
Structural Engineering and Mechanics, Vol. 64, No. 4 (2017) 437-447 

DOI: https://doi.org/10.12989/sem.2017.64.4.437                                                                 437 

Copyright ©  2017 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction 
 

In buildings, composite floors allow faster construction, 

due to the reduction in the extent of propping systems. 

When the concrete slab and the steel section are structurally 

connected by shear connectors, the slab provides lateral 

stability to the steel sections in the sagging moment regions. 

More importantly, the concrete slab and steel section act 

integrally resulting in higher structural efficiency. The 

composite beams help in reducing the structural depth of 

the floors and thus enable to increase the number of floors 

for the given height of a building, resulting in overall 

economy. Composite beams which are continuous, allow 

still lower depth of section, lesser deflections, etc. and 

hence are used in multi-storey composite frames (along 

with steel columns) in buildings. The use of higher grade 

steel and concrete results in slender and sleeker sections 

(Costa-Neves et al. 2014), for which serviceability 
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conditions, are likely to become the governing criteria. 

At service load, the hogging moments at the ends of the 

composite beams, cause tensile stresses in the concrete slab. 

Consequently, the moments result in concrete cracking 

when the stresses exceed the tensile strength of the 

concrete. This concrete cracking leads to reduction in the 

stiffness of the beam and thereby causes moment 

redistribution along the length of the beams and also to the 

adjacent beams and columns. The redistribution may result 

in an increase in curvature and deflections. The structural 

behavior, on account of the concrete cracking, was observed 

to be considerably nonlinear even at low stress levels by He 

et al. (2010). Hence, appropriate evaluation of inelastic 

design quantities (moments and deflections) in the 

composite frames at service load, considering concrete 

cracking, is desirable. 

The inelastic analysis of composite structures can be 

performed by the finite element, iterative or incremental 

methods/procedures (Baskar et al. 2002, Chaudhary et al. 

2007, Zona et al. 2008, Varshney et al. 2013, Ramnavas et 

al. 2017). However, in the preliminary stages, a numbers of 

trials may be required to decide the spans and sizes of the 

members of the composite frames. The conventional 

methods/procedures (finite element, iterative or 

incremental) may not be appropriate in such case due to 

requirement of a large number of degrees of freedom and 

consequently large computational effort. For example, the 

required number of degrees of freedom for the inelastic 

analysis of even a single storey two bay composite frame by  
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Abstract.  Explicit expressions for rapid prediction of inelastic design quantities (considering cracking of concrete) from 

corresponding elastic quantities, are presented for multi-storey composite frames (with steel columns and steel-concrete 

composite beams) subjected to service load. These expressions have been developed from weights and biases of the trained 

neural networks considering concrete stress, relative stiffness of beams and columns including effects of cracking in the floors 

below and above. Large amount of data sets required for training of neural networks have been generated using an analytical-

numerical procedure developed by the authors. The neural networks have been developed for moments and deflections, for first 

floor, intermediate floors (second floor to ante-penultimate floor), penultimate floor and topmost floor. In the case of moments, 

expressions have been proposed for exterior end of exterior beam, interior end of exterior beam and both interior ends of interior 

beams, for each type of floor with a total of twelve expressions. Similarly, in the case of deflections, expressions have been 

proposed for exterior beam and interior beam of each type of floor with a total of eight expressions. The proposed expressions 

have been verified by comparison of the results with those obtained from the analytical-numerical procedure. This methodology 

helps to obtain the inelastic design quantities from the elastic quantities with simple calculations and thus would be very useful 

in preliminary design. 
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Fig. 1 (a) A Typical cross-section of a composite beam and 

(b) a typical segment of a composite frame with loads, 

bending moments, and possible cracked and uncracked 

regions 

 

 

finite element method may be about 1500 (Chaudhary et 

al.2007). Therefore, in the preliminary stages of design, 

there is a need for some simple and rapid 

tools/methodologies. Such tools/methodologies should 

predict the design quantities which are acceptable for 

practical engineering purposes. The use of neural networks 

is one of the tools/methodologies which is very commonly 

employed in engineering analysis and design. 

Neural networks have been widely used for prediction 

of various structural parameters (Maru and Nagpal 2004, 

Chandak et al. 2008, Panigrahi et al. 2008, Kim and Kim 

2009, Kim et al. 2009, Khan 2012, Mohammadhassani et 

al. 2013a, b, c, Bigdeli et al. 2014, Kaloop et al. 2014, 

Kaloop and Kim 2014, Mallela and Upadhyay 2016, 

Bigdeli and Kim 2017). In the last decade, some researchers 

have proposed neural networks for predicting moments and 

deflections in composite beams/bridges (Pendharkar et al. 

2010, Tadesse et al. 2012, Gupta et al. 2015) and frames 

(Pendharkar et al. 2011, 2015) subjected to service load. 

The support/joint moments were considered in the input 

parameters for assessing the inelastic redistribution.    

In the present work, neural networks have been 

proposed for predicting the inelastic moments and 

deflections in composite frames, considering cracking in 

concrete slab at service load. The neural networks take into 

account: (i) the stresses produced by combined effects of 

axial forces and moments at the ends of the beams; (ii) the 

relative stiffness of beams and columns; and (iii) the 

relevant parameters from the floor below and the floor 

above. The proposed neural networks can be useful in the 

preliminary stages of design. It may be noted that the axial 

force in the members (beams and columns) and the relative 

stiffnesses of beams and columns at the joints, which may 

be significant in composite frames, were neglected in the 

earlier studies by Pendharkar et al. (2011, 2015). 

The large number of data sets required for training the 

neural networks have been generated using a 

computationally efficient analytical-numerical procedure 

(Ramnavas et al. 2017), which takes into account the 

cracking in concrete slab and the effects of tension 

stiffening (Sahamitmongkol and Kishi 2011, Dai et al. 

2012, Patel et al. 2016). Explicit expressions have been 

developed using the weights, biases and activated function 

of the trained neural networks. The proposed expressions 

have been verified by comparison of the results with that 

obtained from the analytical-numerical procedure 

developed by the authors (Ramnavas et al. 2017). This 

methodology helps to obtain the inelastic design quantities 

from the elastic quantities with simple calculations and thus 

would be very useful in preliminary design. 

 

 

2. Input and output parameters for neural networks 
 

The composite frames consist of composite beams (see 

Fig 1(a)) and steel columns. Fig. 1(b) shows a typical 

segment of a composite frame with loads, bending 

moments, and possible cracked and uncracked regions of 

concrete cracking in composite beams. The moment at any 

cross-section along the length of a beam can be obtained 

from the support moments and the loading on the span. 

