG) plates is proposed.
The theory considers both shear deformation and thickness-stretching influences by a trigonometric distribution of all
displacements within the thickness, and respects the stress-free boundary conditions on the upper and lower faces of the plate
without employing any shear correction coefficient. The advantage of the proposed model is that it posses a smaller number of
variables and governing equations than the existing quasi-3D models, but its results compare well with those of 3D and quasi-
3D theories. This benefit is due to the use of undetermined integral unknowns in the displacement field of the present theory. By
employing the Hamilton principle, equations of motion are obtained in the present formulation. Closed-form solutions for
bending and free vibration problems are determined for simply supported plates. Numerical examples are proposed to check the

accuracy of the developed theory.
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1. Introduction

Theoretical studies of mechanical response of structural
components fabricated from functionally graded material
(FGM) have taken considerable importance among the
investigators. This is because of the huge potential of FGM
in various engineering applications such as aerospace,
mechanical, civil, automotive, electrical, biomedical etc
(Fekrar et al. 2014, Celebi et al. 2016, Kar and Panda 2015,
Bourada et al. 2015, Belkorissat et al. 2015, Barati and
Shahverdi 2016, Beldjelili et al. 2016, Bellifa et al. 2017a,
Bouafia et al. 2017). Although FGMs are basically
employed for high temperature environment, its behavior at
ambient condition is also necessary for its safety and
reliability.

Since the shear deformation impacts are more
considered in FGMSs, shear deformation models such as first
shear deformation theory (FSDT) and higher-order shear
deformation theories (HSDTs) should be employed. The
FSDT (Nguyen et al. 2008, Zhao et al. 2009, Hosseini-
Hashemi et al. 2010, Hosseini-Hashemi ez al. 2011a, Irschik
1993, Nosier and Fallah 2008, Saidi et al. 2011, Yang et al.
2009, Meksi et al. 2015, Mantari and Granados 2015, Hadji
et al. 2016, Bellifa et al. 2016) produces reasonable results,
but needs a shear correction coefficient that is difficult to
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assess correctly due to its dependency on many parameters
incorporating geometry, boundary conditions, and loading
conditions. The HSDTs (Reddy 2000, Ferreira et al. 2005,
Pradyumna and Bandyopadhyay 2008, Hosseini-Hashemi et
al. 2008b, Xiang et al. 2008, Bouderba et al. 2013, Tounsi
et al. 2013, Bessaim et al. 2013, Tounsi et al. 2013, Ait
Amar Meziane et al. 2014, Zidi et al. 2014, Taibi et al.
2015, Ait Yahia et al. 2015, Mahi et al. 2015, Bounouara et
al. 2016, Hebali et al. 2016, Draiche et al. 2016, Bousahla
et al. 2016, Saidi et al. 2016, Javed et al. 2016, Chikh et al.
2017, Bellifa et al. 2017b, Klouche et al. 2017, Hanifi
Hachemi Amar et al. 2017, Sekkal et al. 2017, Menasria et
al. 2017) do not need a shear correction coefficient, but
their governing equations are more complicated than those
of the FSDT. It should be indicated that the thickness
stretching influence (i.e., &=0) is neglected in both the
FSDT and HSDTs by considering a constant deflection
within the thickness of the plate. Although this supposition
is justifiable for moderately thick FG structures, it is not
appropriate for thick FG ones (Qian et al. 2004). The
importance of the thickness stretching influence in FG
plates has been demonstrated in the article presented by
Carrera et al. (2011).

Quasi-3D theories are HSDTs in which the deflection is
presented as a higher-order distribution within the thickness
of the plate, and thus, thickness stretching influence is
incorporated. One can found several quasi-3D models
developed in the literature. For example, Kant and
Swaminathan (2002) developed a quasi-3D theory with all
displacement components expressed as a cubic variation
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within the thickness. The shear deformation theories
proposed by Chen et al. (2009), Talha and Singh (2010),
Reddy (2011), Neves et al. (2013) are based on a cubic
distribution of in-plane displacements and a quadratic
distribution of deflection. Ferreira et al. (2011), Bousahla et
al. (2014), Hamidi et al. (2015) utilized the trigonometric
functions for both in-plane and transverse displacement.
Neves et al. (2012a, b) used the sinusoidal (Neves et al.
2012a) and hyperbolic (Neves ef al. 2012b) functions for in-
plane displacements, while the transverse displacement is
modeled by the polynomial functions. The theories
developed by Hebali et al. (2014), Belabed et al. (2014),
Bennoun ef al. (2016) are based on a hyperbolic variation of
all displacement components. Benahmed et al. (2017)
proposed a novel quasi-3D hyperbolic shear deformation
theory for functionally graded thick rectangular plates on
elastic foundation. Abualnour ef al. (2018) proposed also a
new quasi-3D trigonometric plate theory for free vibration
analysis of advanced composite plates. Recently, a
generalized formulation is proposed by Mantari and Guedes
Soares (2012a) in which many hybrid quasi-3D models with
six variables can be obtained. Although the hybrid quasi-3D
models (Mantari and Guedes Soares, 2012a) contain six
variables, they are still more complicated than the FSDT.
Thus, a simple quasi-3D theory presented in the present
investigation is necessary.

This present work aims to propose a simple quasi-3D
theory with only five variables for bending and dynamic
response of FG plates. The displacement field is presented
based on a sinusoidal variation for all displacements. By
considering integral terms in the in-plane displacements, the
number of variables of the theory is reduced, thus saving
computational time. Based on Hamilton principle, the
equations of motion are obtained and solved for bending
and dynamic problems of a simply supported plate.
Numerical examples are proposed to check the accuracy of
the present quasi-3D theory.

