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1. Introduction 
 

Increased awareness of the economic and societal 

effects of aging, deterioration and extreme events on civil 

infrastructure systems have become a major concern and the 

focus of a significant volume of research studies. How to 

most effectively address the integrity, safety, resilience, and 

reliability of infrastructure and to circumvent potential 

catastrophic failure is important to the wellbeing of any 

society. Importantly, advanced signal processing methods 

applied to study and diagnose the damage detection and 

deterioration of structural elements under dynamic loads are 

becoming key methodologies in the structural analysis and 

health monitoring of major structural systems (Chang et al. 

2003). Classical signal processing has been mainly focused 

on the design of time-invariant and space-invariant 

operators and modifying the basic stationary signal 

properties. Concentrating on transients has become the 

strategy for grasping significant information from the 

overwhelming amount of data recorded by sensors (Mallat 

1999). 

Wavelet transform is a tool that separates data or 

functions or operators into different frequency components, 

and studies each component with a specific resolution 

matched to its scale (Daubechies 1992). Compared with 

other signal processing methods that encompass short-time, 
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windowed Fourier transform, wavelet transform has 

demonstrated to be more effective for its precise 

measurement using time-frequency localization technique 

(Daubechies 1990). Wavelet analysis has also attracted 

attention for its ability to analyze rapidly changing transient 

signals (Lee and Yamamoto 1994). Its features prove a great 

success in a widespread range of practical applications 

including the speech processing realm such where the signal 

can be efficiently reconstructed after coding or identified 

for recognition (Farouk 2014). Due to versatile 

characteristics and properties of wavelets, in this paper a 

wavelet based strategy is utilized for damage identification 

in a reinforced concrete beam utilizing its mode shapes and 

modal curvatures. Subsequently, we demonstrate how to 

make fuzzy recognition for the beam under external 

transient load. 

 

 

2. Mode shape based damage identification 
 

A large volume of research has been reported on the 

utilization of wavelet transform for damage detection over 

the past two decades. Some of those studies that have been 

the motivation for the work presented herein are 

summarized in this section.  

A pilot study was conducted using a severely damaged 

square plate under harmonic response (Beheshti-Aval et al. 

2013). Several criteria and cases such as the smallest size 

damage that can be detected, correlation between the crack 

width and the number of sampling points, and the influence 

of the damage thickness on the accuracy of the result were 
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investigated. The vibration mode of a cracked plate was 

transformed with wavelet, and both the location and extent 

of the crack were accurately described and quantitatively 

estimated (Loutridis et al. 2005). A Plexiglas cantilever 

beam and a steel plate with four fixed boundary conditions 

were tested experimentally, and the damage locations were 

estimated using mode shapes as a damage index in a 

wavelet-based analysis (Rucka and Wilde 2006). The 

fundamental vibration mode of a cracked cantilever beam 

was analyzed using continuous wavelet transform and both 

the location and size of the crack were estimated (Douka et 

al. 2003). According to the fundamental vibration mode of a 

double-cracked cantilever beam, the location of the cracks 

was detected by sudden changes in the spatial variation of 

the wavelet transformed response. The relative depth was 

estimated when relating the intensity factor to the wavelet 

coefficients (Loutridis et al. 2004). 

Different types of wavelets were used to analyze the 

first vibration mode of a plate with two all-over part-

through cracks. The sensitivity of the wavelet transform 

method with respect to the type, scale of wavelets, the 

variation in distance between two cracks and relative depth 

of cracks were investigated (Nikravesh et al. 2013). The 

efficiency of the applied wavelets was verified by 

analytically and experimentally determined data using static 

deflection of a beam according to the spatially distributed 

points obtained by processing digital photographs, and thus 

the cracks were localized (Rcka and Wilde 2006). 

The magnitude of the Lipschitz exponent could be used 

as an indicator of damage extent for a fundamental 

vibration of a beam by choosing suitable wavelet (Hong et 

al. 2002). The local perturbations caused by damage can be 

discernible from component wavelets, and this was 

demonstrated by numerically simulated deflection 

responses of a uniform beam containing a short transverse 

crack under both static and dynamic loading conditions. 

Moreover, in the same study smooth analytical crack-tip 

displacement fields were also used for further verification 

(Wang and Deng 1999). 

A distributed two-dimensional (2D) Continuous Wavelet 

Transform (CWT) algorithm was developed which can use 

data from discrete sets of nodes and provide spatially 

continuous variation in the structural response parameters to 

monitor structural degradation. The feasibility of the 

method was demonstrated based on the crack-tip strain field 

of a plate subjected to bi-axial loads, and the deflection 

field of a simply supported plate with defects subjected to 

static or impacting transverse loads (Huang et al. 2009). 

Stationary wavelet transform multi-resolution analysis 
(SWT-MRA) was used to refine the uniform load surface 
(ULS) obtained from the damaged structure and then using 
continuous wavelet transform for localizing the 
discontinuity of improved ULS as a sign of damage location 
(Masoumi and Ashory 2014). Different crack characteristics 
such as length, width, orientation, depth, structural 
boundary conditions, and corresponding wavelet types were 
investigated for beam structures (Quek et al. 2001). 
Curvatures and continuous wavelet transforms (CWTs) of 
differences between a measured mode shape of a damaged 
beam and that from a polynomial that fitted the MS of the 
damaged beam were processed to yield a curvature damage 

 

Fig. 1 Reinforced concrete beam analytical model 

 

 

index (CDI) and a CWT damage index, were respectively 

evaluated (Xu et al. 2014). It was also proven that the local 

maxima of wavelet transform modulus can detect the 

locations of irregular structures and provide numerical 

procedures to compute the corresponding Lipschitz 

exponents (Mallat and Hwang 1992). 

The simulation response data were generated from the 

ASCE structural health monitoring benchmark subjected to 

stochastic wind loading. A wavelet-based approach was 

developed that could accurately identify the damage 

introduced by breaking one or more structural elements 

such as the interstory braces, and determined by the spatial 

distribution pattern of the observed spikes (Hera and Hou 

2004). A wavelet based approach was also applied to 

simulation data generated from structural model consisting 

of multiple breakable springs, where some suffered 

irreversible damage and exceeded their fatigue life 

subjected to a harmonic excitation.  

Therefore, as demonstrated in the summary of several 

research studies utilizing wavelet for damage detection, 

wavelet has shown great promise in damage identification 

and structural health monitoring (Hou and Noori 2000). 