Also, mid span deflection is the most important 

serviceability aspect in respect of the deformation of a 

beam. Hence, the support moments and the mid span 

deflections are the two inelastic design quantities, for which 

prediction models have been presented using the neural 

networks. These inelastic design quantities can be obtained 

from the non-dimensional ratios defined below which are 

taken as the output parameters in the neural networks. 

1. Inelastic moment ratios,    ,
, ,

l l
l e i
i j

i j i j
R M M  and 

   ,
, ,

r r
r e i
i j

i j i j
R M M . Here,  

,

l
e

i j
M  and  

,

r
e

i j
M  are 

the elastic moments and  
,

l
i

i j
M  and  

,

r
i

i j
M are the 

inelastic moments; the superscript represents the ends of 

the beam, left l or right t as the case may be; and the first 

and second subscripts represent the bay i and the floor j, 

respectively; and 

2. Inelastic deflection ratio,  , , , ,
d i e cr
i j i j i j i jd d d   . 

Here, ,
e
i jd  is the mid-span deflection obtained from the 

elastic analysis and ,
i
i jd  is the mid-span deflection 

obtained from the inelastic analysis, i.e., after  

w 

Cracked region 

Uncracked region Beam bending moment 

Column bending moment 

w 
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Fig. 2 Input parameters and their positions in a typical floor 

and bay of a frame for the output parameter ,
l
i jR  

 

 

considering the cracking. Further, ,
cr
i jd  is the mid-span 

deflection of a beam with same cross-sectional 

properties, with fixed supports at both the ends and 

carrying a uniformly distributed load just sufficient to 

cause cracking of concrete. The subscripts i and j, refer 

to the bay i and the floor j. 

The input parameters which significantly affect the 

required output parameters are to be identified. It has been 

reported that for establishing the inelastic effects in moment 

at a joint in a frame, the cracking at either sides of the joint 

and the adjacent joints on either sides are to be considered 

(Pendharkar et al. 2011). Similarly, the inelastic effects in 

the mid-span deflection of a span, are affected by the 

cracking in the beams at both the supports of the span 

(Pendharkar et al. 2015). Additionally, the cracking at 

adjacent supports is also considered for mid-span 

deflections, similar to the case of moments as above. 

It may be noted that the cracking of concrete depends on 

the moments as well as axial force in case of composite 

frames. Compressive axial force reduces the net tensile 

stress and tensile axial force increases the net tensile stress. 

Hence, the net tensile stresses which depend on the 

moments as well as axial forces are to be included in the 

input parameters instead of the moments only in the case of 

frames. In addition, the relative stiffness of beams and 

columns at the joints, significantly affects the moment 

redistribution in frames, when the concrete cracks in the 

slab. Apart from the above, the parameters from the lower 

and upper floors also affect the inelastic effects in a beam in 

frames (apart from the parameters from the same bay and 

the adjacent bays of the same floor), as reported by 

Ramnavas (2016). Hence, it is required to consider the 

relative stiffnesses of beams and columns at the joints and 

also the parameters from lower and upper floors, as the 

input parameters for accurate prediction of inelastic 

quantities in composite frames. The input parameters 

considered in the present study are shown in Figs. 2, 3 and 4. 

 
Fig. 3 Input parameters and their positions in a typical floor 

and bay of a frame for the output parameter ,
r
i jR  

 

 
Fig. 4 Input parameters and their positions in a typical floor 

and bay of a frame for the output parameter
,
d
i j  

 

 

1. Inertia ratio, Icr/Iun which is the ratio of Icr, the 

transformed second moment of area of the cracked 

section (consisting of steel section and reinforcement 

only), about its neutral axis and Iun, the transformed 

second moment of area of the uncracked composite 

section about its neutral axis; 

2. Stiffness ratio, Si+1/Si which is the ratio of the stiffness 

of beams S=EcIun/L in the adjacent bays (bay i and bay 

i+1) where Sis the stiffness of beam, Ec is the modulus 

of elasticity of concrete, Iun is the transformed second 

moment of area of the uncracked composite section 

about its neutral axis and L is the span of the beam 

(subscripts indicate the bay numbers); 

3. Load ratio, wi/wi+1 which is the ratio of load w on the 

beams in the adjacent bays (bay i and bay i+1) 

(subscripts indicate the bay numbers); 
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Table 1 Input and output parameters for neural networks 

P
ar

a-

m
et

er
s 

No. 

Description 

of 

parameters 

Neural network for 

Left end moment 

(bay i, floor j) 

Right end 

moment 

(bay i, floor j) 

Mid-span 

deflection 

(bay i, floor j) 

In
p
u

t 

1 
Inertia 

ratio 
Icr/Iun Icr/Iun Icr/Iun 

2 
Stiffness 

ratios 

Si+1/Si for end 

bay, Si/Si-1 for 

interior bay 

Si+1/Si for end 

bay, Si/Si-1 for 

interior bay 

Si/Si-1, Si+1/Si 

3 Load ratios 

wi/wi+1 for end 

bay, wi-1/wi for 

interior bay 

wi/wi+1for end 

bay, wi-1/wi for 

interior bay 

wi-1/wi, wi-

1/wi 

4 

Stress 

ratios 

(from floor 

j+1) 

1, 1
r
i j  , 

, 1
l
i j ,

, 1
r
i j   

, 1
l
i j , 

, 1
r
i j , 

1, 1
l
i j   

, 1
l
i j , 

, 1
r
i j  

5 

Stress 

ratios 

(from floor 

j) 

1,
l
i j , 

1,
r
i j , 

,
l
i j , 

,
r
i j , 

1,
l
i j  

1,
r
i j , 

,
l
i j , 

,
r
i j , 

1,
l
i j , 

1,
r
i j  

1,
l
i j , 

1,
r
i j , 

,
l
i j , 

,
r
i j , 

1,
l
i j , 

1,
r
i j  

6 

Stress 

ratios 

(from floor 

j−1) 

1, 1
r
i j  , 

, 1
l
i j , 

, 1
r
i j  

, 1
l
i j , 

, 1
r
i j , 

1, 1
l
i j   

, 1
l
i j , 

, 1
r
i j  

7 

Joint 

stiffness 

ratios 

(from floor 

j+1) 

, 1
l
i j  

, 1
r
i j  

, 1
l
i j , 

, 1
r
i j  

8 

Joint 

stiffness 

ratios 

(from floor 

j ) 

,
l
i j , 

,
r
i j  

,
l
i j , 

,
r
i j  

,
l
i j , 

,
r
i j  

9 

Joint 

stiffness 

ratios 

(from floor 

j−1) 

