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1. Introduction 
 

Functionally graded materials (FGMs) are a new class 

of Composite Structures that is of great interest for 

engineering design and manufacture. These kinds of 

materials possess desirable properties for specific 

applications, particularly for aircrafts, space vehicles, 

optical, biomechanical, electronic, chemical, mechanical, 

shipbuilding and other engineering structures under stress 

concentration, high thermal and residual stresses. In 

general, FGMs are both macroscopically and 

microscopically heterogeneous advanced composites which 

are made for example from a mixture of ceramics and 

metals with continuous composition gradation from pure 

ceramic on one surface to full metal on the other. This is 

achieved by gradually varying the volume fraction of the 

constituent materials. Due to the importance and wide 

engineering applications of FGMs, the static, vibrational, 

thermo-mechanical and buckling analyses of FGM 

structures have been addressed by many investigators 

(Jabari et al. 2008, Chikh et al. 2016, Sobhy 2016). 

The functionally graded (FG) plates are commonly used 

in thermal environments; they can buckle under thermal and 

mechanical loads (Bouderba et al. 2016). The classical plate 

theory (CPT) is usually used to carry out stability analysis 

of thin FG plates. This theory ignores the transverse shear 

deformation and assumes that the normal to the middle 

plane before deformation remains straight and normal to the 

middle surface after deformation. As a result, the classical 

plate theory overestimates the buckling load except for truly 

thin plates. The first-order shear deformation theory 
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(FSDT), including the effects of transverse shear 

deformation was employed by some researches to analyze 

buckling behavior of moderately thick FG plates. The FSDT 

assumes a constant value of transverse shear strain through 

the thickness of the plate and requires shear correction 

factor to correct for the discrepancy between the actual 

transverse shear strain and the constant one. The shear 

correction factor, which is crucial to an accurate analysis, 

depends on geometric parameters, loadings, material and 

boundary conditions of the plate. Also in the FSDT, the 

cross-sectional warping is neglected as it is assumed that 

the plane sections remain plane (Bourada et al. 2015, 

Draiche et al. 2016). To overcome the drawbacks of these 

theories (i.e., CPT and FSDT), various higher-order plate 

theories have been proposed by assuming higher-order 

displacement fields (Mahi et al. 2015, Houari et al. 2016). 

The increased applications of advanced composite 

materials in nano structural members have stimulated 

interest in the accurate prediction of the response 

characteristics of functionally graded (FG) nanoplates used 

in situations (Lee et al. 2006, Zalesak et al. 2016). 

Investigation of mechanical behavior of scale-free plates 

has been extensively conducted in the literature based on 

classical theories. However, these theories are impotent to 

describe the size effects on the nanostructures. This problem 

is resolved using the nonlocal elasticity theory of Eringen 

(1983) in which small size effects are considered by 

introducing an additional scale parameter. According to the 

nonlocal stress field theory, the stress state at a given point 

depends on the strain states at all points. The nonlocal 

elasticity theory has been broadly applied to examine the 

static and dynamic behaviors of nanoscale structures 

(Berrabah et al. 2013, Zenkour and Abouelregal 2014, 

Chakraverti and Behera 2015, Aissani et al. 2015). 

However, analysis and modeling of FG nanoplates are 
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performed by various researchers (Natarajan et al. 2012, 

Daneshmehr and Rajabpoor 2014, Belkorissat et al. 2015, 

Ebrahimi and Barati 2016a, Sobhy 2015, Sobhy and 

Radwan 2017, Larbi Chaht et al. 2015).  

Although nonlocal elasticity theory (NET) of Eringen is 

a suitable theory for modeling of nanostructure, it has some 

shortcomings due to neglecting stiffness-hardening 

mechanism reported in experimental works and strain 

gradient elasticity (Lam et al. 2003, Akgöz and Civalek 

2015a,b,c, Mirsalehi et al. 2017). By using nonlocal strain 

gradient theory (NSGT), Lim et al. (2015) matched the 

dispersion curves of nanobeams with those of experimental 

data. They concluded that NSGT is more accurate for 

modeling and analysis of nanostructures by considering 

both stiffness reduction and enhancement effects. 