 
2.1 Numerical simulation procedure 
 

In this study, a reinforced concrete beam modeled by 

finite element is considered. The beam is simply supported 

on both sides. The basic geometric dimensions of the beam 

are L=2 m, B=0.15 m, H=0.3 m, and the analytical model 

can be seen in Fig. 1. Different damage conditions are 

simulated according to the corresponding situation. For 

instance, m/8L indicates crack happens at the m
th

 location, 

while n/8H indicates the specific nth crack depth relative to 

the beam height H at length (Tables 1-3). Damage is 

simulated using stiffness reduction. 

 

 

Table 1 Reinforced concrete beam structure 

Material Type 
Elasticity 

Modulus 

Poisson 

Ratio 
Density 

Concrete C30 30GPa 0.2 2550 kg/m3 

Rebar HRB400 200GPa 0.3 7800 kg/m3 

 

Table 2 Damage location (range) 

0/8L 1/8L 2/8L 3/8L 4/8L 

0 m 

-0.025 m 

0.25 m 

-0.275 m 

0.5 m 

-0.525 m 

0.75 m 

-0.775 m 

1 m 

-1.025 m 
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Table 3 Damage depths at the same location 

1/12H 2/12H 3/12H 4/12H 

0.025 m 0.05 m 0.075 m 0.10 m 

 

 

2.2 Force analysis 
 

For a typical beam structure, a crack or a defect in a 

section can be regarded as an abrupt stiffness change in the 

structure. In this section, we derive the bound of Lipschitz 

exponent using the simplest Euler beam theory. 

The rigorous analysis of the Lipschitz exponent may 

have to be carried out by the exact elasticity theory, and we 

employ dense points to naturally simulate the real state of 

damaged beam, satisfying Euler beam theory. When 

applying Euler beam theory, the field variables are 

displacement, rotation, moment and shear force. If one 

denotes by x=v the point of an abrupt thickness change in a 

beam, one can state clearly the continuity condition across 

the discontinuity as 

Displacement:  (  )   (  ) (1) 

Rotation: 
  (  )

  
 

  (  )

  
 (2) 

Moment:   (  )
   (  )

      (  )
   (  )

    (3) 

Shear Force:   (  )
   (  )

      (  )
   (  )

    (4) 

Where the subscripts + and - are used to denote if the 

specific quantity is at the right or the left side of the 

discontinuous point. The magnitude of the Lipschitz 

exponent, derived from wavelet transform, is used as a 

useful and effective indicator of the damage extent when 

appropriate wavelet basis is chosen. 

 

2.3 Wavelet transform 
 

Continuous wavelet transform (CWT) is the process of 

signal shifting and scaling continuously with acquired 

sampled data. Shifting process is a smoothing effect 

through the full length of the sampled data, while scaling 

process can be chosen from the minimum scale to the 

maximum scale, indicating various resolutions. The trade-

off of improved resolution is between increased 

computational time and memory by calculating wavelet 

coefficients, and multiplying each coefficient by the 

appropriately scaled and shifted wavelet, which yields the 

constituent wavelet of the original signal. 

Continuous wavelet transform is defined by 

  (   )  〈     〉  | |    ∫  ( ) (
   

 
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
    

  

  

 (5) 

Where: (  )(   ) is the wavelet coefficient, and a 

and b are continuously varying. Wavelet coefficient 

represents how closely correlated the wavelet is with the 

section of the signal. The higher the coefficient is, the more 

the similarity is. The equivalent frequency domain 

representation is 

  (   )  
√ 

  
∫  ̂( ) ̂(  )̅̅ ̅̅ ̅̅ ̅̅ ̅        

  

  

 (6) 

Inverse continuous wavelet transform (ICWT) holds if 

and only if satisfying the admissibility condition. 

 ( )  
 

  

∫ ∫
 

  
  (   )

  

  

   ( )    
  

  

 (7) 

 

2.4 Time-frequency characteristics 
 

Wavelet transform provides a time-frequency picture, 

with, potentially, good localization properties in both 

“time” and “frequency” variables. Wavelet function  ( ) 

is generally oscillated in the time domain under the 

admissibility condition, and its Fourier transform  ̂( ) is 

a band-pass function, both with good capability in detecting 

local properties. If    and    denote respectively the 

center location and radius of  ( ) , and    and    

denote respectively the center frequency and radius of 

 ̂( ) , the center location and radius of    ( )  are 

      and a    respectively, and the center and radius of 

 ̂  ( ) are      and      respectively. The value of 

   and    are mutually constrained, satisfying 

Heisenberg Uncertainty Principle. The time-frequency 

characteristic spectrum of wavelet analysis is shown in 

Figs. 2 and 4 and Figs. 3 and 5 by two groups of generated 

signals, each integrating four different frequencies and 

corresponding phases with 10% Gaussian noise. (Note: 

PSD-TISA indicates Power Spectral Density-Time Interval 

Squared Amplitude). 

 

 

 

Fig. 2 Generated signal (1) 

 

 

Fig. 3 Generated signal (2) 
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Fig. 4 WT time-frequency spectrum (1) 

 

 

Fig. 5 WT time-frequency spectrum (2) 

 

 

As briefly mentioned above, when the scale a increases, 

the length of    ( ) increases, and the resolution of time 

domain decreases in the time domain, while the center and 

the length of  ̂  ( )  decreases, and the resolution of 

frequency domain accordingly increases in the frequency 

domain. In this case, when the scale is large, the low 

frequency components of the signal are analyzed using high 

frequency domain resolution and low time frequency 

resolution. When the scale a decreases, the length of 

   ( )  decreases, and the resolution of time domain 

increases in the time domain, while the center and the 

length of  ̂  ( )  increases, and the resolution of 

frequency domain accordingly decreases in the frequency 

domain. In this case, when the scale is large, high frequency 

components of the signal are analyzed using low frequency 

domain resolution and high time frequency resolution. 

 

2.5 Multi-resolution analysis 
 

Let the square integrable function  ( )    ( ) be the 

limiting case of progressive approximation. Each 

approximation results from  ( ) smoothed by low-pass 

smoothing function   ( ) , and the smoothing function 

 ( )  is concurrently zooming when approximating.  

Therefore, multi resolution analysis in   ( ) space is the 

process of a progressive decomposition of   ( ) space, 

generating a group of progressively inclusive subspaces. 

