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Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate
under hygro-thermo-mechanical loading using nonlocal strain gradient theory
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Abstract. According to a generalized nonlocal strain gradient theory (NSGT), dynamic modeling and free vibrational analysis
of nanoporous inhomogeneous nanoplates is presented. The present model incorporates two scale coefficients to examine
vibration behavior of nanoplates much accurately. Porosity-dependent material properties of the nanoplate are defined via a
modified power-law function. The nanoplate is resting on a viscoelastic substrate and is subjected to hygro-thermal environment
and in-plane linearly varying mechanical loads. The governing equations and related classical and non-classical boundary
conditions are derived based on Hamilton’s principle. These equations are solved for hinged nanoplates via Galerkin’s method.
Obtained results show the importance of hygro-thermal loading, viscoelastic medium, in-plane bending load, gradient index,
nonlocal parameter, strain gradient parameter and porosities on vibrational characteristics of size-dependent FG nanoplates.
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1. Introduction

Functionally graded materials (FGMs) are a new class
of Composite Structures that is of great interest for
engineering design and manufacture. These kinds of
materials possess desirable properties for specific
applications, particularly for aircrafts, space vehicles,
optical, biomechanical, electronic, chemical, mechanical,
shipbuilding and other engineering structures under stress
concentration, high thermal and residual stresses. In
general, FGMs are both  macroscopically and
microscopically heterogeneous advanced composites which
are made for example from a mixture of ceramics and
metals with continuous composition gradation from pure
ceramic on one surface to full metal on the other. This is
achieved by gradually varying the volume fraction of the
constituent materials. Due to the importance and wide
engineering applications of FGMs, the static, vibrational,
thermo-mechanical and buckling analyses of FGM
structures have been addressed by many investigators
(Jabari et al. 2008, Chikh et al. 2016, Sobhy 2016).

The functionally graded (FG) plates are commonly used
in thermal environments; they can buckle under thermal and
mechanical loads (Bouderba et al. 2016). The classical plate
theory (CPT) is usually used to carry out stability analysis
of thin FG plates. This theory ignores the transverse shear
deformation and assumes that the normal to the middle
plane before deformation remains straight and normal to the
middle surface after deformation. As a result, the classical
plate theory overestimates the buckling load except for truly
thin plates. The first-order shear deformation theory
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(FSDT), including the effects of transverse shear
deformation was employed by some researches to analyze
buckling behavior of moderately thick FG plates. The FSDT
assumes a constant value of transverse shear strain through
the thickness of the plate and requires shear correction
factor to correct for the discrepancy between the actual
transverse shear strain and the constant one. The shear
correction factor, which is crucial to an accurate analysis,
depends on geometric parameters, loadings, material and
boundary conditions of the plate. Also in the FSDT, the
cross-sectional warping is neglected as it is assumed that
the plane sections remain plane (Bourada et al. 2015,
Draiche et al. 2016). To overcome the drawbacks of these
theories (i.e., CPT and FSDT), various higher-order plate
theories have been proposed by assuming higher-order
displacement fields (Mahi et al. 2015, Houari et al. 2016).
The increased applications of advanced composite
materials in nano structural members have stimulated
interest in the accurate prediction of the response
characteristics of functionally graded (FG) nanoplates used
in situations (Lee et al. 2006, Zalesak et al. 2016).
Investigation of mechanical behavior of scale-free plates
has been extensively conducted in the literature based on
classical theories. However, these theories are impotent to
describe the size effects on the nanostructures. This problem
is resolved using the nonlocal elasticity theory of Eringen
(1983) in which small size effects are considered by
introducing an additional scale parameter. According to the
nonlocal stress field theory, the stress state at a given point
depends on the strain states at all points. The nonlocal
elasticity theory has been broadly applied to examine the
static and dynamic behaviors of nanoscale structures
(Berrabah et al. 2013, Zenkour and Abouelregal 2014,
Chakraverti and Behera 2015, Aissani et al. 2015).
However, analysis and modeling of FG nanoplates are
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performed by various researchers (Natarajan et al. 2012,
Daneshmehr and Rajabpoor 2014, Belkorissat et al. 2015,
Ebrahimi and Barati 2016a, Sobhy 2015, Sobhy and
Radwan 2017, Larbi Chaht et al. 2015).