2. Mathematical formulation

As indicated above, the kinematic of the proposed quasi-
3D theory is taken based on the sinusoidal distribution for
all displacement components

U020 =g (1.0 - 252+ { @, (xy) (1)
V(X,Y,z,t) = vy (X, y,t)—z%+ f(2)e, (X y.1) (1b)

W(Xv yv th) = WO (X, yvt) + g(z)¢z (Xv yvt) (IC)

where wuo; vo; Wo, ¢, @y, and ¢@. are six unknown
displacements of the mid-plane of the plate, and f{z) is a
shape function showing the variation of the transverse shear
strains and shear stresses within the thickness. In this work,
the shape function is taken based on the sinusoidal function
given by Touratier (1991) as

f(z):isin(”hzj and g(z):% (2a)

with & is the thickness of the plate. In this work, we
consider that (Bouderba et al. 2016, Bourada et al. 2016,
Boukhari et al. 2016, Besseghier et al. 2017, El-Haina ef al.
2017, Fahsi et al. 2017, Khetir et al. 2017)

0, = I o(x y)ix and o, =je(x, y)dy (2b)

Thus, the kinematic of the proposed can be expressed in
a simpler form as

u(x,y,z,t):uo(x,y,t)—z%mf(z)je(x,y,t)dx (32)
aWO
VXY =Vl ~2 2+ F@fO000dy 3b)

W(X, yv th) = WO (Xv y,t) + g(z)(pz (X, y!t) (30)

The coefficients ki and &, depends on the geometry. It
can be observed that the kinematic in Eq. (3) uses only five
unknowns (uo, vo, wo, 6 andg.). The nonzero strains
associated with the displacement field in Eq. (3) are

e | [ex Ky ks
0 b S
£y = gg +2 kg + f(2)1 k,
7xy 7/xy kxy k:y
. (4)
{7)/2} — g(z){yﬁz}
Vx ¥ x
& =9'@)s]
Where
au, O,
g? OX kP ox?
80 — % kb _ _aZWO
4 X kg B dy?
CON LT I L
&y X oxdy (5a)
¥ k,0
k; = S k,0 ;
ks o v
y klayjedxmz aXjaoly
op
k,|0dy+—%
{y%}: :Jooy+ oy
7xz klj.edX‘Fa& (Sb)
oX
‘9? =0,
and
g'(z):M (5¢)
dz

It can be observed from Eq. (4) that the transverse shear
strains ()., y-) are equal to zero at the upper (z=h/2) and
lower (z=—h/2) surfaces of the plate. A shear correction
coefficient is, hence, not required.

The integrals used in the above equations shall be
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resolved by a Navier type procedure and can be expressed
as follows

o 0%
*Jed_ aay axjedy:Baxay ©
I@dx:A‘aX, f&dy:B'%

where the coefficients A’ and B’ are considered according to
the type of solution employed, in this case via Navier
method. Therefore, 4', B', ki and k; are expressed as follows

1 1
Z’B:_

A=—

2 2
k=atky=p 7
o 1 2 (7)
where o and f are defined in expression (25b).

The constitutive relations of an FG plate can be
expressed as

o] [Cy Cp Cs 0 0 0]fs
UY ClZ C22 C23 O O 0 gy
o.| _|Cs Cu Ca 0 0 lle ®
Ty 0 0 0 Ci 0 0 ||y
- 0 0 0 0 Cg O |[7s
t.] [0 0 0 0 0 Culr

where Cj; are the three-dimensional elastic constants defined
by

c e . @=-vE@®
C1=Cp=Cgy= Q- 20)A+v)’ (9a)
E(2)
Cp, =Ci3=Cy = m' (9b)
E
Cuy =Co5 =Cq = 2(12_23/)' (9¢)

with E(z) and v being Young’s modulus and Poisson’s ratio,
respectively, of an FG plate.

In this work, two homogenization methods are
employed for the calculation of the Young’s modulus E(z)
namely: (1) the exponential distribution, and (2) the Mori-
Tanaka scheme. For the exponential distribution, the
Young’s modulus is given as (Belabed ef al. 2014, Zenkour
et al. 2007)

E(Z) — EOe p(0.5+Z/h) (10)

where Ey=FE, and E~=Fe” present Young’s modulus of the
bottom and top surfaces of the FG plate, respectively, Eo is
Young’s modulus of the homogeneous plate, and p is the
non-negative variable coefficient (power-law exponent)
which controls the material variation within the thickness of
the plate.

For Mori-Tanaka scheme, the Young’s modulus is given
as (Benveniste 1987, Mori and Tanaka 1973)

V,
E(Z):Em+(EC_Em) E 1
1+Vm[E lj +v (11)

C

3-3v

m

where subscripts m and ¢ denote the metal and ceramic
constituents, respectively, G is the shear modulus, and the
volume fractions of the metal phase V), and ceramic phase
V. are defined by

1,z P
V,=1-V, and V, (12)
2 h

The effective density p(z) is determined by employing
the power-law distribution with Voigt’s rule of mixtures as
(Reddy 2000, Larbi Chaht et al. 2015, Ahouel et al. 2016,
Mouffoki et al. 2017, Zidi et al. 2017, Zemri et al. 2015,
Meksi et al. 2018)

p(z):pm+( c_pm)‘/c (13)

Hamilton’s principle is employed herein to deduce the
equations of motion. The principle can be analytically
expressed as

.
0=[(BU+6V -5K)dt (14)
0

where 0U is the variation of strain energy; JV is the
variation of the external work done by external load applied
to the plate; and 6K is the variation of kinetic energy.