, 1
l
i j  

, 1
r
i j  

, 1
l
i j , 

, 1
r
i j  

10 
Shortening 

parameter ,
l
i j  ,

r
i j  ,

l
i j  

O
u

tp
u
t 1 

Moment 

ratio ,
l
i jR  

,
r
i jR  - 

2 
Deflection 

ratio 
- - ,

d
i j  

 

 

4. Stress ratios, ,
l
i j  and ,

r
i j  which are the ratios of 

the tensile stress in the concrete (at the top fibre, 

obtained in the elastic analysis) to the tensile strength of 

the concrete, of the beam at the end considered 

(superscript indicate left l or right r end of a beam, 

whereas first and second subscripts indicate bay number 

and floor number respectively); 

5. Joint stiffness ratios, ,
l
i j  and ,

r
i j  which are the 

ratios of the stiffness of a beam to the sum of the 

stiffnesses of the rest of the members (beams and 

columns) meeting at the joint (superscript indicate left l 

or right r end of a beam, whereas first and second 

subscripts indicate bay number and floor number 

respectively); and  

6. Shortening parameters, 
,
l
i j  and 

,
r
i j  which are the 

ratios of the differential axial shortening of the column 

at the left or right end of a beam, to the span of the beam 

(superscript indicate left l or right r end of a beam, 

whereas first and second subscripts indicate bay number 

and floor number respectively). 

The input and output parameters for the neural networks 

for prediction of moment and deflection in a beam in bay i 

and floor j are shown in Table 1 and in Figs. 2, 3 and 4. It 

may be noted that apart from the parameters from the bay 

and the floor under consideration, (i) the stress ratios from 

the adjacent bays and from the floors below and above; and 

(ii) the joint stiffness ratios from the floors below and 

above, are also considered. 

In case of the neural networks for the end bays, some of 

these input parameters are non-existent and thus the number 

of input parameters will accordingly get reduced. Similarly, 

in case of the neural networks for the first floor or for the 

topmost floor, the input parameters are only from two 

floors, as detailed in the following section. 

 

 

3. Designations of neural networks 
 

As discussed above, the input parameters should 

consider the effects from that particular floor and from the 

floor below and above the particular floor. The first floor 

and the topmost floor are exceptions in this regard. For the 

neural networks for the first floor, there is no floor below it. 

Therefore, the input parameters are to be taken only from 

the first floor and the second floor. Similarly, for the neural 

networks for the topmost floor, there is no floor above it. 

Therefore, the input parameters are to be taken from the 

topmost floor and the penultimate floor. The ranges of the 

parameters are much different at the topmost floor because 

of the columns are terminating at the top ends. The columns 

have lesser translational and rotational restraints than those 

in other floors. Due to this uniqueness, the input parameters 

are different of the neural networks for the penultimate 

floor and the intermediate floors. Therefore, separate set of 

neural networks are required for the penultimate floor also. 

Thus, the neural networks have been trained in four 

different sets, i.e., for (i) first floor; (ii) intermediate floors; 

(iii) penultimate floor; and (iv) topmost floor. Of these four 

sets, the one for intermediate floor is to be used for all the 

floors from the second floor to the ante-penultimate floor. 

Other three sets are to be used for the specific floors for 

which they are meant. 

In the case of moments, each type of floors will have 

three neural networks, i.e., for (i) exterior end of exterior 

beam; (ii) interior end of exterior beam; and (iii) ends of 

interior beam. Thus, the number of neural networks for 

moments for all the types of floors together, is twelve. 

Similarly, in the case of deflections, each type of floor will 

have two neural networks, i.e., for (i) exterior beam; and (ii) 

interior beam. Thus, the number of neural networks for 

deflections for all the types of floors together, is eight. The 

different neural networks for the prediction of moments and 

deflections have been designated as given in Table 2 and 

Fig. 5. 
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Table 2 Description and designations of neural networks for 

moments and deflections 

No. 
Description 

Designation 
Quantity Floor Location 

1 

Bending 

Moment 

First 

Exterior end of 

exterior beam 
NetB01 

2 
Interior end of 

exterior beam 
NetB02 

3 
Ends of interior 

beam 
NetB03 

4 

Intermediate 

Exterior end of 

exterior beam 
NetB04 

5 
Interior end of 

exterior beam 
NetB05 

6 
Ends of interior 

beam 
NetB06 

7 

Penultimate 

Exterior end of 

exterior beam 
NetB07 

8 
Interior end of 

exterior beam 
NetB08 

9 
Ends of interior 

beam 
NetB09 

10 

Topmost 

Exterior end of 

exterior beam 
NetB10 

11 
Interior end of 

exterior beam 
NetB11 

12 
Ends of interior 

beam 
NetB12 

13 

Deflection 

First 
Exterior beam NetD01 

14 Interior beam NetD02 

15 
Intermediate 

Exterior beam NetD03 

16 Interior beam NetD04 

17 
Penultimate 

Exterior beam NetD05 

18 Interior beam NetD06 

19 
Topmost 

Exterior beam NetD07 

20 Interior beam NetD08 

 

 
Fig. 5 Representative three bay four storey frame for data 

generation showing the designations of neural networks 

(only significant characters in the designations of neural 

networks are shown e.g. B01 for NetB01 and D01 for 

NetD01) 

 

 

4. Analytical-numerical procedure 
 

As mentioned in section 1, a computationally efficient 

analytical-numerical procedure (Ramnavas et al. 2017) is 

 
(a) 

 
(b) 

Fig. 6 A cracked span length beam element with (a) cracked 

and uncracked regions; and (b) degrees of freedom 

 

Table 3 Ranges of input parameters for moments and 

deflections 

Value 
Inertia 

Ratio 

Stiffness 

Ratios 

Load 

Ratios 

Stress 

Ratios 

Joint 

Stiffness 

Ratios 

Shortening 

Parameters 

Minimum 0.36 0.50 0.50 0.40 0.15* 0.000003** 

Maximum 0.57 2.00 2.00 3.20 0.50 * 0.000404** 

Note : (i) The values marked * are the joint stiffness ratios 

for the left end of left extreme bay in the topmost floor. The 

joint stiffness ratios for other joints and ends of beams vary, 

according to the number of columns and beams meeting at 

the joint. (ii) The values marked ** are the shortening 

parameters obtained for the combinations considered and 

accepted as the practical ones. 

 

 

used for generating the large number of data sets required 

for the neural networks, in an automated manner. 

The procedure uses a cracked span length beam element 

(see Fig. 6) comprising two cracked regions (at the ends of 

beam) and one uncracked region (at the middle), with six 

degrees of freedom, for the beams in the frame. Use of a 

single beam element for a span, reduces the computational 

effort. The tension stiffening effect in the cracked concrete 

is accounted in the cracked span length beam element. 