Although nonlocal elasticity theory (NET) of Eringen is
a suitable theory for modeling of nanostructure, it has some
shortcomings due to neglecting stiffness-hardening
mechanism reported in experimental works and strain
gradient elasticity (Lam et al. 2003, Akgdz and Civalek
2015a,b,c, Mirsalehi et al. 2017). By using nonlocal strain
gradient theory (NSGT), Lim et al. (2015) matched the
dispersion curves of nanobeams with those of experimental
data. They concluded that NSGT is more accurate for
modeling and analysis of nanostructures by considering
both stiffness reduction and enhancement effects.
Application of NSGT in modeling and analysis of nanoscale
structures have been examined by some researchers (Li et
al. 2015, 2016, Li and Hu 2015, 2016, 2017, Ebrahimi and
Barati 2017, Barati and Zenkour 2017).

In this paper, nonlocal strain gradient theory is
employed to investigate damping vibration behavior of FG
nanoplates under hygro-thermo-mechanical loading resting
on viscoelastic medium using a refined four-variable plate
theory. The theory introduces two scale parameters
corresponding to nonlocal and strain gradient effects to
capture both stiffness-softening and stiffness-hardening
influences. Hamilton’s principle is employed to obtain the
governing equation of a nonlocal strain gradient FG
nanoplate. These equations are solved via Galerkin’s
method to obtain the natural frequencies.The results show
that vibrational behavior of the nanoplate are significantly
influenced by the nonlocality, strain gradient parameter,
viscoelastic medium, in-plane mechanical load, hygro-
thermal loading, material composition, elastic medium and
geometrical parameters. Obtained frequencies can be used
as benchmark results in analysis of nanoplates modeled by
nonlocal strain gradient theory.

2. Nonlocal strain gradient nanoplate model

The proposed nonlocal strain gradient theory (Ebrahimi
and Barati 2017) takes into account both nonlocal stress
field and the strain gradient effects by introducing two scale
parameters. This theory defines the stress field as

oij = o) = Vo) ()

in which the stresses o and o are corresponding to

strain ¢;; and strain gradient Vej;, respectively as

060) B Iv Cijiao (%, X', €g@) g (X)X’ (2a)

of? =17, Ciaenx.X i) Veia ()0 (2b)

in which Cjyy are the elastic coefficients and ey,a and e;a
capture the nonlocal effects and | captures the strain
gradient effects. When the nonlocal functions og(X,x’,e02)
and ay(x,X',eqa)satisfy the developed conditions by Eringen,
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Fig. 1 Configuration of nanoporous inhomogeneous
nanoplate on elastic substrate

the constitutive relation of nonlocal strain gradient theory
has the following form

[1-(e2)*VZI[L- (eoa)ZVZ]O'ij =Cyll-(ea)*V?]s,
~Ci PI1-(82)° V7 1IV2sy

@)

in which V2 denotes the Laplacian operator. Considering
e;=eq=¢, the general constitutive relation in Eq. (3) becomes

[L-(ea)*V?]oy; =Cy [L—17VZ]s, (4)

To consider hygro-thermal effects Eq. (4) can be written
as (Ebrahimi and Barati 2017)

[1- (ea)*V*]0ij = Cija [1-1°V*1(ey — 14T - iC) (5)

where p; and f; are thermal and moisture expansion
coefficients, respectively.

3. FG plate model based on neutral surface position

Consider a rectangular (axb) porous nanoplate of
uniform thickness h made of FGM as shown in Fig. 1. Also,
different types of mechanical loads are illustrate in Fig. 2. A
FG material can be specified by the variation in the volume
fractions. Due to this variation, neutral axis of FG nanoplate
may not coincide with its mid-surface which leads to
bending-extension coupling. By using neutral axis, this
coupling is eliminated. Based on the modified power-law
model, Young’ modulus E, density p, thermal expansion
coefficient y and moisture expansion coefficient S are
described as

E(z):(chEm)[%Jr%jp+Em7%(Ec+Em) (6a)
o= -pn)[ 242 S0 20 (6b)
7(z>=(n—7m)(§+§jpm—%(mym) (6¢)
p@=-a)( 243 +h L6 (6d)

in which ¢ and m denote the material properties of ceramic
and metal phases, respectively and p is inhomogeneity or



Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading... 685

Ni(y)