The variation of strain energy is expressed explicitly by

ou :J[axﬁex +0,06,+0,06,+7,0 7, +7,07, +sz57xz]dv
Vv
= [[NGE0 NG e 4N SED N, 575, +MESKE 4 MESKS + MESKS, (15)
A
FMESKS +MESKS + M SKS +856 7% +556 7% |dA=0

where A is the area of top surface and the stress resultants
N, M, and S are expressed by

h/2
(Ni,l\/lib,MiS)z j(lz flodz, (i=%Y,%y);
hi2 e h/2 (16)
J-g o, dz and xz’ z _[g sz'Tyz}jZ
-h/2 —h/2

Substituting Eq. (4) into Eq. (8) and the subsequent
results into Eq. (16), the stress resultants can be written in
terms of generalized displacements (uo, vo, wo, 6, ¢-) as

0X
Ny Ay A, 0 By B, 0 B B, 0 Xg 0y
Ny Ay Ay 0 By By 0 Blsz stz 0 Xy 8ﬂﬁl
N oy 0x
P10 0 A 00 B 00 B, 0 2
h
ME By B, 0 Dy D, 0 Dj D 0 Yy _W
My _ B, By 0 Dp Dp 0 Dy Dy 0 Yy &, (17a)
My 1o 0 Bg 0 0 D, 0 0 D 0 I
M; B151 sz 0 D1S1 sz 0 Hf1 H152 0 YlSS w
g0
Mj| |By By 0 Dy Dy 0 Hy Hy 0 Yy oxay
M| |0 0 By 0 0 Dj 0 0 Hy 0 k0
NJ X X 0 Y Y 0 Y3 Yy 0 Zg| k0 ,
(k Ak, B)-0
oxay
[
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, 00 a(pz
SS AS 0 k B
{ )’z}:|: 44 } ay oy (17b)
S, 0 A 00 Op
X S KA —+—%
oX  OX
where
hi/2
(A”,AIJ,B”,D,J,B,j,D,],H”) jCij(l,gz(z),z,zz,f(z),zf z fz(z)}iz (18a)
-hi2
hi2
(X.,,Y.,,Y.J ,Z 12,1(2),9' ()9 (2)C;dz  (18b)
-hi2

The wvariation of the external work is expressed
explicitly by

A

where ¢ is the transverse applied load.
The variation of kinetic energy is given by

5K :j[usuwa\nwaw] p(2)dv

= [{1o[u80, + Vo0V, + o0V, |+ (9, 8 v + Vi, & 5,)

I|u 90Wy , Oy S Uy +V, 00w, +%5V0
x| oy

+J1[(k1A')[uoa5‘9+695 ] (sz')[' L j]

x @ oy oy
iy D5 Wy, Wy 05 Vi

x ox oy o

26656 ¥ 86656
X ox k. B oy oy

Jz[ (aw 250 0965W0j+(k28)(8w 256 aaaawojj
Ko (6

(20)

ox X & o oy oy oy
$.59,)
where dot-superscrlpt convention  indicates  the
differentiation with respect to the time variable #; p(z) is the
mass density expressed by Eq. (13); and (/;, J;, K;) are mass
inertias expressed by

(lo:llvlz): Ier,ZZ)P(Z)dZ (21a)
-h/2
h/2

(Jo.91.35)= |(9.f.2 f)p(z)dz (21b)
-h/2
h/2

(Ko Ky)= [lg2 £2)o(2)0z 210)
-h/2

The equations of motion can be deduced by substituting
the equations for 6U, dV, and JK from Egs. (15), (19), and
(20) into Eq. (14), integrating by parts and collecting the
coefficients of duo, dvo, dwo, 06, and g

oN

suy: N MNoy oy Moy gy 0
OX oy OX OX
N, oN W j

SVy: —2+ y=|0\'/0—|‘?""°+|< B3, %

X ay 1W 2 15

MY _9*MpY o°MY i
pw + oxdy + Y +q=1,W, + 1,
X
" ,0%0
—I2V2wt,+‘]z[k1AaX—2

oW, -

Ay, o
ox oy

+k, B' 9 9]+J0:pz
oy*

*M;, as;, es;,
50: -k M; -k, M; —(k,A+k, B) +k, A +k,B' =
OX OX Eiy

(k Aa;" +k, B'%J [(k A) —+(k B azfj

7
.
+3 (kAaa 1k, BaWOJ

(22)

oy?
858 38y,
5¢Z:—Nz+a—;+ =3, + K, @,

Substituting Eq. (17) into Eq. (22), the equations of
motion of the present quasi-3D sinusoidal shear
deformation theory can be written in terms of displacements
(uo, vo, wo, 0, ¢:) as

Anduuo + Aee dzzuo + (Au + Aee)duvo + X13d1(9z
- Bndmwo - (Blz + ZBss)dlzzwo

s ' ' s s 23a
+ (B2, (k, Ak, BY) d00 + (B, + B K, ) d,0 (233)
= 1,U, — 1, d, v, + J, A'k,d, 4,
Azz dzzvo + Aea d11V0 + (Aiz + Aes) d12u0 + Xzadzwz
- Bzz dzzzwo - (Bu + 2866) d112W0

(23b)

+ (B3, (k, Ak, B)) 0+ (B3k, + B3k, ) d,0
=1V, — 1, d,W, +J, Bk, d,6,
B, AU, + (By, + 2By )dypply + (B, +2Bgg )0V,
+B,, 0,V +Y130,,0, + Y, 0,0,
Dy, Wy —2(Dy, +2D4q ) W, — Dy Uy
+(D5k + D5 K, ) 0,10 +2( D3 (k Ak, BY) 1 (23¢)
+ (szk1 + Djzkz) d,,0+q
=1V + 1, (d i, +d,,)
L Qi + Al )+ 3, (k A df+k, B d,f)+ J, 6,
— (B3, + B3k, )d,u, — (B (k Ak, BY))d 0,
— (B, (k, A+k,B) dyov, — (Bik, + B3k, )d,v,
~kYo, —K, Y50, + (DK, + D3k, )d,w,
2 (Dg, (k Ak, BY))d oo, + (D, + Dk, )W,
“HiK2 O—H3, k2 0-2HS k k0
~((k A+, BR HE )00 (23d)
+ A, (kB dy,0+ A (k, A) d,,0
+ A, (k,B) d,p, + AL (k,A) dyo,
=-J, (k, A'd,ti, +k, B'd,V,)
J, (k AW, +k, B'd,,W, )
— Ky (kA dyf+ (k, B d, 60)
— Xpa0iuy — X dovy —Z 00,
+Y,d, W, +Y,,d,,wW,
+ (A, —Y5) (kB0 + (A - Y. (k, A),,0
+ A, d,, + A due, =3, @, + KW, ,