Application of NSGT in modeling and analysis of nanoscale 

structures have been examined by some researchers (Li et 

al. 2015, 2016, Li and Hu 2015, 2016, 2017, Ebrahimi and 

Barati 2017, Barati and Zenkour 2017). 

In this paper, nonlocal strain gradient theory is 

employed to investigate damping vibration behavior of FG 

nanoplates under hygro-thermo-mechanical loading resting 

on viscoelastic medium using a refined four-variable plate 

theory. The theory introduces two scale parameters 

corresponding to nonlocal and strain gradient effects to 

capture both stiffness-softening and stiffness-hardening 

influences. Hamilton’s principle is employed to obtain the 

governing equation of a nonlocal strain gradient FG 

nanoplate. These equations are solved via Galerkin’s 

method to obtain the natural frequencies.The results show 

that vibrational behavior of the nanoplate are significantly 

influenced by the nonlocality, strain gradient parameter, 

viscoelastic medium, in-plane mechanical load, hygro-

thermal loading, material composition, elastic medium and 

geometrical parameters. Obtained frequencies can be used 

as benchmark results in analysis of nanoplates modeled by 

nonlocal strain gradient theory. 

 

 

2. Nonlocal strain gradient nanoplate model 
 

The proposed nonlocal strain gradient theory (Ebrahimi 

and Barati 2017) takes into account both nonlocal stress 

field and the strain gradient effects by introducing two scale 

parameters. This theory defines the stress field as 

(0) (1)
ij ij ij     (1) 

in which the stresses 
(0)
ij

 
and 

(1)
ij

 
are corresponding to 

strain εij 
and strain gradient εij, respectively as 

(0)
0 0( , , ) ( )ijkl klij

V
x x e a x dxC        (2a) 

(1) 2
1 1( , , ) ( )ijkl klij

V
l x x e a x dxC        (2b) 

in which Cijkl 
are the elastic coefficients and e0a and e1a 

capture the nonlocal effects and l captures the strain 

gradient effects. When the nonlocal functions α0(x,x′,e0a) 

and α1(x,x′,e0a)satisfy the developed conditions by Eringen,  

 

Fig. 1 Configuration of nanoporous inhomogeneous 

nanoplate on elastic substrate 

 

 

the constitutive relation of nonlocal strain gradient theory 

has the following form 

2 2 2 2 2 2
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(3) 

in which 
2

 denotes the Laplacian operator. Considering 

e1=e0=e, the general constitutive relation in Eq. (3) becomes 

2 2 2 2[1 ( ) ] [1 ]ijkl klijea lC       (4) 

To consider hygro-thermal effects Eq. (4) can be written 

as (Ebrahimi and Barati 2017) 

2 2 2 2[1 ( ) ] [1 ]( )ijkl kl ij ijea l T Cij C           (5) 

where γij 
and βij 

are thermal and moisture expansion 

coefficients, respectively. 

 

 

3. FG plate model based on neutral surface position 
 

Consider a rectangular (a×b) porous nanoplate of 

uniform thickness h made of FGM as shown in Fig. 1. Also, 

different types of mechanical loads are illustrate in Fig. 2. A 

FG material can be specified by the variation in the volume 

fractions. Due to this variation, neutral axis of FG nanoplate 

may not coincide with its mid-surface which leads to 

bending-extension coupling. By using neutral axis, this 

coupling is eliminated. Based on the modified power-law 

model, Young’ modulus E, density ρ, thermal expansion 

coefficient γ and moisture expansion coefficient β are 

described as 

1
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(6d) 

in which c and m denote the material properties of ceramic 

and metal phases, respectively and p is inhomogeneity or 
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Fig. 2 Different cases of in-plane loads 

 

 

power-law index. Also, α is the porosity volume fraction. 