Ny(x) Ny(x)

UL

-N 0.5N 0 05N N

E=2 E=1.5 E=1 E=05 =0

Fig. 2 Different cases of in-plane loads

power-law index. Also, « is the porosity volume fraction.
The displacement field according to the four-variable plate
model considering exact position of neutral surface can be
expressed by

b6y 2 =u(x y.t)~(z-2) 2 (7a)
0 (3. 2,0) =v(6y.0) (2= 2) G (1 () -1 (7b)
Uy (% Y. 2,8) = W(K, Y,t) =W, (X, Y, )+ W4 (X, Y. 1) (7¢)
where
 LLE@u e
=T o D O ®)

[, E@d [ e

Also, u and v are in-plane displacements and wy and wy
denote the bending and shear transverse displacement,
respectively. The shape function of transverse shear
deformation is considered as

z 52
4 3h2 ©

According to the present plate theory with four
unknown, the nonzero strains are obtained as

f(z)=—=

ex%‘f(zf )62W° [f(z)fz”‘]az
=N (- f
ay ¢ z)ay “[(2) ay w0
ou  ov o*w, g OPW
L e A
oy Ox
OW,
7y = 9(2) 6;,

Also, the extended Hamilton’s principle express that
t
jo SU -T +V )dt =0 11)

in which t is time; U is strain energy, T is kinetic energy and
V is work done by external forces. The first variation of the
strain energy can be calculated as

5U =j (0o en+olNV e, +o, 58, +0lVe,
00Vt 0(1)6V Yy 10,07, + 0(1)5 V7, (12)
+0,07, +o25Vy, )dV

in which ¢ are the components of the stress tensor and &;; are
the components of the strain tensor. Substituting Egs. (8)
and (10) into Eq.(12) yields

asu aw o5wW 825w, 825w,
oU = N —M b b __ s s
J‘ I [ xx[ 6X aX ] XX axz XX axz
+N [6év @aaw} b O°OW, .o 075w,
"roy oy oy > ey? ”ey? 13
N (85u+65v+8waéw 6w65w) p O°OW, (13)
Y oy X Ox oy oy ox Y oxoy
825w, OSW, o8
_ZMS s s 5 dvd
¥ “oxdy +Q,, EY +Q, o Jdydx
in which
N =" MYdz = N© —yN©
XX _I (O- _Vo-xx) = - XX
h/2
_ @) @)
N, =], (o5 ~Voi)dz =N -VN§

hi2
NW .[h/z(a
M2 =["" 2(0%, ~Vol)dz =MEO ~VMED

(03] —_ N0 1)
~Vo®)dz=NO -VNE

Me=["" £(o% ~Vol)dz =ML -VM3P
Mo =" 2(0%, ~Vol)dz =M -VME® (14a)
s _ (2 0 O\ 5(0

MW—IhIZf(aw ~Vol)dz=M:0 -vMm

—Ihlzz(a ~Vol)dz =M —yM®

Lt
h/2

Q. =["" (o, ~Vol)dz=QP -vQY¥

oy, —Voi)dz=M; " - VM

Qyz _[ h/zg(asz —Vo')(é))dz - Q)(/[z)) _VQﬁ)

where

NG = j (0" )dz, N = j (o )dz

h/2
ME(O) jh/ (b‘o))dz Mlt]n(l)_Jh/ (b(l) )dz
h/2 h/2
M@= [ (o )dz, M@ =] f(o;")dz  (14b)
h/2
Q=" 9@ )iz, Q=" g(c')dz

Q¥ =" g(e\”)dz, Q=" g(o} )dz

in which (ij=xx, xy, yy). The first variation of the work done
by applied forces can be written as
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SV = J-J-(Noa(wb+w)o5(wb+w) Noa(wb+w)65(wb+w)

x Ty
+25N3y%%—kw(wb+ws)5(wb+ws) -
o 2T O ) 000 ) (159)
L0, ) O W)y

oy oy
where N?, N;’, ny are in-plane applied loads; k,, k, and

cqy are Winkler, Pasternak and damping constants. It is
assumed that the nanoplate is subjected to the following in-

plane load while shear loading is zero N? , =0

NP =NT+N"+NY, NP=NT+N"+NJY

15b

"=N@-&d), N§’=77N(1—§f) (%)
b a
where hygro-thermal resultant can be expressed by
= f(z) 7(2) (T —T,)dz
(15¢)
w2 E(2)
N j w1y A€ —Co)dz

in which C=AC+C, and T=AT+T, are uniform moisture and
temperature changes; C, and Ty are reference moisture and
temperature. Also, in-plane mechanical loads are expressed

by
=N@-£3) N =N@-¢-) (15d)