(23e)
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where dj, dj and dj. are the following differential
operators

o o
di=—%— dg-—9
Y 6Xi 6Xj il 6Xi 6Xj6X|
(24)
ot o ..
dijlm = di =— (I,J,I,m:1,2).

OX{OX jOX| O%py OXj

3. Analytical solutions

In this part, a simply supported rectangular plate is
considered with length a and width b under transverse load
q. Using the Navier solution procedure, the following
expressions of displacements (uo, vo, Wo, 8, @) are taken

Up U,.e'" cos(a x)sin( S y)

Vol w0 | V€'t sin(a x)cos(By)

Wy 1= D D W' sin(a X)sin( 8 y) (25a)
0 mLn=l 1 X, .6 sin(a x)sin( B y)

?, Y,.e"" sin(a x)sin( 4 y)

with

a=mzl/a and g=nz/b (25b)

where j=+—1, (Unin, Viins Wiany Xon, Ymn) are the unknown
maximum amplitudes of displacement, and w is the
frequency of vibration. The transverse load ¢ is also
expressed in the double-Fourier sine series as

0 ©

A%, y)= > > Quy sin( & x)sin( 4 y) (25¢)
m=1 n=1
For the case of a sinusoidally distributed load, the
coefficient O,,=qo indicates the intensity of the load at the
plate center. Substituting Eq. (25) into Eq. (23), the
analytical solutions can be determined by

Si S Ss S S| [my 0 omgom, O7U,] [0
SlZ SZZ SZE SZ4 SZS 0 m22 m23 m24 0 Vmﬂ 0
Ss Sz Su Su Sg|-0'| My My mg My Mg, =10, (26)
SM 524 834 544 S45 m14 m24 m34 m44 0 Xmﬂ 0
_515 st Sas 545 555_ _0 0 My 0 mss_ Ymn 0
where

S, =By + A S = af(A, + Ay
Si3 = —(ZSBM —aﬁ2(812 +ZBGG)
s, =—a(k,B; +k,B,) + aﬂz Bgs (k,A'+k,B")
S5 =—0X 135 Sy :a2A66+ﬂzA22
Sa3 =_azﬂ(B1z+ZBse)_ﬁaBzz’ (27)
S0 = —B(KBy, +k,B5,) +’ Bk, A+k,B")Bg
Sp=—PXy> Sy =a'Dy+ Dy + 20 f*(Dy, +2Dy,)
Sy = 'k,Dj; + (k" +k,f*)Dy, + B, Dy,
—2a2ﬂ2(k1A'+sz')Dgﬁ

Sy = k12H151 + kzszsz + 2k1k2H152

+a’ B (kA +k,B) H

ta’(kA) A+ (k,B) A,
S =a Yy + By,

Sus = KYos +K, Yoy + @’k A AL + 5k, BA,,
Ses = @° Asy + B2A + 2,
my=-al, m;=m,=I,

m, =akAJ, Myuy=-F1l
My, = BK,B' Iy My =1, +1,(a” + 7)
my, =—J,(k,A'a® +k,B'S?)
my, = Kz((klAl)zaz + (sz')Zﬁz)
my =J,

4. Numerical results
4.1 Results for bending investigation

Consider a simply supported FG plate subjected to
sinusoidal loads. The effective Young’s modulus E(z) is
considered to change exponentially within the thickness of
the plate (Eq. (10)). The variation of the exponential
function V(z)=e’®3**" across the thickness of the plate is
demonstrated in Fig. 1 for different values of p. Poisson’s
ratio is supposed to be constant v=0.3. For convenience, the
following dimensionless forms are employed

_ 3 _ 3
u(z):loEOZ1 u[O,E,z],w(z):loEo? U(E,E,Zj
God 2

o (o2 22

- h? ab - h? ab
2)=—0| 52| oy(@=—=0,| 5,72
ox(2) q0a2 O'X(z > ij() q0a2 ay(z 5 J

, ) b (28)
- 10h -
= 7)=— 0,—,z
Txy (Z) qoaz z-xy (0101 Z) 7'-XZ( ) qoa Txz ( 2 j

- h a
Tyz(Z) :@Tyz (E,O,Zj

The non-dimensional displacement and stress are shown
in Tables 1, 2, 3, and 4 for various values of aspect ratio

0.5

0.4 4
0.3
0.2

0.14
—0—p=0

0.04 —0—p=0.1
—A—p=03
-0.1 4 —v—p=05
—0—p=0.7
-0.2 4 —q—p=1

—p—p=15

z/h

-0.3 1

-0.4

05 : .