The displacement field according to the four-variable plate 

model considering exact position of neutral surface can be 

expressed by 
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Also, u and v are in-plane displacements and wb 
and wd 

denote the bending and shear transverse displacement, 

respectively. The shape function of transverse shear 

deformation is considered as 

3

2

5
( )

4 3

z z
f z

h
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According to the present plate theory with four 

unknown, the nonzero strains are obtained as 
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(10) 

Also, the extended Hamilton’s principle express that 

0
( ) 0

t

U T V dt     
(11) 

in which t is time; U is strain energy, T is kinetic energy and 

V is work done by external forces. The first variation of the 

strain energy can be calculated as 
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 (12) 

in which ζ are the components of the stress tensor and εij are 

the components of the strain tensor. Substituting Eqs. (8) 

and (10) into Eq.(12) yields 
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in which (ij=xx, xy, yy). The first variation of the work done 

by applied forces can be written as 
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(15a) 

where 0 0 0, ,x y xyN N N
 

are in-plane applied loads; kw, kp and 

cd are Winkler, Pasternak and damping constants. It is 

assumed that the nanoplate is subjected to the following in-

plane load while shear loading is zero 
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where hygro-thermal resultant can be expressed by 
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in which C=ΔC+C0 and T=ΔT+T0 are uniform moisture and 

temperature changes; C0 and T0 are reference moisture and 

temperature. Also, in-plane mechanical loads are expressed 

by 
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The first variation of the kinetic energy can be written in 

the following form 
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By inserting Eqs. (13)-(16) into Eq. (11) and setting the 

coefficients of δu, δv, δwb and δws to zero,
 
the following 

Euler-Lagrange equations can be obtained.  
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The classical and non-classical boundary conditions can 

be obtained in the derivation process when using the 

integrations by parts. Thus, we obtain classical boundary 

conditions at x=0 or a and y=0 or b as 
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; nx and ny are the x and y-

components of the unit normal vector on the nanoplate 

boundaries, respectively and the non-classical boundary 
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Based on the NSGT, the constitutive relations of 
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presented higher order FG nanoplate can be stated as: 
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Integrating Eq. (24) over the plate’s cross-section area, 

one can obtain the force-strain and the moment-strain of the 

nonlocal refined FG plates can be obtained as follows 
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The governing equations in terms of the displacements 

for a NSGT refined four-variable FG nanoplate can be 

derived by substituting Eqs. (25)-(28), into Eqs. (18)-(21) as 

follows 
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4. Solution procedure 
 

In this section, Galerkin’s method is implemented to 

solve the governing equations of nonlocal strain gradient 

based FG nanoplates. Thus, the displacement field can be 

calculated as 
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(37) 

where (Umn, Vmn, Wbmn, Wsmn) are the unknown coefficients; 

ωn is the natural frequency and the functions Xm 
and Yn 

satisfy the boundary conditions. The classical and non-

classical boundary condition based on the present plate 

model are 
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By substituting Eqs. (34)-(37) into Eqs. (30)-(33), and 

using the Galerkin’s method, one obtains 
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Also, non-dimensional parameters are defined as 
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Finally, setting the coefficient matrix to zero gives the 

natural frequencies. The function Xm for simply-supported 

boundary conditions is defined by 

X𝑚(𝑥) = sin(𝜆𝑚𝑥) 

𝜆𝑚 =
𝑚𝜋

𝑎
 

(58) 

The function Yn can be obtained by replacing x, m and a, 

respectively by y, n and b. 

 

 

5. Numerical results and discussions 
 

This section is devoted to study the hygro-thermo-

mechanical vibration behavior of nonlocal strain gradient 

FG nanoplates on viscoelastic substrate based on a four- 

 

 

Table 1 Comparison of non-dimensional fundamental 

natural frequency ˆ ω ρ /c ch G   of FG nanoplates with 

simply-supported boundary conditions (p=5) 

a/h µ 

a/b=1  a/b=2  

Natarajan et 

al. (2012) 
present 

Natarajan et 

al. (2012) 
present 

10 

0 0.0441 0.043823 0.1055 0.104329 

1 0.0403 0.04007 0.0863 0.085493 

2 0.0374 0.037141 0.0748 0.074174 

4 0.0330 0.032806 0.0612 0.060673 

20 

0 0.0113 0.011256 0.0279 0.027756 

1 0.0103 0.010288 0.0229 0.022722 

2 0.0096 0.009534 0.0198 0.019704 

4 0.0085 0.008418 0.0162 0.016110 
 

 
(a) p=0.5 

 
(b) p=1 

 
(c) p=5 

Fig. 3 Variation of dimensionless frequency of perfect 

nanoplate versus temperature rise for different nonlocal and 

strain gradient parameters (a/h=15, Kw=0, Kp=0, ΔC=0%) 

 