The first variation of the kinetic energy can be written in
the following form

5K:Jajb[| (%ttj% %% 6(Wba:w)65(wgt+ws))
ow, dou  ov 6§Wb ow, 0oV
T et ket ot ot ayet | ayet ot Fi
ou oW, 8W65u+@%+%@
o oxat | oxat ot ot oyt | oyet at
O, O5W, , O, O0W, | oW, DOW,  dw, dow,
2\5xat Oxat | oydt dydt S oxat oxet | dyat dye
4 oW, 00w, oW, 05W, Wy D5W, Oy OWh
OXOt OxOt | X0t Oxat | dyat dyat | ayat dyat

au dow,

) (16)

in which
(IO' (PP PP P Dt |5):

fh//zz(l,z—z*,(z—z*)z, f (17)

(z=2)(F=27),(f =27)))p(2)d

By inserting Egs. (13)-(16) into Eq. (11) and setting the
coefficients of du, dv, ow, and ows to zero, the following
Euler-Lagrange equations can be obtained.

aN 2 3 3
ON, X | ou o°Ww, O W, (18)

ox oy Yotz towot? G oxat?
ON, ON o*v ocw, ow,
% Ty law e e (19)

82Mb asz ath
> +2 Y =

X oxoy oy
o0 (w,

-2 ) LD g E T i+ w) o0

0% (W, +Ww,)
ot?

—(NT +N")V?(w, +w,)

—Cq W+kpvz(wb+w)= |

3,
+|(8u 6V)_IV(6Wb

— +
oxot?  oyot?

)

2Ms M, O°M o
adN!“JrZ a;er pY yJragxz+—(3y”7(NT+NH)V2(Wb+WS)
ox X X o

N () T ) O T )
. 1)
o, T Gy 1, O
&°u B [ﬁwb B o°w
ot ) v v (T

The classical and non-classical boundary conditions can
be obtained in the derivation process when using the
integrations by parts. Thus, we obtain classical boundary
conditions at x=0 or a and y=0 or b as

Specify un, +wvn, or
N,nZ +2nn N, +N,n7 =0
Specify —un, +vn, or

2 2
(N, —=N,)n,n, +N, (n;—n;)=0

Specify W, or

=+, —=+
ox oy ot Zoxot?  * oxot?

[alvl w My du, w, aw, J
(22)

I +1, +1

3)/ ox —h "[2 ayatz 4 8yf7[2

b AN b ~
J{aMyquxy v w, OSWSJny:O

Specify W, or

+ -1, +1,
ox oy Qu ot toxot® | ° oxt?

[aM:x oMy Pu, Pw, | Ow, }n

oM:  OM: 2 8
+ s xy+Qyz | 5\2/ 1, aszJrsaWz y
oy | ox a2 4 ayat ayat

ow,
Specify 8nb or M.nZ+nn M2 +M5n2 =0

o0 20 ., 90
where —>=n,—* :
on ox Yoy’
components of the unit normal vector on the nanoplate
boundaries, respectively and the non-classical boundary

conditions are

ny and n, are the x and y-

2
oW,

Specify or MX® =0
ox?
. O°W,
Specify ayzb or Mp® =0
, (23)
Specify 9 vgs or M:® =0
ox
2
Specify 2 Y or M:® =0

Based on the NSGT, the constitutive relations of



Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading... 687

presented higher order FG nanoplate can be stated as:

@a- HVZ) o

(24)
1 v 0 0 0 Ey— yAT — SAC
v 1 0 0 0 Ey— yAT — SAC
= izz) @-av3lo o @-vy2 0 0 xy
1= 0o 0 a-v)/2 0 5
0o 0 0 @wyz)| Y*
7xz