T T
1.0 15 20

T T T
25v(z) 30 35 40 45

Fig. 1 The exponential variation function V(z) along the
thickness of an EG rectangular plate
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Fig. 2 Variation of dimensionless displacement and stresses
through the thickness of plates (a/h=4, p=0.5)

b/a, thickness ratio a/h, and material parameter p. The
through thickness distributions of the non-dimensional
displacements and stresses are also presented in Fig. 2 for a
thick FG plate with a/h=4 and p=0.5. The computed results
are compared with the exact 3D (Zenkour 2007) and quasi-
3D solutions (Mantari and Guedes Soares 2012a, 2013,
Thai et al. 2014, Zenkour 2007). It should be indicated that
the quasi-3D solutions (Zenkour 2007, Mantari and Guedes
Soares 2013) are based on a trigonometric variation of both
in-plane and transverse displacements, while the quasi-3D
solutions (Mantari and Guedes Soares 2012a) are based on
a cubic variation of in-plane displacements and a parabolic
variation of transverse displacement within the thickness. In
addition, the results of HSDT (Mantari and Guedes Soares
2012b) are also given to demonstrate the importance of
introducing the thickness-stretching influence. The HSDT
solution (Mantari and Guedes Soares 2012b) is based on a
trigonometric variation of in-plane displacements and a
constant transverse displacement across the thickness (i.e.,
thickness-stretching effect is neglected, £.=0).

It can be seen that the computed results are in excellent
agreement with 3D and quasi-3D solutions, particularly
with those given by Mantari and Guedes Soares (2012a,
2013). The proposed quasi-3D theory provides the same
results to those of the quasi-3D sinusoidal theory (Zenkour
2007). It should be noted that the proposed theory is even
simpler than the quasi-3D sinusoidal theory (Zenkour 2007)
because in the present theory only five unknowns are used
while in the theory of Zenkour (2007) we find six
unknowns. Since the proposed quasi-3D theory and other
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quasi-3D theories introduce the thickness-stretching
influence, their results are very close to each other.
Meanwhile, the HSDT (Mantari and Guedes Soares,
2012b), which neglects this effect, provides inaccurate
result and slightly overestimates the transverse
displacement especially for very thick plates (i.e., a/h=2,
see Tables 1, 3). The errors in the HSDT are reduced with
increasing the thickness ratio a/h. In general, the proposed
quasi-3D theory is highly accurate and comparable to 3D
solution even in the case of very thick plates, e.g., a/h=2. It
is worth indicating that the proposed theory consists of five
unknowns, while the number of variables in the HSDT
(Mantari and Guedes Soares 2012b) and other quasi-3D
theories (Mantari and Guedes Soares 2012a, 2013, Zenkour
2007) is five and six, respectively. Consequently, it may be
concluded that the developed quasi-3D theory is not only
more accurate than the HSDT having the same five
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Table 1 Dimensionless deflection W, (0) of plates (a/h=2)

25

b/a Theory P

0.1 0.3 0.5 0.7 1.0 1.5
3D (Zenkour 2007) 1.6377 1.4885 1.3518 1.2269 1.0593 0.8261
Quasi-3D (Zenkour 2007) 1.6294 1.4731 1.3307 1.2010 1.0282 0.7906
6 Quasi-3D® 1.6365 1.4795 1.3364 1.2062 1.0333 0.7939
Quasi-3D (Thai et al. 2014) 1.6367 1.4796 1.3365 1.2063 1.0327 0.7939
Present 1.6294 1.4731 1.3307 1.2010 1.0282 0.7906
HSDT® 1.7347 1.5688 1.4182 1.2815 1.1003 0.8500
3D (Zenkour 2007) 1.6095 1.4601 1.3261 1.2035 1.0391 0.8102
Quasi-3D (Zenkour 2007) 1.5983 1.4449 1.3052 1.1780 1.0086 0.7754
s Quasi-3D® 1.6053 1.4513 1.3109 1.1832 1.0135 0.7787
Quasi-3D (Thai et al. 2014) 1.6054 1.4513 1.3110 1.1833 1.0130 0.7787
Present 1.5983 1.4449 1.3052 1.1780 1.0086 0.7754
HSDT® 1.7025 1.5397 1.3919 1.2576 1.0798 0.8340
3D (Zenkour 2007) 1.5515 1.4101 1.2807 1.1624 1.0035 0.7824
Quasi-3D (Zenkour 2007) 1.5435 1.3954 1.2605 1.1376 0.9740 0.7487
4 Quasi-3D® 1.5504 1.4017 1.2661 1.1427 0.9788 0.7520
Quasi-3D (Thai et al. 2014) 1.5505 1.4018 1.2662 1.1428 0.9783 0.7520
Present 1.5435 1.3954 1.2605 1.1376 0.9740 0.7487
HSDT® 1.6458 1.4885 1.3455 1.2157 1.0437 0.8060
3D (Zenkour 2007) 1.4430 1.3116 1.1913 1.0812 0.9334 0.7275
Quasi-3D (Zenkour 2007) 1.4354 1.2977 1.1722 1.0579 0.9057 0.6962
Quasi-3D® 1.4421 1.3037 1.1776 1.0628 0.9104 0.6993
3 Quasi-3D© 1.4419 1.3035 1.1774 1.0626 0.9096 0.6991
Quasi-3D (Thai et al. 2014) 1.4422 1.3038 1.1777 1.0629 0.9098 0.6993
Present 1.4354 1.2977 1.1722 1.0579 0.9057 0.6962
HSDT® 1.5341 1.3784 1.2540 1.1329 0.9725 0.7506
3D (Zenkour 2007) 1.1945 1.0859 0.9864 0.8952 0.7727 0.6017
Quasi-3D (Zenkour 2007) 1.1880 1.0740 0.9701 0.8755 0.7494 0.5758
Quasi-3D® 1.1941 1.0795 0.9750 0.8799 0.7538 0.5786
2 Quasi-3D© 1.1938 1.0793 0.9748 0.8797 0.7530 0.5785
Quasi-3D (Thai et al. 2014) 1.1942 1.0796 0.9751 0.8800 0.7532 0.5786
Present 1.1880 1.0740 0.9701 0.8755 0.7494 0.5758
HSDT® 1.2776 1.1553 1.0441 0.9431 0.8093 0.6238
3D (Zenkour 2007) 0.5769 0.5247 0.4766 0.4324 0.3727 0.2890
Quasi-3D (Zenkour 2007) 0.5731 0.5181 0.4679 0.4222 0.3612 0.2771
Quasi-3D® 0.5779 0.5224 0.4718 0.4257 0.3649 0.2794
1 Quasi-3D© 0.5776 0.5222 0.4716 0.4255 0.3640 0.2792
Quasi-3D (Thai et al. 2014) 0.5780 0.5225 0.4719 0.4258 0.3642 0.2794
Present 0.5731 0.5181 0.4679 0.4222 0.3612 0.2771
HSDT® 0.6363 0.5752 0.5195 0.4687 0.4018 0.3079