 

variable shear deformation theory. The model introduces 

two scale coefficients related to nonlocal and strain gradient 

effects for more accurate analysis of FG nanoplates. The 

exactness of obtained vibration frequencies via four-

variable plate model are verified with those of classical 

plate theory (CPT) obtained by Natarajan et al. (2012) using 

finite element method and the results are tabulated in Table 

1. It is noticeable that presented Galerkin’s solution as well 

as higher order plate model can accurately predict 

vibrational behavior of FG nanoplates. The length of 
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(a) p=0.5 

 
(b) p=1 

 
(c) p=2 

Fig. 4 Variation of dimensionless frequency versus 

dimensionless load for different nonlocal and strain gradient 

parameters (a/h=15, ξ=1, Kw=0, Kp=0, ΔT=0) 

 

 

nanoplate is assumed as a=10 nm. Also, material properties 

of nanoplate (alumina and aluminum) are considered as: 

𝐸𝑐 = 380 GPa, 𝜌𝑐 = 3800 𝑘𝑔/𝑚3, 𝑣𝑐 = 0.3, 

 𝛾𝑐 = 7 × 10−6 1/ 𝐶0 , 𝛽𝑐 = 0.001 (𝑤𝑡. % 𝐻2𝑜)−1 

𝐸𝑚 = 70 GPa, 𝜌𝑚 = 2707 𝑘𝑔/𝑚3, 𝑣𝑚 = 0.3, 

𝛾𝑚 = 23 × 10−6 1/ 𝐶0 , 𝛽𝑚 = 0.44 (𝑤𝑡. % 𝐻2𝑜)−1 

In Figs. 3 and 4, the variation of non-dimensional 

frequency of a FG nanoplate respectively versus thermal 

and mechanical loading is presented for different nonlocal 

 
(a) α=0 

 
(b) α=0.1 

 
(c) α=0.2 

Fig. 5 Dimensionless frequency of FG nanoplate versus 

damping coefficient for various porosity volume fractions 

(a/h=10, p=1, ΔT=10, Kw=5, Kp=0.5, µ=0.2, λ=0.1) 

 

 

 (µ), stain gradient (λ) parameters and inhomogeneity index 

(p) when a/h=15, Kw=0 and Kp=0. When µ=λ=0, the natural 

frequencies according to the classical plate model are 

rendered. However, at λ=0 the frequencies of a nanoplate 

based on nonlocal elasticity theory (NET) without strain 

gradient effects are obtained. It is observed that increase of 

temperature or in-plane mechanical load yields reduction in 

both rigidity and natural frequencies of FG nanoplate. At a 

certain temperature and in-plane mechanical load, the 

natural frequency of nanoplate becomes zero. At this critical 
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(a) a/h=8 

 
(b) a/h=10 

 
(c) a/h=15 

Fig. 6 Variation of dimensionless frequency versus 

dimensionless load for different load factors and side-to-

thickness ratios (p=1, ΔT=0, ΔC=0%, Cd=0, µ=0.2, λ=0.1) 

 

 

load, the nanoplate is buckled and doesn’t oscillate. It is 

found that natural frequencies and critical buckling loads of 

FG nanoplates are significantly influenced by the value of 

nonlocal and strain gradient parameters. In fact, nonlocal 

parameter introduces a stiffness-softening mechanism, 

while strain gradient parameter provides a stiffness-

hardening mechanism. In other words, increasing nonlocal 

parameter leads to smaller frequencies and critical 

temperatures. In contrast, increasing strain gradient 

parameter yields larger frequencies and critical 

temperatures. When λ<µ , obtained frequency is smaller than 

that of nonlocal elasticity theory. However, at λ>µ  obtained 

frequencies becomes larger than nonlocal elasticity theory. 

In respite of the significance, such conclusions are not 

reported in previous investigations on vibration of 

nanoplates. It is suggested that both nonlocal and strain 

gradient effects should be considered for more accurate 

analysis of nanoplates. Also, all these observations are 

affected by the gradation of material properties or 

inhomogeneity index (p). In fact, increase of inhomogeneity 

index (p) is proportional to higher metal constituent which 

leads to smaller frequencies and critical buckling 

temperatures.  