Integrating Eq. (24) over the plate’s cross-section area,
one can obtain the force-strain and the moment-strain of the
nonlocal refined FG plates can be obtained as follows

ou
Ny St voo0 g:
@a- uv )INy t=AL-AVT)|v 1 0 E" (25)
Ny 0 0 (1-v)/2 oo
oy ox
,"zmsz
MR 1v o0 azx
- uwv?) MY L= p@- av2 v 1 o f’"‘éb
b 00 @v2)| ¥
Y 0%y
oXoy
) (26)
7?7 Ws
1 0 “i
v 2
+E(1— /IVZ) viiooo -8
00 @v2)| ¥
7262Ws
OXoy
_o%wy
2
M3 1 v o0 x
2., 2w,
A-uv)imy t=€e(l- /W v 1 0 —
" 00 @vz)| ¥
Xy 7262%
oxoy
2 (27)
_0%wg
8x2
1 v 0 2
+FQ-AVE) v 1 0 |28
00 vz ¥
. 62ws
Oxoy
0) |2
2.|Q 2 Ox
a-uv ){Qi} Ay =2V )(o 1) y (28)
By
in which
J-hlz E(2) ) gz, Im E(z)(z—z) dz,
hi2] — h/2
hi2 E(Z)(Z z )(f—Z ) 4
J‘h/Z (29)
n/2 E(z)(f—z )2
J-h/Z dz
Ih/z E(z)
hiz 2(1+v)

The governing equations in terms of the displacements
for a NSGT refined four-variable FG nanoplate can be
derived by substituting Eqgs. (25)-(28), into Egs. (18)-(21) as
follows

pa- ayCY VY Loy O
2 ay 2 oOxoy (30)
o’u aw,, o°w,
=Vl Gt h s+l g o) =
av 1 vav+1+v o%u
2 ox* 2 oxoy
- (-, av i, oW, 63w5)7 @D
“ Loyat? | i oyert)
awh o'w, a"wb
-D@A-AV? )( 26 X0y é‘yA)
o*w, a“w
oxtoy? f?y
L oonyy CWw) & v
+(L= Vo) (=1, atz Il(axatz ayatz) 32)
+1 vZ(a M)+ 1,v2 ( My (NT + NPV (w, +w,)
_N;\A(y)a (Wb_:ws)_N;vl(X)a (Wh_;ws)
OX
—(k, +acd)(wb+w)+k v? (w, +w,))=0
o'w, a“wb)
ooy oyt
o'w,  d'w,
+—=2%)
oxoy? oy
e il - uvz)(—loia (Vgtjws’
2OV ( (33)
oot ayat

S(NT NV (4w - N (y)%

32
NV () S W) ("(‘gﬂijs)—(k +

0
w o Ca) (W +We)

+k, V2 (w, +w,)) =0

4. Solution procedure

In this section, Galerkin’s method is implemented to
solve the governing equations of nonlocal strain gradient
based FG nanoplates. Thus, the displacement field can be
calculated as

u=33U, Zally et (34)
v:ZZV 00 2, (y) (35)

12 X (XY, (Y7 (36)
W=Z;§;W Xp ()Y, (y)e"™ (37)

where (Unn, Vinn, Womn, Wemn) are the unknown coefficients;
wy, is the natural frequency and the functions X, and Y,
satisfy the boundary conditions. The classical and non-
classical boundary condition based on the present plate
model are
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(38)

By substituting Egs. (34)-(37) into Egs. (30)-(33), and

using the Galerkin’s method, one obtains

Umn
{{K]+i@,[C]+ @ [M]} Vim | _g
’ ! Wbmn
Wsmn
in which
H Yoy Y, '“Y)dxdy
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b ra bra 8°X
My =Myy = +I()(J-D J‘o (XY, XY, )dxdy — /’(L J'o (TQNYH XYy )dxdy
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C;1=C,=C;=C,=C3=Cy=Cp, = 0
Also, non-dimensional parameters are defined as

4
p=oa [P K, =R

2 N-NZ p - BN
D, ¢ 12(1-v?)

2
_ k,a

>

(57)

Cy = ,

a =Cq ,—pth

Finally, setting the coefficient matrix to zero gives the

natural frequencies. The function X, for simply-supported
boundary conditions is defined by

X (x) = sin(4,,x)

mr (58)

Am =

The function Y, can be obtained by replacing x, m and a,
respectively by y, n and b.