                                       (8) 

  scale   , a discrete signal  ( ) can be expressed as 

the sum of a group of orthogonal bases comprised of scaling 

functions at scale   , and all of the wavelets at scale 

  (    ) 

 ( )  ∑           ( )

 

 ∑ ∑        ( )

     

 (9) 

Where:       〈 ( )      ( )〉 ,      〈 ( )     ( )〉 , 

and   and   are the scaling function and wavelet 

function respectively. Scaling function is the equivalent of 

the low pass filter, and assures a smooth shape, while 

wavelet function is the equivalent of high pass filter, and 

retains the details of signal changes. 

 

2.6 Singularity detection 
 

The singularity detection principle has been used for a 

quantification approach for damage identification (Douka et 

al. 2003, Loutridis et al. 2005, Hong et al. 2002, Mallat 

1999) Lipschitz. Index can be defined as a damage index 

regarding the detection of discontinuities of the signal. 

For  ( ), suppose there is a positive integer n,     
   . If       and a polynomial   ( ) of degree n, 

satisfying| ( )    (    )|    (    )
 , thus,  ( ) 

is             at   . In general, the larger       is, the 

smoother the function is and the less singular the function 

will be, which means the degree of damage is small. 

Supposing the Lipschitz index of a bounded function 

 ( ) is   at   , and the wavelet we choose has n+1 order 

vanishing moments, i.e. 

∫    ( )                
  

  

 (10) 

Where:  ( ) is applied to CWT, and the WT satisfies 

the following in the neighborhood of    

  (   )  ∫   
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)  ( )   

  

  

 

 ∫   
 
   (

   

 
)

  

  

[ ( )  ( ( )    (   )   

  (   )      (   ) ]   
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  (   )  ∫      |  (
   

 
)|  |   |   

  

  

 

        ∫ |  ( )|| |   
  

  

         

(12) 

Where:  
   

 
  . 

It follows that, the Lipschitz index of the square 

integrable function  ( ) is   at   ,    , thus, within a 

very small neighborhood, 

  (   )          (13) 

    |  (   )|      | |  (     )       (14) 

Where: K is a coefficient associated with wavelets, and 

a is the scale of WT. The singularity of  ( ) at    is the 

maximum tangent slope of the curve in the logarithmic 

coordinate system, which can be used as an index related to 

Lipschitz index  . If       , the modulus maximum of 

WT increases as the scale increases, and if       , the 
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modulus maximum of WT decreases as the scale increases. 

For a specific Lipschitz index   and scale  , satisfying, 

Undamaged structure:        
      (15) 

Damaged structure:        
      (16) 

The difference between the two formulae can be 

expressed as 

In the rectangular coordinate system: 

             
(17) 

    is associated with scale a and Lipschitz 

index  :        (   ) 
(18) 

In the logarithmic coordinate system: 

    |   |      |  |  (     )       
(19) 

Where:             , indicates the wavelet 

coefficient differences (WCD) between the undamaged 

structure and damaged structure, and         , 

indicates the WT coefficient differences between the 

undamaged structure and damaged structure. As can be seen 

from the Eqs. (13)-(19) above, for a specific scale  ,     

shows an exponential function associated with  , while in 

the logarithmic curve, the tangential slope of the function 

varies with  . In this wavelet application note that analysis 

results in the logarithmic curve may not be satisfactory, and 

for details please see a recent paper by the authors (Zhao 

and Noori).  

We can infer from the exponential curve that, the 

wavelet coefficient difference     approaches zero as the 

scale   increases to    . Simultaneously, the wavelet 

coefficient difference     is zero as the scale   vanishes 

to zero. Therefore, the maximum of the curve exists 

between the two ends of the curve, scale     and 

scale     , where the WT coefficient difference 

converges to zero.  This means that the maximum modulus 

difference of the wavelet coefficients increases as the scale 

increases, and it reaches a maximum value as the scale 

reaches a specific value, and the difference gradually 

decreases as the scale continues to increase. Getting rid of 

the discontinuity effect, the importance of this property 

should be considered. 

 

2.7 Mode shape based damage identification 
 

Using the difference between wavelet coefficients at 

scale 1 to 16 (db2, fundamental mode shapes of undamaged 

and damaged structures), the damages in the reinforced 

concrete beam are identified in Fig. 6, depicting four 

different extents (1/12H to 4/12H damage depth) of damage 

at 3/8L of the beam. 

According to the singularity detection principle as 

derived above, the damage quantification related index 

(wavelet coefficient differences) can be expressed as the 

function of Lipschitz index   and scale  . The maximum 

points of mode shape wavelet transform (db2) coefficient 

differences at scale 1 to 1024 can be linked to a maximum 

curve (MC) in Fig. 7 in the general coordinate system. 

 
(a) 1/12H damaged 

 
(b) 2/12H damaged 

 
(c) 3/12H damaged 

 
(d) 4/12H damaged 

Fig. 6 Wavelet coefficient differences (3/8L, db2) 

 

 

As shown in the maximum curves, wavelet coefficient 

difference increases approximately linearly with the scale 

increasing for each damage case. Instead, the maximum  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

-3

Location (3/8L-1/12H Damaged)

D
if
fe

re
n
c
e
 B

e
tw

e
e
n
 W

T
 C

o
e
ff

ic
ie

n
ts

 (
d
b
2
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-10

-8

-6

-4

-2

0

2

4
x 10

-3

Location (3/8L-2/12H Damaged)

D
if
fe

re
n
c
e
 B

e
tw

e
e
n
 W

T
 C

o
e
ff

ic
ie

n
ts

 (
d
b
2
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

Location (3/8L-3/12H Damaged)

D
if
fe

re
n
c
e
 B

e
tw

e
e
n
 W

T
 C

o
e
ff

ic
ie

n
ts

 (
d
b
2
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Location (3/8L-4/12H Damaged)

D
if
fe

re
n
c
e
 B

e
tw

e
e
n
 W

T
 C

o
e
ff

ic
ie

n
ts

 (
d
b
2
)

807



 

Ying Zhao, Mohammad Noori and Wael A. Altabey 

 

 

 

Fig. 8 Damage quantification index (db2) 

 

 

curve of the mode shape wavelet transform coefficient 

differences can directly describe the Lipschitz related index, 

i.e., the secant slope through the point of origin and the 

maximum point of the maximum curve of the mode shape 

wavelet transform coefficient differences. Thus, the damage 

index based on structural mode shapes (            ) can 

be defined as follow 

             
   

 
|
       {   }

 (20) 

Where:   herein is the extreme scale and the 

corresponding     at scale   is the maximum. Before 

    reaches the maximum of the curve of wavelet 

transform coefficient differences, the curve is 

approximately linear. By this definition, the secant slope 

can be expressed as the quotient of    and  , when     

reaches a maximum peak value. 