@ Mantari and Guedes Soares (2013); ® Mantari and Guedes Soares (2012a);© Mantari and Guedes Soares

(2012¢)

unknowns, but also comparable with the quasi-3D theories
having more number of variables.

4.2 Results for free vibration investigation

The accuracy of the developed quasi-3D theory is also
checked through the dynamic analysis. Consider a simply
supported Al/ZrO, plate made from a mixture of a metal
(Al) and a ceramic (ZrO2). Young’s modulus and density of
the metal are E,=70 GPa and p,=2702 kg/m?, respectively,

and those of ceramic are E~200 GPa and p.~=5700 kg/m?,
respectively. Poisson’s ratio is considered to be constant
and equal to 0.3. The effective Young’s modulus is
estimated using the power-law distribution with Mori-
Tanaka scheme (Eq. (11)). However, the effective density
p(z) is determined using the power-law variation with
Voigt’s rule of mixtures as shown in Eq. (13).

Table 5 presents the non-dimensional fundamental
frequency @ of square plates for different values of
thickness ratio and gradient index. The non-dimensional
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Table 2 Dimensionless deflection W, (0) of plates (a/h=4)
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b/a Theory P

0.1 0.3 0.5 0.7 1.0 1.5
3D (Zenkour 2007) 1.1714 1.0622 0.9633 0.8738 0.7550 0.5919
Quasi-3D (Zenkour 2007) 1.1668 1.0551 0.9535 0.8611 0.7382 0.5697
6 Quasi-3D® 1.1703 1.0583 0.9563 0.8636 0.7403 0.5713
Quasi-3D (Thai et al. 2014) 1.1703 1.0583 0.9563 0.8636 0.7403 0.5713
Present 1.1668 1.0551 0.9535 0.8611 0.7382 0.5697
HSDT® 1.1920 1.0789 0.9767 0.8844 0.7623 0.5955
3D (Zenkour 2007) 1.1459 1.0391 0.9424 0.8548 0.7386 0.5790
Quasi-3D (Zenkour 2007) 1.1414 1.0321 0.9327 0.8423 0.7221 0.5573
5 Quasi-3D® 1.1448 1.0352 0.9355 0.8448 0.7242 0.5588
Quasi-3D (Thai et al. 2014) 1.1448 1.0352 0.9354 0.8448 0.7242 0.5588
Present 1.1414 1.0321 0.9327 0.8423 0.7221 0.5573
HSDT® 1.1663 1.0556 0.9556 0.8653 0.7458 0.5825
3D (Zenkour 2007) 1.1012 0.9985 0.9056 0.8215 0.7098 0.5564
Quasi-3D (Zenkour 2007) 1.0968 0.9918 0.8963 0.8094 0.6939 0.5355
4 Quasi-3D® 1.1001 0.9948 0.8989 0.8118 0.6959 0.5370
Quasi-3D (Thai et al. 2014) 1.1001 0.9948 0.8989 0.8118 0.6959 0.5370
Present 1.0968 0.9918 0.8963 0.8094 0.6939 0.5355
HSDT® 1.1211 1.0147 0.9186 0.8317 0.7169 0.5599
3D (Zenkour 2007) 1.0134 0.9190 0.8335 0.7561 0.6533 0.5121
Quasi-3D (Zenkour 2007) 1.0094 0.9127 0.8248 0.7449 0.6385 0.4927
Quasi-3D® 1.0124 0.9155 0.8272 0.7470 0.6404 0.4941
3 Quasi-3D© 1.0124 0.9155 0.8272 0.7470 0.6404 0.4941
Quasi-3D (Thai et al. 2014) 1.0124 0.9155 0.8272 0.7470 0.6404 0.4941
Present 1.0094 0.9127 0.8248 0.7449 0.6385 0.4927
HSDT® 1.0325 0.9345 0.8459 0.7659 0.6601 0.5154
3D (Zenkour 2007) 0.8153 0.7395 0.6707 0.6085 0.5257 0.4120
Quasi-3D (Zenkour 2007) 0.8120 0.7343 0.6635 0.5992 0.5136 0.3962
Quasi-3D® 0.8145 0.7365 0.6655 0.6009 0.5151 0.3973
2 Quasi-3D© 0.8145 0.7365 0.6655 0.6009 0.5151 0.3973
Quasi-3D (Thai et al. 2014) 0.8145 0.7365 0.6655 0.6009 0.5151 0.3973
Present 0.8120 0.7343 0.6635 0.5992 0.5136 0.3962
HSDT® 0.8325 0.7534 0.6819 0.6173 0.5319 0.4150
3D (Zenkour 2007) 0.3490 0.3167 0.2875 0.2608 0.2253 0.1805
Quasi-3D (Zenkour 2007) 0.3475 0.3142 0.2839 0.2563 0.2196 0.1692
Quasi-3D® 0.3486 0.3152 0.2848 0.2571 0.2203 0.1697
1 Quasi-3D© 0.3486 0.3152 0.2848 0.2571 0.2203 0.1697
Quasi-3D (Thai et al. 2014) 0.3486 0.3152 0.2848 0.2571 0.2203 0.1697
Present 0.3475 0.3142 0.2839 0.2563 0.2196 0.1692
HSDT® 0.3602 0.3259 0.2949 0.2668 0.2295 0.1785