Average values over the cracked regions are used for the 

tension stiffening characteristics, which help in retaining the 

analytical nature of the procedure at the element level. The 

flexibility matrix coefficients, stiffness matrix coefficients, 

end displacements, cracked region lengths and mid-span 

deflection of the beam element, are obtained analytically. 

The procedure (Ramnavas et al. 2017) uses an iterative 

technique for establishing the cracked region lengths and 

distribution coefficients (for tension stiffening), and yields 

the inelastic deflections and redistributed moments. The 

procedure had also been validated by comparing the results 

with finite element analysis results as well as with the 

experimental results reported in literature. 

 

 

5. Generation of data sets 
 

From the discussions in the section 3 on various neural 

networks required to be trained, it can be seen that the 

minimum number of storeys required for a representative 

frame for generating the data sets, is four. Also, as stated in 
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Table 4 Sampling points for the input parameters for 

moments and deflections 

Inertia 

Ratio 

Stiffness 

Ratios 

Load 

Ratios 

Stress 

Ratios 

Joint 

Stiffness 

Ratios 

Shortening 

Parameters 

0.36, 

0.46, 

0.57 

0.50, 0.75, 

1.00, 1.50, 

2.00 

0.50, 

0.75, 

1.00, 

1.50, 

2.00 

0.40, 

0.60, 

0.80, 

0.90, 

0.99, 

1.01, 

1.11, 

1.25, 

1.60, 

2.00, 

2.50, 

3.20 

0.15*, 

0.25*, 

0.50* 

As obtained 

Note : (i) In each data set, one of the stress ratios is 

controlled to the values shown as sampling points and for 

other stress ratios, the values as obtained from the analysis 

are adopted. (ii) While targeting the stress ratios at various 

locations as explained in section 4.6, the values other than 

the sampling points are also obtained in the data sets 

generated. (iii) The values marked * are the joint stiffness 

ratios for the left end of left extreme bay in the topmost 

floor. The joint stiffness ratios for other joints and ends of 

beams vary according to the number of columns and beams 

meeting at the joint. 

 

 

section 1, the inelastic effects in a beam are affected by the 

cracking in the adjacent bays and hence as mentioned in 

section 2, the input parameters are to be taken from the 

adjacent bays too. This necessitates a minimum of three 

bays for the representative frame for generating data sets. 

Hence, the configuration of frame used for the generation of 

data sets, is a three bay four storey frame (see Fig. 5). The 

cross-sectional properties of beams and columns, spans and 

loads, are changed to get various combinations of input 

parameters as desired, and data sets have been generated. 

The ranges for the input parameters to be considered in 

the data generation have been arrived at, from the 

commonly used dimensions of the frame configuration (bay 

dimensions and storey heights), beam and column sections, 

loading, etc. for composite frames in the practical cases of 

buildings and are furnished in Table 3. Columns of the 

frame are assumed to have same cross-sectional properties. 

The sampling points for each of the input parameters 

have been selected such that they are well distributed over 

their respective ranges and are furnished in Table 4. 

The practice generally followed for generating data sets 

is to make combinations of all the input parameters with the 

sampling points. In this way, all the input parameters are to 

be maintained at their respective values (sampling points) 

for each of the combinations considered. Maintaining the 

values of all the input parameters to the predetermined 

values by the trial and error method is not feasible in this 

case where the number of input parameters is significantly 

large. It is also possible that by defining some of the input 

parameters, the whole structural system (including loading) 

may get defined and achieving the desired values for other 

parameters may not be possible. This necessitates an 

alternative way for generating the data sets which will cover 

the range of all the input parameters. 

It can be seen that all the combinations have a number 

of stress ratios like ,
l
i j , ,

r
i j , etc. in the input parameters. 

In the alternative way followed here for generation of data 

set for a particular combination, initially an analysis is 

carried out with assumed values of loads considering all the 

input parameters except the stress ratios. Now, one of the 

stress ratios in this combination is selected and the value of 

the same obtained in the analysis is compared with the 

value required to be obtained in this combination (sampling 

point). If these obtained value of the selected stress ratio is 

not equal to the required value (which is the situation in 

almost all the cases), the values of all the loads are modified 

duly maintaining the load ratios intact, so as to get the value 

of the selected stress ratio equal to the required value. Other 

stress ratios are not controlled and are accepted, as obtained 

from the analysis. However, it is ensured that these stress 

ratios, are also within the desired ranges, for accepting a 

particular data set (In order to include those data sets in 

which the values of uncontrolled stress ratios are marginally 

falling outside the desired ranges (i.e., 0.40 to 3.20), such 

ranges are slightly expanded (i.e., 0.39 to 3.21) while 

accepting the data sets). The above steps are followed for 

the other stress ratios in the same combination. Other 

combinations are also dealt with, in the same way. 

 
 
6. Training of neural networks and explicit 
expressions 
 

As stated in the previous section, twelve and eight 

neural networks have been trained for prediction of 

moments and deflections, respectively. 

For better training of neural networks, the input and 

output parameters of the data sets need to be normalized for 

bringing the values within the range 0.0 to 1.0, which has 

been done using the following expression 

   min max minnorm acty y y y y           (1) 

where yact is the actual value, ymin is the minimum value, 

ymax is the maximum value and ynorm is the normalized 

value, of the respective parameters. The ymin and ymax for the 

input and output parameters for a typical neural network 

NetB06 are given in Appendix A. It can be seen that though 

the values of ymin and ymax are within the respective ranges 

(or the expanded ranges as mentioned in section 4 for stress 

ratios), but not exactly the lower and upper limits in the 

case of some of the parameters. This is due to the reason 

that when the sampling points are the lower or upper limits 

of the ranges for such parameters, some other parameters do 

not fall within their ranges and the data set becomes 

unacceptable. 

Training of the neural networks has been carried out 

using the MATLAB (2009). In this work, Levenberg-

Marquardt back propagation algorithm is used for 

supervised multilayered feed forward networks along with 

log-sigmoid transfer function. Single hidden layer has been 

chosen and the numbers of neurons in the hidden layer have 
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Table 5 Statistical parameters for training of neural 

networks for NetB06 having configuration (19-27-1) 

Parameters 
Set 

Training Testing Validation 

MSE 0.00005 0.00005 0.00005 

RMSE 0.0072 0.0071 0.0071 

R 0.9993 0.9993 0.9993 

AAD 1.7629 1.7656 1.7361 

COV 2.4024 2.3856 2.3567 

SSE 0.4692 0.5174 0.5203 

 

 

been decided by trial and error, in the learning process so as 

to get optimum results. The data sets have been divided into 

70%, 15% and 15% for training, validation and testing 

respectively (Gedam et al. 2014, Joshi et al. 2014). The 

division of data sets has also been done with different 

random states. Various trials of training have been carried 

out with different number of hidden neurons and also with 

different random states. 