 

 

By connecting the maximum of wavelet coefficient 

difference of the mode shape at each specific scale forming 

a maximum curve, we can quantify the damage extents with 

the proposed damage index, i.e., the secant slope through 

the origin and the maximum value of the maximum curve. 

The accuracy of damage identification is the probability 

of the damage range to be identified, within which the 

maximum of the maximum curve is located, and the 

precision error for the accuracy of damage identification 

can be defined as follows 

    
          

     

      (21) 

Where:      is the identification precision estimation 

error,      is the calculated interval for damage 

identification, and       is the targeted interval for damage 

identification, and       is the length of the beam. 

Assuming that for a specific damage case, the maximum 

of wavelet transform coefficient differences is mostly 

distributed within the coordinate interval of damage to be 

identified, thus, we define the adjacent ranges as the 

targeted damage location, and also make error estimation 

correspondingly. Table 4 shows mode shape based damage 

identification results. (Eqs. (20)-(21)). 

Based on the values of damage quantification index 

(damage locations are discretely distributed along the beam) 

as shown in the tables above, 3D fitting curves are plotted 

to intuitively reflect the relative and absolute values of 

damage quantification index in Fig. 8, in which case the 

damage occurs continuously. The distribution of 

corresponding damage localization accuracy is shown in 

Fig. 9. 
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Damage detection for a beam under transient excitation via three different algorithms 

 

Table 4 Damage localization & quantification (db2) 

Damage 

Location 

Damage 

Depth 

Extreme 

Scale 
Maximum 

Damage 

Quantification 

Index 

Damage 

Localization 

Accuracy 

Damage 

Identification 

Error 

0/8L 

1/12H 19 2.23e-04 1.17e-05 95.45% 1.25% 

2/12H 76 0.0038 5.03e-05 25.32% 2.50% 

3/12H 79 0.0132 1.67e-04 24.39% 1.25% 

4/12H 79 0.0367 4.65e-04 21.95% 1.25% 

1/8L 

1/12H 23 0.0067 2.91e-04 88.46% 2.50% 

2/12H 23 0.0207 9.01e-04 88.46% 2.50% 

3/12H 23 0.0419 0.0018 88.46% 2.50% 

4/12H 21 0.0707 0.0034 91.67% 2.50% 

2/8L 

1/12H 40 0.0084 2.10e-04 93.02% 2.50% 

2/12H 37 0.0247 6.68e-04 92.50% 3.75% 

3/12H 36 0.0489 0.0014 92.31% 3.75% 

4/12H 36 0.0815 0.0023 92.31% 3.75% 

3/8L 

1/12H 67 0.0074 1.10e-04 95.71% 2.50% 

2/12H 66 0.0210 3.18e-04 95.65% 3.75% 

3/12H 64 0.0405 6.32e-04 95.52% 3.75% 

4/12H 62 0.0666 0.0011 95.38% 3.75% 

4/8L 

1/12H 45 0.0014 3.15e-05 47.92% 7.50% 

2/12H 46 0.0031 6.85e-05 42.86% 7.50% 

3/12H 47 0.0051 1.08e-04 38.00% 7.50% 

4/12H 48 0.0070 1.47e-04 35.29% 7.50% 

 

 

Fig. 9 Damage localization accuracy (db2) 

 

 

Damage localization accuracy is more effective and 

damage quantification index is more sensitive within the 

central half of the entire damage range to be identified, and 

the values of WCD at a relatively small scale, are 

approximately equivalent to the secant slopes of WCD 

curves due to the linear relationship between WCD and the 

accordingly smaller scale, for different damage cases can be 

used as a roughly relative estimation for the damage 

quantification. 

 

 

3. Modal curvature based damage identification 
 

Since damage is regarded as localized stiffness 

reduction in a beam structure by utilizing modal curvature 

difference, the wavelet based method is found useful in 

detecting and localizing damages in beam models with 

 
(a) 1/12H damaged 

 
(b) 2/12H damaged 

 
(c) 3/12H damaged 

 
(d) 4/12H damaged 

Fig. 10 Wavelet coefficient differences (3/8L, db2) 

 

 

different boundary conditions (Dawari and Vesmawala 

2013). An aluminum beam with a single crack and a carbon 

fiber reinforced polymer composite beam with three cracks 

were experimentally verified for demonstrating the 

effectiveness of this approach (Cao et al. 2016). 
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(a) 1/12H damaged 

 
(b) 2/12H damaged 

 
(c) 3/12H damaged 

 
(d) 4/12H damaged 

Fig. 11 Wavelet coefficient difference envelope (3/8L, db2) 

 

 

To overcome the drawback that the curvature mode 

shape is susceptible to measurement noise, the synergy 

between a wavelet transform and a Teager energy operator 

was explored to improve the identification capability for 

multiple damage in noisy environment. Similar approach 

Table 5 Damage localization & quantification (db2) 

Damage 

Location 

Damage 

Depth 

Extreme 

Scale 
Max. 

Damage 

Quantification 

Index 

Damage 

Localization 

Accuracy 

Damage 

Identification 

Error 

0/8L 

1/12H 6 0.2312 0.0385 96.09% 2.50% 

2/12H 6 0.8486 0.1414 99.22% 2.50% 

3/12H 6 2.3752 0.3959 92.97% 2.50% 

4/12H 4 6.8836 1.7209 100.00% 3.25% 

1/8L 

1/12H 17 0.8452 0.0497 98.63% 5.00% 

2/12H 10 2.7611 0.2761 98.83% 3.25% 

3/12H 8 6.7453 0.8432 99.41% 3.25% 

4/12H 8 13.5891 1.6986 99.61% 3.25% 

2/8L 

1/12H 10 0.7192 0.0719 95.51% 3.25% 

2/12H 10 2.3336 0.2334 98.83% 3.25% 

3/12H 9 5.3641 0.5960 99.61% 3.25% 

4/12H 8 11.0142 1.3768 99.61% 3.25% 

3/8L 

1/12H 10 0.4038 0.0404 93.75% 3.25% 

2/12H 10 1.2026 0.1203 98.83% 3.25% 

3/12H 9 2.7741 0.3082 99.41% 3.25% 

4/12H 8 5.8027 0.7253 99.41% 3.25% 

4/8L 

1/12H 8 0.0970 0.0121 85.35% 6.25% 

2/12H 9 0.1428 0.0159 87.30% 6.25% 

3/12H 11 0.1874 0.0170 87.70% 6.25% 

4/12H 8 0.3378 0.0422 87.11% 6.25% 

 

 

was applied to 2D curvature mode shapes for plates under 

noisy condition as well (Cao et al. 2014). Wavelet analysis 

was also performed in a damaged beam model for 

displacement, rotation and curvature mode shapes, and was 

tested and verified both in static or dynamic displacement 

profiles (Xu and Cao 2015, Prasad et al. 2006). 