@ Mantari and Guedes Soares (2013); ® Mantari and Guedes Soares (2012a);® Mantari and Guedes Soares

(2012¢)

frequency is defined by @ =wh./p, /E, . The results of

the proposed quasi-3D sinusoidal shear deformation theory
are compared with the results of the HSDT of Benachour et
al. (2011) and quasi-3D shear deformation theory of
Matsunaga (2008), Neves et al. (2012), Belabed et al.
(2014), Alijani and Amabili (2014) and three dimensional
exact solution of Vel and Batra (2004). It can be observed
from Table 5 that, the results of the proposed quasi-3D
theory are in good agreement with the results of other quasi-
3D theories. The small difference between the present 2D

and quasi-3D shear deformation theory results is due to the
neglecting the thickness stretching effect.

5. Conclusions

A quasi-3D sinusoidal shear deformation theory is
proposed for bending and dynamic analysis of FG plates.
The formulation contains five variables, but considers both
shear deformation and thickness-stretching influences
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Table 3 Dimensionless stress & (/4/2) of plates (a/h=2)

b/a Theory L

0.1 0.3 0.5 0.7 1.0 1.5
3D (Zenkour 2007) 0.2943 0.3101 0.3270 0.3451 0.3746 0.4305
Quasi-3D (Zenkour 2007) 0.2912 0.3118 0.3339 0.3573 0.3955 0.4679
6 Quasi-3D® 0.2763 0.2954 0.3159 0.3378 0.3737 0.4416
Quasi-3D (Thai et al. 2014) 0.2759 0.2951 0.3155 0.3374 0.3730 0.4411
Present 0.2912 0.3118 0.3339 0.3573 0.3955 0.4679
HSDT® 0.2187 0.2345 0.2512 0.2690 0.2980 0.3498
3D (Zenkour 2007) 0.2967 0.3128 0.3299 0.3483 0.3782 0.4350
Quasi-3D (Zenkour 2007) 0.2935 0.3144 0.3366 0.3603 0.3988 0.4719
5 Quasi-3D® 0.2789 0.2983 0.3191 0.3412 0.3776 0.4461
Quasi-3D (Thai et al. 2014) 0.2786 0.2980 0.3187 0.3408 0.3768 0.4456
Present 0.2935 0.3144 0.3366 0.3603 0.3988 0.4719
HSDT® 0.2219 0.2378 0.2548 0.2729 0.3024 0.3549
3D (Zenkour 2007) 0.3008 0.3173 0.3349 0.3537 0.3844 0.4426
Quasi-3D (Zenkour 2007) 0.2974 0.3186 0.3412 0.3653 0.4045 0.4786
4 Quasi-3D® 0.2834 0.3032 0.3243 0.3469 0.3839 0.4537
Quasi-3D (Thai et al. 2014) 0.2830 0.3028 0.3239 0.3465 0.3832 0.4532
Present 0.2974 0.3186 0.3412 0.3653 0.4045 0.4786
HSDT® 0.2272 0.2435 0.2610 0.2795 0.3097 0.3634
3D (Zenkour 2007) 0.3081 0.3252 0.3436 0.3633 0.3953 0.4562
Quasi-3D (Zenkour 2007) 0.3042 0.3261 0.3493 0.3741 0.4143 0.4904
Quasi-3D® 0.2912 0.3118 0.3337 0.3571 0.3954 0.4673
3 Quasi-3D© 0.2920 0.3118 0.3337 0.3582 0.3963 0.4688
Quasi-3D (Thai et al. 2014) 0.2909 0.3127 0.3333 0.3567 0.3947 0.4668
Present 0.3042 0.3261 0.3493 0.3741 0.4143 0.4904
HSDT® 0.2368 0.2539 0.2721 0.2914 0.3230 0.3788
3D (Zenkour 2007) 0.3200 0.3385 0.3583 0.3796 0.4142 0.4799
Quasi-3D (Zenkour 2007) 0.3146 0.3376 0.3620 0.3880 0.4300 0.5092
Quasi-3D® 0.3042 0.3261 0.3495 0.3743 0.4148 0.4905
2 Quasi-3D© 0.3049 0.3269 0.3503 0.3752 0.4155 0.4918
Quasi-3D (Thai et al. 2014) 0.3040 0.3259 0.3492 0.3740 0.4142 0.4901
Present 0.3146 0.3376 0.3620 0.3880 0.4300 0.5092
HSDT® 0.2539 0.2723 0.2919 0.3128 0.3469 0.4064
3D (Zenkour 2007) 0.3103 0.3292 0.3495 0.3713 0.4067 0.4741
Quasi-3D (Zenkour 2007) 0.2955 0.3181 0.3421 0.3675 0.4085 0.4851
Quasi-3D® 0.2924 0.3147 0.3383 0.3633 0.4041 0.4785
1 Quasi-3D© 0.2927 0.3149 0.3385 0.3636 0.4039 0.4790
Quasi-3D (Thai et al. 2014) 0.2924 0.3146 0.3382 0.3632 0.4034 0.4783
Present 0.2955 0.3181 0.3421 0.3675 0.4085 0.4851
HSDT® 0.2943 0.3101 0.3270 0.3451 0.3746 0.4305

@ Mantari and Guedes Soares (2013); ® Mantari and Guedes Soares (2012a);® Mantari and Guedes Soares

(2012¢)

without the need for any shear correction factor. Equations
of motion obtained from the Hamilton principle are
analytically solved for bending and dynamic problems of a
simply supported plate. By employing undetermined
integral unknowns in displacement field, the number of
variables of the theory is diminished and the computational
time is thus reduced. The following main points may be
drawn from the current work:

* The results computed by the present theory are in an
excellent agreement with 3D solutions even for the
caseof very thick plates with a/h=2.