5. Numerical results and discussions

This section is devoted to study the hygro-thermo-
mechanical vibration behavior of nonlocal strain gradient
FG nanoplates on viscoelastic substrate based on a four-

Table 1 Comparison of non-dimensional fundamental
natural frequency @&=oh,/p,/G, of FG nanoplates with

simply-supported boundary conditions (p=>5)

a/b=1 a/b=2

a/h | Natarajan et Natarajan et
al. 2012)  PreSent  oTogppy  Present
0 0.0441 0.043823 0.1055 0.104329
10 1 0.0403 0.04007 0.0863 0.085493
2 0.0374 0.037141 0.0748 0.074174
4 0.0330 0.032806 0.0612 0.060673
0 0.0113 0.011256 0.0279 0.027756
20 1 0.0103 0.010288 0.0229 0.022722
2 0.0096 0.009534 0.0198 0.019704
4 0.0085 0.008418 0.0162 0.016110
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Fig. 3 Variation of dimensionless frequency of perfect
nanoplate versus temperature rise for different nonlocal and
strain gradient parameters (a/h=15, K,,=0, K,=0, AC=0%)

variable shear deformation theory. The model introduces
two scale coefficients related to nonlocal and strain gradient
effects for more accurate analysis of FG nanoplates. The
exactness of obtained vibration frequencies via four-
variable plate model are verified with those of classical
plate theory (CPT) obtained by Natarajan et al. (2012) using
finite element method and the results are tabulated in Table
1. It is noticeable that presented Galerkin’s solution as well
as higher order plate model can accurately predict
vibrational behavior of FG nanoplates. The length of
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nanoplate is assumed as a=10 nm. Also, material properties
of nanoplate (alumina and aluminum) are considered as:

E. =380 GPa, p, = 3800 kg/m3, v, = 0.3,
Y.=7x10"%1/°C, B. =0.001 (wt.% H,0)™*
E, =70GPa, p,, = 2707 kg/m3, v,, = 0.3,
Yim =23 x107°1/°C, B,, = 0.44 (wt.% H,0)™*
In Figs. 3 and 4, the variation of non-dimensional

frequency of a FG nanoplate respectively versus thermal
and mechanical loading is presented for different nonlocal

0.5

04
=
o
=
Q
3
8 03
&
7
2
2
E
el
Z 02
2
(5]
E
[m)
0.1
0.0 :
0 5 10 15 20 25
Damping coefficient (Cq)
(@) a=0
05
0.4
)
Q
=
Qo
=]
8 os
=
122}
12}
=2
=
s}
‘02
2
o
£
@)
0.1
0.0
0 5 10 15 20 25
Damping coefficient (Cq)
(b) ¢=0.1
04
s,
.,
) ——————,,, ..'n,.
9 m.,,,”"’ .,
S 03 "y,
3
T
(5]
=]
vl
vl
2
5 0.2
7
c
o
E
A
0.1

0.0
0

5 10 15 20
Damping coefficient (Cy)
(c) 0=0.2

Fig. 5 Dimensionless frequency of FG nanoplate versus
damping coefficient for various porosity volume fractions
(a/h=10, p=1, AT=10, K,=5, K,=0.5, =0.2, A=0.1)

(u), stain gradient (1) parameters and inhomogeneity index
(p) when a/h=15, K,~0 and K,=0. When u=4=0, the natural
frequencies according to the classical plate model are
rendered. However, at A=0 the frequencies of a nanoplate
based on nonlocal elasticity theory (NET) without strain
gradient effects are obtained. It is observed that increase of
temperature or in-plane mechanical load yields reduction in
both rigidity and natural frequencies of FG nanoplate. At a
certain temperature and in-plane mechanical load, the
natural frequency of nanoplate becomes zero. At this critical
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load, the nanoplate is buckled and doesn’t oscillate. It is
found that natural frequencies and critical buckling loads of
FG nanoplates are significantly influenced by the value of
nonlocal and strain gradient parameters. In fact, nonlocal
parameter introduces a stiffness-softening mechanism,
while strain gradient parameter provides a stiffness-
hardening mechanism. In other words, increasing nonlocal
parameter leads to smaller frequencies and critical
temperatures. In contrast, increasing strain gradient
parameter yields larger frequencies and critical

temperatures. When A<y, obtained frequency is smaller than
that of nonlocal elasticity theory. However, at A> obtained
frequencies becomes larger than nonlocal elasticity theory.
In respite of the significance, such conclusions are not
reported in previous investigations on vibration of
nanoplates. It is suggested that both nonlocal and strain
gradient effects should be considered for more accurate
analysis of nanoplates. Also, all these observations are
affected by the gradation of material properties or
inhomogeneity index (p). In fact, increase of inhomogeneity
index (p) is proportional to higher metal constituent which
leads to smaller frequencies and critical buckling
temperatures.