Effects of hygro-thermal loading and porosities on 

damping vibration behavior of nonlocal strain gradient FG 

nanoplates at a/h=10, p=1, ΔT=10, Kw=5, Kp=0.5, µ=0.2 

and λ=0.1 are plotted in Fig. 5. It should be pointed out that 

increase of damping coefficient degrades the plate stiffness 

and natural frequencies reduce until a critical point in which 

the frequencies become zero. At this point, the nanoplate is 

critically damped and does not oscillate. It is well-known 

that hygro-thermal loadings degrade the plate stiffness an 

affect significantly the performance of structures. It is seen 

that increase of moisture concentration (ΔC) leads to 

smaller dimensionless frequencies for every value of 

temperature change. However, temperature increase leads to 

lower frequencies at a fixed moisture concentration rise. So, 

natural frequency of a nanoplate decreases significantly 

when it is subjected to a severe hygro-thermal environment. 

Accordingly, increase of moisture concentration and 

temperature leads to smaller critical damping coefficients. 

Also, it can be reported that porosities inside the material 

lead to smaller frequencies by reducing the stiffness of 

nanoplate. Therefore, a porous FG nanoplate has lower 

critical damping coefficients than a perfect one. These 

observations are consistent with the previous studies on FG 

macro scale structures. 

Fig. 6 illustrates the variation of dimensionless 

frequency of nonlocal strain gradient FG nanoplate with 

respect to dimensionless load for different load factors (ξ) 

when p=1, µ=0.2, λ=0.1. It is clear that in-plane bending 

load degrade the plate stiffness and affect significantly the 

performance of structures. It is seen that increase of load 

factor leads to enlargement of dimensionless frequencies. 

So, critical buckling load shifts to the right. This is due to 

the fact that with increase of load factor, the resultant of in-

plane load reduces. It is also seen that nanoplates with 

higher side-to-thickness ratios have larger vibration 

frequencies. Accordingly, a nanoplate with higher side-to-

thickness ratios has higher critical buckling load. 
Another study on the aviation of natural frequency of 

hygro-thermally affected FG nanoplates with respect to 
nonlocal and strain gradient parameters is conducted in Fig. 
7 when a/h=10, ΔT=50, ΔC=1%, α=0.05, Cd=0, Kw=25 and 
Kp=10. It is clear that natural frequency of FG nanoplate 
reduces with the increase of nonlocal parameter for every 
value of strain gradient parameter. But, vibration frequency 
increases at a fixed nonlocal parameter and inhomogeneity 
index. Due to the lack of a strain gradient parameter in 
previous vibration analyses of nanoplates, only the 
softening effect due to nonlocality was concluded. 
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(a) p=5 

 
(b) p=1 

 
(c) p=5 

Fig. 7 Variation of dimensionless frequency of porous 

nanoplates versus nonlocal parameter for different strain 

gradient parameters (a/h=10, ΔT=50, ΔC=1%, Kw=25, 

Kp=10) 

 

 

Therefore, the material instability and heterogeneous 

deformation due to strain gradient could not be considered 

within the framework of the nonlocal elasticity theory. 

 

 

6. Conclusions 
 

In this paper, nonlocal strain gradient theory is 

employed to investigate damping vibration behavior of FG 

nanoplates under hygro-thermo-mechanical loading resting 

on viscoelastic medium using a refined four-variable plate 

theory. The theory introduces two scale parameters 

corresponding to nonlocal and strain gradient effects to 

capture both stiffness-softening and stiffness-hardening 

influences. Hamilton’s principle is employed to obtain the 

governing equation of a nonlocal strain gradient FG 

nanoplate. These equations are solved via Galerkin’s 

method to obtain the natural frequencies. It is observed that 

natural frequency of FG nanoplate reduces with increase of 

nonlocal parameter. In contrast, natural frequency increases 

with increase of length scale parameter which highlights the 

stiffness-hardening effect due to the strain gradients. Also, 

increase of damping coefficient degrades the plate stiffness 

and natural frequencies reduce until a critical point in which 

the frequencies become zero. It is seen that porosities inside 

the material provides lower critical damping coefficients. 

Also, when the in-plane bending load factor increase, the 

resultant of applied load decreases leading to increment in 

vibration frequencies. All these observations are affected by 

the hygro-thermal loading which decreases the plate 

stiffness and decreases the natural frequencies.  
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