A goal has been set for a mean square error (MSE) of 

0.0001 and the number of epochs depends on the attainment 

of goal. The statistical parameters like mean square error 

(MSE), root mean square error (RMSE), correlation 

coefficient (R), average absolute deviation (AAD), 

coefficient of variation (COV) and sum of squared errors 

(SSE) have been calculated for the training, validation and 

testing of each trial. Of the various trials performed for each 

neural network, the one which gives the best statistical 

parameters for training, validation and testing has been 

selected. The statistical parameters for typical neural 

network NetB06 are given in Table 5, along with the  

 

 

network configuration (number of input neurons-hidden 

neurons-output neurons). 

Simplified explicit expressions can be derived from the 

trained neural networks, for use in preliminary design by 

the practicing engineers. These expressions require the 

values of inputs, the weights of the links between the 

neurons in different layers and the biases of output neurons. 

Since the sigmoid functions have been used as the 

activation functions in the hidden and output layer neurons, 

the output PO is given as below (Tadesse et al. 2012, Gupta 

et al. 2015) 

1

1
O z

P
e




                (2) 

where 
 

1 1 h h
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h
outX b

h
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 
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  and 

1

r

h hg g

g

X w I


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where, PO is the value of output parameter, wh is the weight 

between hidden and output layers for hidden neuron h, whg
 

 

is the weights between input neuron g and hidden neuron h, 

Ig is the value of input neuron g, bh is the bias between input 

layer and hidden layer for the hidden neuron h, bout is the 

bias of output neuron, q is the number of hidden neurons 

and r is the number of input neurons. 

The inelastic moment at the left end (l) and right end (r) 

of beam in bay i and floor j can be obtained as 

     
,, ,

l l li e

O i ji j i j
M M P  a n d       

,, ,

r r ri e

O i ji j i j
M M P  

respectively. Similarly, the inelastic deflection at the mid 

span of the beam in bay i and floor j can be obtained as 

 , , ,,

i cr e

i j O i j i ji j
d P d d  . The value of PO can be obtained 

using the weights and biases of the respective developed  

 

 

Table 6 Input parameters for three bay four storey example frame EF1: (a) Inertia ratio, stiffness ratios and load 

ratios; and (b) Stress ratios, joint stiffness ratios and shortening parameters 

(a)
 

Icr/Iun S2/S1 S3/S1 w1/w2 w2/w3 

0.41 0.80 1.25 1.07 0.93 

(b) 

Bay 1 Bay 2 Bay 3 

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value 

1,1
l  1.9013 1,1

r  2.2651 2,1
l  3.0531 2,1

r  3.0531 3,1
l  2.2651 3,1

r  1.9013 

1,2
l  1.9465 1,2

r  2.1429 2,2
l  2.9984 2,2

r  2.9984 3,2
l  2.1429 3,2

r  1.9465 

1,3
l  2.0709 1,3

r  2.1397 2,3
l  3.0604 2,3

r  3.0604 3,3
l  2.1397 3,3

r  2.0709 

1,4
l  1.5417 1,4

r  2.2074 2,4
l  2.7880 2,4

r  2.7880 3,4
l  2.2074 3,4

r  1.5417 

1,1
l  0.150253 1,1

r  0.1341302 2,1
l  0.1045008 2,1

r  0.1045008 3,1
l  0.13413 3,1

r  0.15025 

1,2
l  0.150253 1,2

r  0.1341302 2,2
l  0.1045008 2,2

r  0.1045008 3,2
l  0.13413 3,2

r  0.15025 

1,3
l  0.150253 1,3

r  0.1341302 2,3
l  0.1045008 2,3

r  0.1045008 3,3
l  0.13413 3,3

r  0.15025 

1,4
l  0.300506 1,4

r  0.2422645 2,4
l  0.1848548 2,4

r  0.1848548 3,4
l  0.242264 3,4

r  0.30051 

1,1
l  0.000050 1,1

r  -0.000050 2,1
l  0.000000 2,1

r  0.000000 3,1
l  -0.000050 3,1

r  0.000050 

1,2
l  0.000088 1,2

r  -0.000088 2,2
l  0.000000 2,2

r  0.000000 3,2
l  -0.000088 3,2

r  0.000088 

1,3
l  0.000113 1,3

r  -0.000113 2,3
l  0.000000 2,3

r  0.000000 3,3
l  -0.000113 3,3

r  0.000113 

1,4
l  0.000126 1,4

r  -0.000126 2,4
l  0.000000 2,4

r  0.000000 3,4
l  -0.000126 3,4

r  0.000126 
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Table 7 Elastic and inelastic moments in example frame 

EF1 

Bay and Floor 

Elastic 

moment 

(kN/m) 

Inelastic moment (kNm) 

Analytical-

numerical 

procedure 

Explicit 

expressions 

Error 

(%) 

Interior joint of end bay 

 - First floor 
93.57 82.40 82.20 -0.2 

Interior bay Left end 

 - First floor 
125.93 113.80 112.28 -1.3 

Exterior joint of end bay 

 - Intermediate floor (2
nd

 floor) 
83.19 78.10 77.38 -0.9 

Interior joint of end bay 

 - Intermediate floor (2
nd

 floor) 
91.52 82.17 82.57 0.5 

Interior bay left end 

 - Intermediate floor (2
nd

 floor) 
127.77 112.35 112.29 0.0 

Exterior joint of end bay 

 - Penultimate floor (3
rd

 floor) 
84.87 78.61 79.38 1.0 

Interior joint of end bay 

 - Penultimate floor (3
rd

 floor) 
87.79 79.36 79.25 -0.1 

Interior bay left end  

- Penultimate floor (3
rd

 floor) 
126.11 110.76 110.97 0.2 

Interior joint of end bay  

- Topmost floor (4
th
 floor) 

102.80 92.67 92.70 0.0 

Interior bay left end  

- Topmost floor (4
th
 floor) 

131.04 118.54 118.73 0.2 

 

 

neural networks (Eq. (2)). The weights and biases for a 

typical neural network NetB06 are given in Appendix A. 