Effects of hygro-thermal loading and porosities on
damping vibration behavior of nonlocal strain gradient FG
nanoplates at a/h=10, p=1, AT=10, K,=5, Ky=0.5, p=0.2
and 1=0.1 are plotted in Fig. 5. It should be pointed out that
increase of damping coefficient degrades the plate stiffness
and natural frequencies reduce until a critical point in which
the frequencies become zero. At this point, the nanoplate is
critically damped and does not oscillate. It is well-known
that hygro-thermal loadings degrade the plate stiffness an
affect significantly the performance of structures. It is seen
that increase of moisture concentration (AC) leads to
smaller dimensionless frequencies for every value of
temperature change. However, temperature increase leads to
lower frequencies at a fixed moisture concentration rise. So,
natural frequency of a nanoplate decreases significantly
when it is subjected to a severe hygro-thermal environment.
Accordingly, increase of moisture concentration and
temperature leads to smaller critical damping coefficients.
Also, it can be reported that porosities inside the material
lead to smaller frequencies by reducing the stiffness of
nanoplate. Therefore, a porous FG nanoplate has lower
critical damping coefficients than a perfect one. These
observations are consistent with the previous studies on FG
macro scale structures.

Fig. 6 illustrates the variation of dimensionless
frequency of nonlocal strain gradient FG nanoplate with
respect to dimensionless load for different load factors (&)
when p=1, p=0.2, A=0.1. It is clear that in-plane bending
load degrade the plate stiffness and affect significantly the
performance of structures. It is seen that increase of load
factor leads to enlargement of dimensionless frequencies.
So, critical buckling load shifts to the right. This is due to
the fact that with increase of load factor, the resultant of in-
plane load reduces. It is also seen that nanoplates with
higher side-to-thickness ratios have larger vibration
frequencies. Accordingly, a nanoplate with higher side-to-
thickness ratios has higher critical buckling load.

Another study on the aviation of natural frequency of
hygro-thermally affected FG nanoplates with respect to
nonlocal and strain gradient parameters is conducted in Fig.
7 when a/h=10, AT=50, AC=1%, ¢=0.05, C4=0, K,=25 and
K,=10. It is clear that natural frequency of FG nanoplate
reduces with the increase of nonlocal parameter for every
value of strain gradient parameter. But, vibration frequency
increases at a fixed nonlocal parameter and inhomogeneity
index. Due to the lack of a strain gradient parameter in
previous vibration analyses of nanoplates, only the
softening effect due to nonlocality was concluded.
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Therefore, the material instability and heterogeneous
deformation due to strain gradient could not be considered
within the framework of the nonlocal elasticity theory.

6. Conclusions
In this paper, nonlocal strain gradient theory is

employed to investigate damping vibration behavior of FG
nanoplates under hygro-thermo-mechanical loading resting

on viscoelastic medium using a refined four-variable plate
theory. The theory introduces two scale parameters
corresponding to nonlocal and strain gradient effects to
capture both stiffness-softening and stiffness-hardening
influences. Hamilton’s principle is employed to obtain the
governing equation of a nonlocal strain gradient FG
nanoplate. These equations are solved via Galerkin’s
method to obtain the natural frequencies. It is observed that
natural frequency of FG nanoplate reduces with increase of
nonlocal parameter. In contrast, natural frequency increases
with increase of length scale parameter which highlights the
stiffness-hardening effect due to the strain gradients. Also,
increase of damping coefficient degrades the plate stiffness
and natural frequencies reduce until a critical point in which
the frequencies become zero. It is seen that porosities inside
the material provides lower critical damping coefficients.
Also, when the in-plane bending load factor increase, the
resultant of applied load decreases leading to increment in
vibration frequencies. All these observations are affected by
the hygro-thermal loading which decreases the plate
stiffness and decreases the natural frequencies.
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