 

3.1 Central difference method 
 

Since the modal curvature is relatively more sensitive to 

mode shape of a beam structure, we employ modal 

curvature of the beam as an analytic quantity, which is 

defined by using the second order derivative of the mode 

shape of the beam as follow 

 
 

  ( )
    ( ) 

 
 (   )    ( )   (   )

  
 

(22) 

Where: M is the bending moment, EI is the bending 

stiffness with E the Young’s modulus and I the moment of 

inertia, and W and W” are respectively the mode shape and 

the modal curvature of the beam. W” is approximately 

obtained by the second order central difference of W with 

the same interval h. The occurrence of damage will change 

the EI of the beam, which also causes discontinuity in W”, 

and subsequently, the discontinuity indicated in W” 

manifests the presence of damage to some degree. 

Similar to utilizing mode shapes in wavelet analysis, we 

also demonstrate how to use wavelet coefficient differences 

with respect to the modal curvature of the beam in Fig. 10. 

Herein, we choose wavelet scale 8-12 as an example, and to  
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Damage detection for a beam under transient excitation via three different algorithms 

 

 

 

Fig. 13 Damage quantification index (db2) 

 

 

make it clearer we use the envelope of the wavelet 

coefficient difference regarding modal curvatures in Fig. 

11. 

By calculating the wavelet coefficient differences of 

modal curvature maximum curves for both undamaged and 

damaged structure, we acquire the maximum curve 

variation tendency from wavelet scale 1:512 in Fig. 12. 

Similar to mode shapes, according to different damage 

conditions, we calculate the extreme scale and the 

corresponding maximum, damage quantification index (DI 

modal curvature), damage localization accuracy and 

damage identification error. Table 5 shows curvature mode 

based damage identification results. (Eqs. (21), (23)) 

                  
   

 
|
       {   }

 (23) 

Based on the values of damage quantification index 

 

 

Fig. 14 Damage localization accuracy (db2) 

 

 

(damage locations are discretely distributed along the beam) 

as shown in the tables above, 3D fitting curves are plotted 

to intuitively reflect the relative and absolute values of 

damage quantification index in Fig. 13, in which case the 

damage occurs continuously. The distribution of 

corresponding damage localization accuracy is shown in 

Fig. 14. 

 

3.2 Wavelet based damage identification 
 

The weakness of wavelet based damage identification is 

that, the maximum peak of wavelet coefficient curve might 

drift as the analytical scale increases, thus, giving rise to 

relative inaccuracy of damage localization. Based on the 

characteristics of wavelet transform convolution operation, 

as discussed above, we can identify the detailed location of 

the occurred damage within the beam by choosing the  
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Fig. 12 Maximum curve of wavelet coefficient differences (3/8L, db2) 
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Fig. 15 Damage identification algorithm 

 

 

maximum peak / one of the maximum peaks of the curve (if 

exists), where the wavelet coefficient difference curve 

reaches a maximum. Only when localization of damage is 

within the error limit can we follow up to quantify the 

damage extents based on the maximum curve of the 

differences of wavelet coefficients. The algorithm of mode 

shape based damage identification developed in this work is 

shown in Fig. 15. 

 

 

4. Fuzzy pattern recognition and health state 
evaluation 

 

More recently, several research studies have 

demonstrated promising results for development of an 

effective damage detection by integrating wavelet transform 

and artificial intelligence based methods such as artificial 

neural network. Some of the promising work in this regard 

are summarized below. 

An optimal ANN architecture was recently established 

to detect damage occurrence with good accuracy. This 

algorithm can provide damage quantification with 

reasonable accuracy for the ASCE benchmark structure. In 

this approach, the ANN is for computing the wavelet energy 

of acceleration signals acquired from the structure, where 

the wavelet energy is used as damage feature to classify 

damage states of the structure (Reda 2010). 

An algorithm encompassing artificial neural networks 

coupled with wavelet multi-resolution analysis were also 

utilized for damage detection purposes by processing the 

structural dynamic response monitored by a group of 

accelerometers (Lucero and Taha 2005). Another method 

was introduced to improve pattern recognition and 

ambiguous damage detection for a pre-stressed concrete 

bridge by supplementing intelligent structural health 

monitoring with fuzzy sets Bayesian updating (Taha and 

Lucero 2005). With wavelet transform algorithm filtering 

random noise, ANFIS was found to model the structural 

behavior properly and to be an effective model updating 

technique to quantify damage index accurately when 

acquiring the structural response signal and the excitation 

data (Zhu et al. 2013). A structural damage identification 

method was further proposed by combining 2D wavelet 

transform for changing the structural vibration response 

signal in the 2D space, and the adaptive network-based 

fuzzy inference system (ANFIS) used to describe specific 

damage classification (Escamilla-Ambrosio et al. 2011). 

A damage detection method based on wavelet packet 

was presented by exerting a vertical impact load on the 

surface of an arch bridge. The acceleration response of both 

the undamaged and damaged arch bridges were converted 

to node energy by using wavelet packet transform, 

achieving the effectiveness of damage identification (Guo et 

al. 2012). The dynamic testing of an old steel bridge was 

carried out using accelerometers for the damaged state and 

after partial retrofitting. The comparison was carried out 

using power spectral density, short-time Fourier transform, 

and wavelet packet transform related to the upstream and 

downstream trusses in the bridge (Walia et al. 2015). A 

dynamic fuzzy wavelet neural network approach was 

employed as a nonparametric system identification model to 

predict the structural response for damage evaluation. A 

Bayes factor evaluation metric was proposed to provide 

quantitative measure for assessing the accuracy of system 

identification and the state of global health of structures. 