 

 

7. Verification of explicit expressions 
 

The explicit expressions are verified for two example 

frames of 4 storey-3 bay (EF1) and 4 storey-5 bay (EF2) 

with a wide variation of input parameters. The frames have 

been chosen in such a way that the set of input parameters 

for each of the network, has not been used as a combination  

 

 

Table 8 Elastic and inelastic deflections in example frame 

EF1 

Bay and Floor 

Elastic mid-

span 

deflection 

(mm) 

Inelastic mid-span deflection (mm) 

Analytical-

numerical 

procedure 

Explicit 

expression 

Error 

(%) 

End bay - First floor 1.564 1.928 1.932 0.2 

Interior bay - First floor 3.518 4.705 4.766 1.3 

End bay - Intermediate 

floor (2
nd

 floor) 
1.546 1.941 1.931 -0.5 

Interior bay - 

Intermediate 

floor (2
nd

 floor) 

3.497 4.778 4.790 0.2 

End bay - Penultimate 

floor (3
rd

 floor) 
1.520 1.943 1.933 -0.5 

Interior - Penultimate 

floor (3
rd

 floor) 
3.493 4.816 4.759 -1.2 

End bay - Topmost floor 

(4
th
 floor) 

1.684 1.993 2.020 1.3 

Interior bay - Topmost 

floor (4
th
 floor) 

3.659 4.729 4.700 -0.6 

 

 

in the data sets for training of the same network. 

First, consider the 4 storey-3 bay example frame EF1. 

The spans of bay 1, 2 and 3 have been taken as 4.80 m, 6.00 

m and 4.80 m respectively and the height of all the storeys 

has been taken as 3.00 m. The uniformly distributed load 

(udl) on beams of bay 1, 2 and 3 has been taken as 46.0 

kN/m, 43.0 kN/m and 46.0 kN/m respectively, on each 

floor. The beams and columns of all bays and storeys have 

been assumed to be of same cross-sections. The cross-

sectional properties of the beams are: depth of steel section, 

Ds=305 mm; width of concrete slab, b=1000 mm; depth of 

concrete slab, Dc=70 mm; area of steel reinforcements, 

Asr=113 mm
2
; depth of steel reinforcements from top fibre, 

dsr=15 mm; area of steel section, Ass=5132 mm
2
 (UB  

 

 

Table 9 Input parameters for five bay four storey example frame EF2 (a) Inertia ratio, stiffness ratios and load ratios; 

(b) Stress ratios, joint stiffness ratios and shortening parameters 

(a)
 
Icr/Iun S2/S1 S3/S2 S4/S3 S5/S4 w1/w2 w2/w3 w3/w4 w4/w5 

0.41 0.80 1.00 1.00 1.25 1.07 1.00 1.00 0.93 

(b) 

Input 

para- 

meters 

Floor 

(j) 

Bay 1 (i=1) Bay 2 (i=2) Bay 3 (i=3) Bay 4 (i=4) Bay 5 (i=5) 

Left (l) Right (r) Left (l) Right (r) Left (l) Right (r) Left (l) Right (r) Left (l) Right (r) 

,
l
i j  

*and 

,
r
i j  

1 1.9003 2.2569 3.0159 3.1106 3.0806 3.0806 3.1106 3.0159 2.2569 1.9003 

2 1.9525 2.1445 2.9880 3.0636 3.0478 3.0478 3.0636 2.9880 2.1445 1.9525 

3 2.0478 2.1493 3.0114 3.1050 3.0666 3.0666 3.1050 3.0114 2.1493 2.0478 

4 1.5149 2.2345 2.7346 2.9323 2.8756 2.8756 2.9323 2.7346 2.2345 1.5149 

,
l
i j  

and 

,
r
i j  

1 0.1503 0.1341 0.1045 0.1073 0.1073 0.1073 0.1073 0.1045 0.1341 0.1503 

2 0.1503 0.1341 0.1045 0.1073 0.1073 0.1073 0.1073 0.1045 0.1341 0.1503 

3 0.1503 0.1341 0.1045 0.1073 0.1073 0.1073 0.1073 0.1045 0.1341 0.1503 

4 0.3005 0.2423 0.1849 0.1938 0.1938 0.1938 0.1938 0.1849 0.2423 0.3005 

,
l
i j  

and 

,
r
i j  

1 0.000050 -0.000050 0.000005 -0.000005 0.000000 0.000000 -0.000005 0.000005 -0.000050 0.000050 

2 0.000087 -0.000087 0.000009 -0.000009 0.000000 0.000000 -0.000009 0.000009 -0.000087 0.000087 

3 0.000112 -0.000112 0.000012 -0.000012 0.000000 0.000000 -0.000012 0.000012 -0.000112 0.000112 

4 0.000125 -0.000125 0.000013 -0.000013 0.000000 0.000000 -0.000013 0.000013 -0.000125 0.000125 
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305×165×40); and moment of inertia of steel section, 

Iss=85.03×10
6
 mm

4
 (see Fig. 1(a)). The cross-sectional area 

of the steel column section, Acol=33620 mm
2
 (2×UC 

254×254×132); and the moment of inertia of the steel 

section, Icol=450.60 10
6
 mm

4
. The material properties are: 

the modulus of the elasticity of the steel, Es=2×10
5
 N/mm

2
; 

the modulus of elasticity of concrete, Ec=34129 N/mm
2
; 

cylindrical compressive strength of the concrete, 
'

cf =32 

N/mm
2
; and the tensile strength of concrete, ft=3.04 N/mm

2
. 

The values of the input parameters of the frame EF1 are 

given in Table 6 for prediction of inelastic moments and 

deflections. As stated earlier, these parameters are in 

different combinations than those used in training. The 

values of the inelastic end moments and the inelastic mid-

span deflections, obtained from the proposed explicit 

expressions and from the analytical-numerical procedure 

are reported in Tables 7 and 8 respectively (Quantities 

 

 

 

which vary from elastic to inelastic states by more than 5% 

are only reported, for brevity). The root mean square 

percentage errors are 0.63% and 0.86% for prediction of 

moments and deflections respectively. It can be seen that 

the errors in the predicted values of inelastic moments and 

deflections are small and are acceptable for engineering 

applications. 