* The proposed quasi-3D theory contains five
unknowns, but provides results comparable with those
computed by the existing quasi-3D models having more
number of variables.

* The thickness-stretching influence is more pronounced
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Table 4 Dimensionless stress & (/4/2) of plates (a/h=4)

p
bla Theory 0.1 03 0.5 0.7 1.0 15

3D (Zenkour 2007) 02181 02321 0.2470 0.2628 0.2886 03373

Quasi-3D (Zenkour 2007) 0.2369 0.2520 0.2683 0.2857 0.3144 0.3699

] Quasi-3D® 0.2127 0.2255 0.2393 0.2544 0.2795 0.3294

Quasi-3D (Thai et al. 2014) 0.2121 0.2249 0.2387 0.2537 0.2787 0.3285

Present 0.2369 0.2520 0.2683 0.2857 0.3144 0.3699

HSDT® 0.2010 0.2149 0.2298 0.2455 0.2711 0.3192

3D (Zenkour 2007) 0.2206 0.2348 0.2498 0.2659 0.2920 03413

Quasi-3D (Zenkour 2007) 0.2391 0.2545 0.2710 0.2886 0.3176 0.3737

5 Quasi-3D® 0.2152 0.2283 0.2424 0.2577 0.2832 0.3337

Quasi-3D (Thai et al. 2014) 0.2147 0.2277 0.2418 0.2570 0.2825 0.3328

Present 0.2391 0.2545 0.2710 0.2886 0.3176 0.3737

HSDT® 0.2037 0.2178 0.2329 0.2488 0.2747 03235

3D (Zenkour 2007) 0.2247 0.2392 0.2546 02710 0.2977 0.3482

Quasi-3D (Zenkour 2007) 0.2429 0.2586 0.2754 0.2934 0.3230 0.3800

A Quasi-3D@ 0.2196 0.2330 0.2475 0.2633 0.2894 0.3411

Quasi-3D (Thai et al. 2014) 0.2190 0.2324 0.2469 0.2626 0.2887 0.3402

Present 0.2429 0.2586 0.2754 0.2934 0.3230 0.3800

HSDT® 0.2082 0.2226 0.2380 0.2544 0.2808 0.3307

3D (Zenkour 2007) 0.2319 0.2469 0.2629 0.2800 0.3077 0.3602

Quasi-3D (Zenkour 2007) 0.2493 0.2656 0.2831 0.3017 0.3323 0.3911

Quasi-3D® 0.2272 0.2414 0.2666 02731 0.3004 0.3540

3 Quasi-3D© 0.2286 0.2429 0.2583 0.2749 0.3024 0.3563

Quasi-3D (Thai et al. 2014) 0.2267 0.2408 0.2560 0.2725 0.2997 0.3532

Present 0.2496 0.2656 0.2831 0.3017 0.3323 0.3911

HSDT® 02162 0.2312 0.2472 0.2642 0.2917 0.3435

3D (Zenkour 2007) 0.2431 0.2591 0.2762 0.2943 03238 03797

Quasi-3D (Zenkour 2007) 0.2588 0.2761 0.2946 03143 0.3464 0.4079

Quasi-3D@ 0.2395 0.2550 02715 0.2894 0.3187 0.3756

2 Quasi-3D© 0.2407 0.2563 0.2730 0.2909 0.3204 0.3776

Quasi-3D (Thai et al. 2014) 0.2391 0.2545 0.2710 0.2888 0.3181 0.3749

Present 0.2588 0.2761 0.2946 03143 0.3464 0.4079

HSDT® 0.2294 0.2454 0.2624 0.2805 0.3097 0.3647

3D (Zenkour 2007) 0.2247 0.2399 0.2562 0.2736 03018 0.3588

Quasi-3D (Zenkour 2007) 0.2346 0.2510 0.2684 0.2870 03171 0.3739

Quasi-3D® 0.2237 0.2391 0.2554 0.2729 0.3014 0.3556

1 Quasi-3D© 0.2244 0.2398 0.2563 0.2738 0.3024 0.3567

Quasi-3D (Thai et al. 2014) 0.2235 0.2398 0.2551 0.2726 0.3010 0.3551

Present 0.2346 0.2510 0.2684 0.2870 0.3171 0.3739

HSDT® 0.2164 0.2316 0.2477 0.2649 0.2927 0.3451

@ Mantari and Guedes Soares (2013); ® Mantari and Guedes Soares (2012a);® Mantari and Guedes Soares
(2012¢)

Table 5 Comparison of non-dimensional fundamental frequencies @

p=0 p=1 a/h=5
Method &z

a/h=+10 a/h=10 a/h=5 a/h=10 ah=10 a/h=5 a/h=+10 a/h=10
Benachour ezal. (2011) =0 4.6220 57600 5.6750  6.1800 63200 5.6225 5.6375  5.6650
Matsunaga (2008) #0 46582 57769 57123 6.1932 63390 5.6599  5.6757  5.7020
Neves et al. (2012) #0 - - 54825 59600  6.1200 54950 55300  5.5625
Belabed e al. (2014) # 46591 57800 54800 59700  6.1200 5.5025 55350  5.5625
Alijani and Amabili 2014)  #0  4.6606  5.7769 54796 59578  6.1040 5.4919 55279  5.5633
Vel and Batra (2004) £  4.6582 57769 54806 59609  6.1076 54923  5.5285  5.5632

Present #0 4.6743 5.7874 5.4921 5.9788 6.1279 55134  5.5456 5.5725
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for thick plates and it needs to be considered in the
modeling.
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