(Jiang et al. 2007, Jiang et al. 2008) 
 

4.1 Model introduction 
 

In the work presented in this paper a hybrid approach 

for damage pattern recognition based on a fuzzy pattern 

recognition, and an artificial neural network, combined with 

wavelet multi-resolution analysis is introduced. As 

demonstrated in the following section, this approach shows 

superior results compared with those presented earlier for 

the damage detection study of a reinforced concreter beam. 

An external transient load F=200 N is imposed at 3/4L 

along the beam, and we sample the points interspersed 

along the beam during a specific time period. This time 

period is used to acquire as much information as possible of 

the healthy structure, from which we will infer damage 

state, and future events or knowledge will be used to update 

the assessments yielding a reliable recognition of damage. 

Progressively low and high frequency components are 

decomposed from the dynamic signal using wavelet multi-

resolution analysis (WMRA). These observations represent 

extracted features of the dynamic signals and are used to 

calculate an energy index. The energy index determines the 

level of structural health and these different health states 

can be classified using fuzzy pattern recognition. By 

establishing such fuzzy damage states based on the quantity 

of statistics and data updating, the damage pattern 

recognition completed not only can be used for damage 

warning but can also be related to structural reliability and 

safety with high confidence. 

During a time period of healthy structural performance, 

neural network is trained to map the relationship “features” 

of the relatively healthy structural dynamics. Signals 

acquired from the beam are decomposed using wavelet 

multi resolution analysis. ANN is used to learn both the 

approximation and detail parts of the decomposed signal 

from the interspersed locations along the structure. The 

training process is performed during the healthy 

performance and ANN model is built to predict healthy  
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Damage detection for a beam under transient excitation via three different algorithms 

 

 

Fig. 16 WMRA based fuzzy pattern recognition module 

 

 

structural response accordingly. For the unknown structural 

performance, the combined WMRA and ANN will yield 

mainly damage detection module. The schematic 

representation of the proposed damage detection module 

makes it possible to extract features from the signal and 

therefore, recognize the differences between the healthy and 

damaged patterns, and hence, the severity of the damage 

(see Fig. 16). 

The error signal representing the error between the 

predicted and the acquired signal is computed in the 

wavelet domain by subtracting the wavelet coefficients of 

the predicted signal form the corresponding wavelet 

coefficients of the acquired signal at different resolution 

levels. 

             (24) 

    [| ( )  | ( )  | (   )  |      |] (25) 

 𝑁 𝑁  [∑| (𝐽)  ( )|
 
 ∑∑| (𝐽)  ( )|

 

𝐽

     

] (26) 

Where: a is the approximation coefficient, d is the 

details coefficients, and j represents the level of wavelet 

decomposition. k is the number of samples observed during 

the specific time period. The energy index is the sum of all 

the decomposition coefficients of error signal. As Parseval’s 

theorem relates the norm of the wavelet coefficients to the 

energy of the signal. 

The difference between the damaged and healthy 

conditions can thus be established by evaluating WNI that 

represents the energy of the error signal at various operating 

instances. It can also be argued that the larger the difference 

the higher the level of damage in the structure. As the 

WA_NN module is trained to predict the system dynamics 

under healthy conditions, the WNI of the error signal shall 

be relatively constant during healthy operations. Also, the 

presence of new superimposed dynamic components will  

 

Fig. 17 WNI sample (1
st
 Bayesian updating) 

 

 

Fig. 18 WNI sample (2
nd

 Bayesian updating) 

 

 

Fig. 19 WNI sample (3
rd

 Bayesian updating) 

 

 

account for an increase in the difference between the 

predicted and acquired signals indicated by the WNI of the 

error signal. This change in the WNI would suggest an 

occurrence of damage. It has been shown that changes in 

WNI can be linked to damage by observing the probability 

of WNI derived from subsequent healthy instances. 

The followings are the sample collection of WNI for 

both healthy and damaged structure are presented in Tables 

6 and 7. Note that the green background indicates the 1st  
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Table 6 WNI (Healthy structure) 

52.42 51.00 52.05 52.98 51.60 50.15 55.64 52.22 53.96 49.46 

52.32 48.40 52.72 49.56 50.38 59.74 48.87 57.28 50.89 54.34 

50.36 58.48 53.63 51.48 55.63 50.73 58.45 51.85 58.19 49.81 

47.83 57.66 55.17 50.88 54.31 56.16 51.25 58.11 52.26 49.25 

52.32 51.57 46.49 57.52 50.18 51.17 47.37 53.18 54.81 56.16 

50.94 63.97 54.76 51.68 54.20 52.16 52.31 53.74 55.98 61.95 

53.65 48.23 50.61 57.09 57.00 49.63 50.55 52.82 53.32 50.69 

47.77 51.59 56.81 54.99 51.61 49.59 49.93 48.87 56.29 52.31 

51.73 58.56 54.45 61.87 53.42 47.80 56.79 53.97 48.62 50.88 

51.96 54.28 58.57 52.56 54.49 47.59 51.44 49.12 54.11 52.99 

 

Table 7 WNI (Damaged structure) 

68.27 77.92 79.69 69.54 79.90 84.47 88.61 79.06 85.35 73.13 

90.66 89.06 84.16 69.49 96.31 76.01 85.87 79.20 87.31 86.48 

72.29 90.57 74.72 74.55 82.73 70.98 66.38 70.09 84.97 77.67 

76.28 61.91 58.28 74.05 62.63 66.42 62.78 58.35 50.56 62.90 

52.27 68.05 59.89 63.63 60.82 55.89 59.70 57.59 65.02 59.87 

51.44 60.58 63.66 67.01 59.25 51.82 54.07 57.70 64.47 60.60 

96.83 98.19 83.62 106.77 93.18 113.02 78.38 117.63 70.63 114.53 

112.08 64.67 112.21 98.61 80.68 103.42 109.67 69.12 99.04 113.13 

68.34 103.18 102.31 60.24 65.78 107.60 109.57 103.11 110.80 109.53 

120.87 93.03 108.02 110.59 67.49 115.42 107.53 57.70 114.74 100.49 

 

 

Bayesian updating, blue background the 2nd Bayesian 

updating, and pink background represents the 3rd Bayesian 

updating. (see Figs. 17-19). 