Next, consider 4 storey-5 bay example frame EF2. The 

spans of bay 1-5 have been taken as 4.80 m, 6.00 m, 6.00 

m, 6.00 m and 4.80 m respectively and the height of all the 

storeys has been taken as 3.00 m. The udl on beams of bay 

1-5 have been taken as 46.0 kN/m, 43.0 kN/m, 43.0 kN/m, 

43.0 kN/m and 46.0 kN/m respectively, on each floor. The 

cross-sections and material properties of the beams and 

columns are same as that of the beams and columns 

considered for the frame EF1 above. The values of the input 

parameters of the frame EF2 are given in Table 9 for 

Table 10 Elastic and inelastic moments in example frame EF2 

Description 
Elastic 

moment (kNm) 

Inelastic moment (kNm) 

Floor No. Bay No. End 
Analytical-numerical 

procedure 

Explicit 

expressions 

Error 

(%) 

First floor 

(1st floor) 

End bay (1st bay) Right 93.49 80.57 82.24 2.1 

First interior bay (2nd bay) Left 124.98 118.03 112.41 -4.8 

First interior bay (2nd bay) Right 129.00 115.58 115.60 0.0 

Middle bay (3rd bay) Left 127.95 118.14 115.58 -2.2 

Intermediate floor 

(2nd floor) 

End bay (1st bay) Left 83.13 78.36 77.35 -1.3 

End bay (1st bay) Right 91.28 81.60 82.53 1.1 

First interior bay (2nd bay) Left 126.58 111.84 111.63 -0.2 

First interior bay (2nd bay) Right 129.79 112.91 112.66 -0.2 

Middle bay (3rd bay) Left 128.84 112.59 112.18 -0.4 

Penultimate floor 

(3rd floor) 

End bay (1st bay) Left 84.36 77.93 79.05 1.4 

End bay (1st bay) Right 88.66 80.51 79.93 -0.7 

First interior bay (2nd bay) Left 125.26 110.65 110.58 -0.1 

First interior bay (2nd bay) Right 129.24 112.89 112.76 -0.1 

Middle bay (3rd bay) Left 128.08 112.37 112.03 -0.3 

Topmost floor 

(4th floor) 

End bay (1st bay) Right 103.67 93.79 93.15 -0.7 

First interior bay (2nd bay) Left 127.92 116.08 116.95 0.7 

First interior bay (2nd bay) Right 136.31 122.06 121.31 -0.6 

Middle bay (3rd bay) Left 133.53 119.97 119.54 -0.4 

Table 11 Elastic and inelastic deflections in example frame EF2 

Description 
Elastic mid-span 

deflection (mm) 

Inelastic mid-span deflection (mm) 

Floor No. Bay No. 
Analytical-numerical 

procedure 

Explicit 

expressions 

Error 

(%) 

First floor 

(1st floor) 

End bay (1st bay) 1.566 1.906 1.938 1.7 

First interior bay (2nd bay) 3.433 4.577 4.713 3.0 

Middle bay (3rd bay) 3.343 4.492 4.617 2.8 

Intermediate floor 

(2nd floor) 

End bay (1st bay) 1.548 1.943 1.938 -0.3 

First interior bay (2nd bay) 3.423 4.735 4.763 0.6 

Middle bay (3rd bay) 3.344 4.689 4.685 -0.1 

Penultimate floor 

(3rd floor) 

End bay (1st bay) 1.520 1.940 1.932 -0.4 

First interior bay (2nd bay) 3.426 4.759 4.734 -0.5 

Middle bay (3rd bay) 3.359 4.715 4.676 -0.8 

Topmost floor 

(4th floor) 

End bay (1st bay) 1.695 2.003 2.036 1.6 

First interior bay (2nd bay) 3.513 4.623 4.514 -2.4 

Middle bay (3rd bay) 3.350 4.505 4.487 -0.4 
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prediction of inelastic moments and deflections. The values 

of the inelastic end moments and the inelastic mid-span 

deflections obtained from the proposed explicit expressions 

and from the analytical-numerical procedure are reported in 

Tables 10 and 11 respectively (Quantities which vary from 

elastic to inelastic states by more than 5% are only reported, 

for brevity). The root mean square percentage errors are 

1.47% and 1.56% for prediction of moments and deflections 

respectively. It can be seen that the errors in the predicted 

values of inelastic moments and deflections are small and 

are acceptable for engineering applications. From the 

above, it is found that the proposed explicit expressions are 

applicable to frames with any number of bays. 

 
 
8. Conclusions 
 

Explicit expressions for rapid prediction of the inelastic 

design quantities (considering cracking of concrete) from 

the corresponding elastic quantities (uncracked structure), 

are presented for multi-storey composite frames (with steel 

columns and steel-concrete composite beams) subjected to 

service load. These explicit expressions have been derived 

from the weights and biases of the neural networks 

developed for the purpose. The expressions take into 

account concrete stress, relative stiffness of beams and 

columns along with effects of cracking in the floors below 

and above. Accordingly, the input parameters considered 

are inertia ratio, stiffness ratios, load ratios, stress ratios and 

joint stiffness ratios. The large numbers of data sets required 

for training of neural networks have been generated using 

the analytical-numerical procedure developed by the 

authors. The expressions have been presented in four 

different sets, i.e., for (i) first floor; (ii) intermediate floors 

(second floor to ante-penultimate floor); (c) penultimate 

floor; and (d) topmost floor. Twelve expressions have been 

presented for prediction of the inelastic moments and eight 

expressions for prediction of the inelastic deflections. The 

proposed expressions for prediction of moments and 

deflections have been verified for two example frames, both 

having all the input parameters different from that used in 

training, and the error in the predicted values are found to 

be small for engineering applications and are acceptable.  

The methodology presented herein can be extended for 

tall building frames, with change in column sections 

between the storeys and also with significant effect of 

differential axial shortening, where large saving in 

computational efforts will be resulted. 
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Appendix A: ymin, ymax, weights and biases for a neural network NetB06 

Table A1 ymin and ymax 

Parameters cr unI I  1i iS S   1i iw w  , 1
l
i j   1, 1

r
i j    , 1

l
i j   , 1

r
i j   ,

l
i j  ,

r
i j  1,

l
i j   1,

r
i j   ,

l
i j  ,

r
i j  1,

l
i j   , 1

l
i j   1, 1

r
i j    , 1

l
i j   , 1

r
i j   ,

l
i j  ,

l
i jR  

ymin 0.36 0.50 0.50 0.04 0.44 0.39 0.39 0.04 0.04 0.44 0.41 0.39 0.39 0.41 0.04 0.39 0.39 0.39 -0.0003 0.97 

ymax 0.56 2.00 2.00 0.39 3.21 3.21 3.21 0.39 0.39 3.08 3.15 3.16 3.17 3.15 0.39 3.21 3.21 3.21 0.0002 1.18 

 

Table A2 Weights and biases 

h  ,1hw  ,2hw  ,3hw  ,4hw  ,5hw  ,6hw  ,7hw  ,8hw  ,9hw  ,10hw  ,11hw  ,12hw  ,13hw  ,14hw  ,15hw  ,16hw  ,17hw  ,18hw  ,19hw  hb  hw  