 

4.2 Establishing fuzzy health patterns 
 

Four structural health patterns (damage levels) ranging 

from healthy to significantly damage are proposed. The 

non-distinct boundaries between these health patterns and 

the inherent overlap make the system a suitable candidate 

for damage pattern recognition. We begin with the 

“Healthy” pattern, and the structural health membership 

function is defined as a left-shouldered fuzzy set using the 

Gaussian function described as follow 

  ( )  {
   [

 (   𝑁  ̅̅ ̅̅ ̅̅ ̅̅ )

  𝑁  
 ]              𝑁  ̅̅ ̅̅ ̅̅ ̅̅

                                          𝑁  ̅̅ ̅̅ ̅̅ ̅̅

 (27) 

Our universe of discourse is all the WNI values.   ( ) 

represents the membership function of a fuzzy structural 

healthy pattern that has an average observed wavelet energy 

index  𝑁  ̅̅ ̅̅ ̅̅ ̅̅  and a standard deviation of   𝑁  
 . 

Consequently, information from this first fuzzy set will be 

used to develop the proximate fuzzy set “Little Damage”. 

We can locate the lower bound of “Little Damage” with the 

mean of “Healthy”  𝑁  ̅̅ ̅̅ ̅̅ ̅̅ , and we know the next fuzzy set 

will have higher WNI values than the mean for “Healthy”. 

As such, Jeffrey’s prior skews our initial assessment as a 

membership function to higher WNI mean values using 

equation 

Jeffrey’s non-informative prior density:   ( )  
 

√ 
 (28) 

Therefore, for the three damage levels beyond the 

“Healthy” set, this non-informative prior will be used as an 

initial estimate for that particular damage level. 

Subsequently, as information about the structural response 

becomes available, these Jeffrey’s priors will update the 

membership function by mimicking the shape of the 

Poisson density function as the following equation 

Poisson density function:   ( | )  
  

  
   (  ) (29) 

Where:   represents the mean WNI value. 

This algorithm goes a step further in the accommodation 

of uncertainty by using interval data to update the damage 

level membership functions. Therefore, the interval 

likelihood function which can be thought of as the strength 

of the fuzzy set (Eq. (30)) is used to update the membership 

function in a Bayesian sense as the posterior density of Eq. 

(31) 

Interval Likelihood Function (strength of fuzzy set): 

 ([     ]| )  ∑
  

  
   (  )

  

    

 
(30) 

Posterior Density Function (single observation): 

  ([     ]| )  
   (  )∑

      

  
  
    

∑
 (     )

  
  
    

 
(31) 

Posterior Density Function (multiple observation): 

  ([     ]| )  
   (  )∑

  

  
     

  
    

∑
 ( )
  

  
    

 
(32) 

Where: [     ] is     observation interval. 

To summarize, WNI values over a time period will be 

used to develop the fuzzy set, “Healthy.” In succession, the 

lower bounds for the remaining fuzzy sets will use the 

shape of Jeffrey’s non-informative prior in posterior 

updating of a Poisson distribution. Using interval data 

within the bounds set forth by experts, the fuzzy damage 

sets, “Little,” “Moderate,” and “Significant” will be 

developed using Eqs. (30), (31) and (32) (see Figs. 20-23). 

 

 

Table 8 Bayesian updating using interval data 

Observation 

Sample 

WNI (Healthy 

Structure) 

WNI (Damaged Structure)    Value 

Little Moderate Significant Critical 

Initial 

Estimation 

   5.5  

   5.   
40.00 － － － 

1
st
 Bayesian 

Updating 
  5 .94 

     . 7 
66.70 83.92 － － 

2
nd

 Bayesian 

Updating 
  53. 5 

     .95 
61.79 81.78 106.18 － 

3
rd

 Bayesian 

Updating 

Fuzzy Set 

Established 

  5 .98 

     .99 
62.07 79.58 96.66 111.87 

Remark: Mean=0 in theory since ANN generalization 

ability is not good/noise influence, etc. 
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Table 9 K-means cluster analysis 

Damage Level Sample No. Mean Value Minimum Maximum 

Little 19 66.70 50.56 74.72 

Moderate 21 83.92 76.01 96.31 

 

Table 10 Class 1-little damage 

68.27 69.54 73.13 69.49 72.29 74.72 74.55 70.98 66.38 70.09 

61.91 58.28 74.05 62.63 66.42 62.78 58.35 50.56 62.90  

 

Table 11 Class 2-moderate damage 

77.92 79.69 79.90 84.47 88.61 79.06 85.35 90.66 89.06 84.16 

96.31 76.01 85.87 79.20 87.31 86.48 90.57 82.73 84.97 77.67 

76.28          

 

 

Fig. 20 Fuzzy sets (Non info prior) 

 

 

Fig. 21 Fuzzy sets (1
st
 Bayesian updating) 

 

 

Damage recognition is proposed by using fuzzy sets 

which determine different damage levels with wavelet norm 

index (WNI). A vector of WNI that represents consecutive 

measurements of vibration responses will be compared to 

defined damage levels (see Table 8). 

Tables 9-11, Tables 12-15 and Tables 16-20 present the 

WNI (Damaged Structure) of 1
st
, 2

nd
 and 3

rd
 Bayesian 

Updating respectively. 

In the Bayesian updating process, we assume prior 

probability distribution of parameter is constant, thus 

posterior probability distribution is proportional to 

 

Fig. 22 Fuzzy sets (2
nd

 Bayesian updating) 

 

Table 12 K-means cluster analysis 

Damage Level Sample No. Mean Value Minimum Maximum 

Little 35 61.79 50.56 70.98 

Moderate 28 81.78 72.29 93.18 

Significant 7 106.18 96.31 117.63 

 

Table 13 Class 1-little damage 

68.27 69.54 69.49 70.98 66.38 70.09 61.91 58.28 62.63 66.42 

62.78 58.35 50.56 62.90 52.27 68.05 59.89 63.63 60.82 55.89 

59.70 57.59 65.02 59.87 51.44 60.58 63.66 67.01 59.25 51.82 

54.07 57.70 64.47 60.60 70.63      

 

Table 14 Class 2-moderate damage 

77.92 79.69 79.9 84.47 88.61 79.06 85.35 73.13 90.66 89.06 

84.16 76.01 85.87 79.20 87.31 86.48 72.29 90.57 74.72 74.55 

82.73 84.97 77.67 76.28 74.05 83.62 93.18 78.38   

 

Table 15 Class 3-significant damage 

96.31 96.83 98.19 106.77 113.02 117.63 114.53    

 