1 -0.41 0.86 -0.08 -0.89 3.35 1.66 -1.88 1.10 -0.71 -1.44 -1.16 -0.79 0.10 -1.40 -1.27 1.38 2.99 -1.13 1.03 6.93 0.15 

2 0.08 -0.65 -0.34 -1.72 1.99 -2.69 -4.95 0.51 2.79 -2.69 1.06 -0.93 -0.57 0.64 -1.25 0.05 -5.08 -2.91 -0.85 3.53 2.57 

3 3.26 0.29 -0.59 1.13 -0.31 2.38 1.98 -0.43 -1.21 0.73 1.19 -1.68 0.65 0.62 -1.93 -1.87 -0.73 0.11 4.98 -1.24 0.09 

4 -1.34 -0.15 0.05 0.96 -1.84 -0.43 2.89 1.56 1.09 0.29 2.96 -0.03 -1.31 -1.24 -1.15 0.83 0.18 0.74 2.55 -5.46 1.79 

5 -3.54 1.98 -1.84 2.18 2.02 -1.91 -1.80 0.98 1.82 -1.20 0.73 0.17 1.47 -1.04 1.86 -1.77 -0.93 0.82 -0.73 2.46 -0.05 

6 0.58 -2.59 0.49 1.95 -1.15 -0.04 -0.26 -2.45 -1.16 0.56 -1.05 -0.97 -0.28 -0.06 -3.09 -2.19 -2.12 3.09 1.79 4.68 -0.03 

7 -0.27 3.75 2.00 0.82 0.73 0.96 -1.08 0.92 -1.82 0.77 0.84 -3.87 -0.15 1.09 0.87 -1.75 -0.57 -3.67 -3.71 -4.21 0.67 

8 1.16 3.27 -1.81 0.26 -0.28 1.10 0.60 -1.69 0.54 2.39 1.65 1.55 2.44 0.72 -0.92 -1.58 -0.85 0.88 -0.57 -4.08 -0.07 

9 -1.28 1.07 0.71 -0.73 -1.19 2.13 -1.29 -1.47 0.36 -1.16 1.88 -1.90 -2.04 0.09 0.70 -0.73 -3.27 -1.12 -1.20 5.15 -0.42 

10 -0.39 -0.23 -0.11 -1.55 1.24 -3.72 -1.52 2.00 0.81 0.32 -0.26 -1.27 0.35 0.16 -1.55 -1.04 -4.28 -3.21 -0.37 3.67 -2.58 

11 -0.26 -0.38 -0.07 3.39 -0.28 -4.32 2.17 -1.83 -1.54 -0.47 -2.87 -3.46 2.05 0.88 0.11 0.68 -0.63 1.61 -2.37 1.96 -2.42 

12 -1.00 -0.26 -0.93 2.55 1.14 -0.98 -0.73 0.38 -2.54 2.29 -3.77 2.68 -2.37 -0.96 1.05 -1.31 0.13 -1.12 -0.42 -0.65 -1.98 

13 -1.85 3.46 0.89 1.01 -0.87 0.72 -0.17 -0.16 1.17 -0.59 3.41 -0.25 2.47 -3.89 0.24 -0.84 0.35 2.15 -2.28 -0.64 0.10 

14 -2.10 1.37 0.71 1.48 1.17 0.69 2.25 -1.44 2.74 -0.47 2.39 -1.15 2.30 0.02 1.31 0.36 3.38 -0.30 2.73 -2.71 -0.24 

15 -4.94 -1.73 -0.78 0.31 2.95 0.44 1.14 -0.92 -0.43 1.77 1.60 0.95 -1.00 -2.10 3.21 1.73 1.46 -0.58 0.27 5.39 -0.26 

16 -4.49 -0.11 -0.05 0.31 -1.40 1.56 0.92 0.71 -0.85 -0.56 1.00 2.91 1.74 -0.19 -2.62 1.81 -0.86 -0.20 -0.53 -5.90 2.93 

17 0.82 0.30 0.08 0.18 3.59 -1.47 1.97 -0.21 -4.25 0.10 5.09 0.87 0.01 -0.10 1.09 2.58 -1.99 -0.09 0.81 -0.81 -0.52 

18 -0.87 -1.36 -0.37 1.35 -0.33 1.59 1.81 -0.78 -1.78 0.93 -0.39 1.87 2.39 1.21 -1.01 -0.92 -0.52 -1.54 0.02 -2.29 0.36 

19 -0.15 2.39 0.81 -2.93 -0.17 -1.92 1.95 -2.35 -2.16 0.09 -1.36 0.04 -1.52 2.74 -1.97 -1.80 -1.14 1.70 -1.03 2.25 -0.22 

20 3.26 -0.01 -0.18 0.87 1.36 -0.31 2.30 2.10 -2.15 -0.36 -0.28 0.71 -2.11 -1.03 1.30 -1.47 2.89 2.05 -0.04 -0.67 0.59 

21 3.58 1.66 -0.33 -1.60 1.69 -0.43 0.27 0.80 -1.92 -2.21 2.59 0.41 2.09 2.65 -3.09 0.24 1.95 -0.75 4.08 2.08 2.11 

22 1.83 1.65 3.48 2.53 2.13 -0.30 0.59 -1.51 1.52 -0.21 1.24 0.73 2.12 0.47 -1.94 -0.03 1.62 -1.28 -1.33 1.79 -0.01 

23 1.19 2.54 0.38 -2.50 0.67 3.96 -1.65 0.08 -2.10 1.85 3.56 0.64 -1.04 5.17 -1.62 2.27 0.56 0.88 1.45 0.33 -0.78 

24 2.03 -0.84 -0.58 1.97 -2.08 -0.05 0.23 -0.33 -0.96 1.68 -1.62 2.08 0.43 -0.81 -0.57 0.13 -0.92 2.08 -0.32 0.03 0.43 

25 -1.18 0.41 0.13 -3.07 -1.67 3.58 -1.26 -0.15 1.21 0.21 -0.05 1.79 -1.59 0.45 1.07 0.87 -0.32 -2.02 -0.60 0.41 3.46 

26 0.43 5.53 2.84 -0.64 1.70 -0.72 -0.03 -1.46 0.56 3.91 0.17 1.17 -0.77 2.38 -1.11 2.53 -1.27 -2.09 -1.15 -3.84 -0.07 

27 1.32 -0.24 0.06 1.47 -0.39 -0.56 -0.79 1.65 -1.95 1.75 -0.40 0.56 1.06 -4.30 1.35 0.39 -1.00 2.16 1.75 1.87 -0.89 

outb  -1.56 
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