Table 16 K-means cluster analysis 

Damage Level Sample No. Mean Value Minimum Maximum 

Little 41 62.07 50.56 70.63 

Moderate 25 79.58 70.98 87.31 

Significant 16 96.66 88.61 103.42 

Critical 18 111.87 106.77 120.87 

 

Table 17 Class 1-little damage 

68.27 69.54 69.49 66.38 70.09 61.91 58.28 62.63 66.42 62.78 

58.35 50.56 62.90 52.27 68.05 59.89 63.63 60.82 55.89 59.70 

57.59 65.02 59.87 51.44 60.58 63.66 67.01 59.25 51.82 54.07 

57.70 64.47 60.60 70.63 64.67 69.12 68.34 60.24 65.78 67.49 

57.70          

 

Table 18 Class 2-moderate damage 

77.92 79.69 79.90 84.47 79.06 85.35 73.13 84.16 76.01 85.87 

79.20 87.31 86.48 72.29 74.72 74.55 82.73 70.98 84.97 77.67 

76.28 74.05 83.62 78.38 80.68      

0 20 40 60 80 100 120 140 160
-0.2

0

0.2

0.4

0.6

0.8

1

WNI Obervation Set (Non information Prior)

M
e
m

b
e
rs

h
ip

 F
u
n
c
ti
o
n

 

 

Healthy

Little

0 20 40 60 80 100 120 140 160
-0.2

0

0.2

0.4

0.6

0.8

1

WNI Obervation Set (1st Bayesian Updating)

M
e
m

b
e
rs

h
ip

 F
u
n
c
ti
o
n

 

 

Healthy

Little

Moderate

0 20 40 60 80 100 120 140 160
-0.2

0

0.2

0.4

0.6

0.8

1

WNI Obervation Set (2nd Bayesian Updating)

M
e
m

b
e
rs

h
ip

 F
u
n
c
ti
o
n

 

 

Healthy

Little

Moderate

Significant

815



 

Ying Zhao, Mohammad Noori and Wael A. Altabey 

 

Table 19 Class 3-significant damage 

88.61 90.66 89.06 96.31 90.57 96.83 98.19 93.18 98.61 103.42 

99.04 103.18 102.31 103.11 93.03 100.49     

 

Table 20 Class 4-critical damage 

106.77 113.02 117.63 114.53 112.08 112.21 109.67 113.13 107.60 109.57 

110.80 109.53 120.87 108.02 110.59 115.42 107.53 114.74   

 

 

Fig. 23 Fuzzy sets (3
rd

 Bayesian updating) 

 

 

maximum likelihood function updated by data set, and 

meanwhile different fuzzy patterns (Healthy (H), Little (L), 

Moderate (M), Significant (S), Critical (C)) are established 

using WNI Observation Samples. 

 
4.3 Damage recognition 

 

Suppose in the discourse domain, 40, 42,…, 122 are 

what we select as the WNI observation set. 

For each fuzzy pattern, choose ten discrete WNI values 

as representative observation values and calculate the 

degree of membership, which covers the main domain of 

each fuzzy set. 

WNIH = [40 42 44 46 48 50 52 54 56 58 …]; 

WNIL = [… 50 52 54 56 58 60 62 64 66 68 …]; 

WNIM = [… 68 70 72 74 76 78 80 82 84 86 …]; 

WNIS = [… 86 88 90 92 94 96 98 100 102 104 …]; 

WNIC = [… 104 106 108 110 112 114 116 118 120 

122]; 

Calculate the value of membership function for each 

fuzzy set (FZYH, FZYL, FZYM, FZYS，FZYC) accordingly. 

FZYH = [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1.0000 0.9184 0.7773 0.6579 …]; 

FZYL = [ … 0.3207 0.4649 0.6244 0.7793 0.9061 0.9839 

1.0000 0.9534 0.8543 0.7208 …]; 

FZYM = [ … 0.4199 0.5564 0.6966 0.8253 0.9267 

0.9875 1.0000 0.9636 0.8845 0.7744 …]; 

FZYS = [ … 0.5551 0.6822 0.8013 0.9006 0.9693 1.0000 

0.9898 0.9407 0.8592 0.7547 …]; 

FZYC = [ … 0.7462 0.8490 0.9303 0.9822 1.0000 

1.0000 1.0000 1.0000 1.0000 1.0000]; 

We use WNIT as test sample, which will be input to the 

established fuzzy sets and we will get the membership of 

each sample FZYT. 

Table 21 WNIT similarity metric (Correlation analysis) 

WNIH WNIL WNIM WNIS WNIC 

0.2483 0.6574 0.6736 0.7794 0.7118 

 

 

WNIT=[0 0 0…91.73 97.82 100.73 102.42 102.48 

102.51 102.65 105.22 107.13 107.34 … 0 0 0]; 

FZYT=[0 0 0…0.6341 0.9422 1.0000 1.0000 1.0000 

0.9903 0.9903 0.9435 0.8655 0.8655…0 0 0]; 

From Table 21, we can see that the test sample has a 

great approximation as “Significant Damage”. 

 

 

5. Conclusions 
 

As presented in this paper, wavelet, artificial neural 

networks, and fuzzy theory have been applied as a novel 

approach employed in the intelligent Observe-Orientate-

Decide-Act framework (Bedworth et al. 2000) for damage 

detection analysis of a reinforced concrete beam.  

In recent years, a multi-disciplinary artificial 

intelligence based data fusion community has been 

emerging with promising applications in structural health 

monitoring. Therefore, the purpose of this paper was 

threefold. First a brief review of a series of work in wavelet 

analysis pertaining to structural health monitoring and 

damage detection was presented. Second, based on wavelet 

theory and its outstanding multi-resolution analysis 

property, we established a damage identification method 

utilizing mode shapes and modal curvature of beam 

structures, and further integrating that with a fuzzy pattern 

recognition approach for the damage detection of structures 

under dynamic loads. Most importantly, multiscale analysis 

using wavelet coefficient differences and selecting an 

optimal scale as a measurement of damage indexes based 

on mode shape and curvature mode were conducted. The 

third objective of this work was to demonstrate and 

postulate that the related theory and methodologies used in 

this case study as a novel approach for the damage detection 

in a beam structure can be extended and applied to other 

challenging problems in the field of structural health 

monitoring such as corrosion detection, fatigue analysis, 

reliability evaluation, data and information fusion, and 

decision analysis and control strategies (see Fig. 24). 

 

 

 

Fig. 24 Omnibus model for data fusion 
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