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1. Introduction 
 

The behavior of many dynamic systems undergoing 

time-dependent changes (transients) can be described by 

ordinary differential equations. To solve this kind of 

equation, three distinct methodologies are identified: modal 

analysis, frequency domain analysis, and direct numerical 

integration. Classical modal analysis and frequency domain 

analysis have severe limitations, as they are based on the 

principle of superposition. Thus, they are not directly 

applicable to nonlinear systems. Although there are some 

analytical or semi-analytical methods for solving nonlinear 

structures; they are limited to specific problems with 

specific conditions (Bayat and Pakar 2017). The direct 

numerical integration method is generally more time 

consuming, but it is a powerful approach which has become 

more attractive over the last two decades due to its 

increased ability to analyze realistic problems and achieve 

accurate responses (Park 1977, Felippa and Park 1979, 

Dokainish and Subbaraj 1989, Paz and Leigh 2003, Chopra 

2007, Mohaamad Rezaiee-Pajand and JAVAD Alamatian 

2008, Gao et al. 2012). 

The fundamental idea of the direct time integration 

method is to approximate the solutions of the equation of 

motion with a set of algebraic equations which are 

evaluated in a step-by-step approach in time (Park 1977, 

Felippa and Park 1979, Dokainish and Subbaraj 1989, 
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Humar 1990, Belytschko and Lu 1993, Chen et al. 2000, 

Paz and Leigh 2003, Chopra 2007, Liu et al. 2013).Within 

each time interval, a specific type of variation of the 

displacement, velocity, and acceleration is assumed. Several 

numerical integration algorithms are available for each type 

of variation assumed. This procedure is a form of finite 

difference solution for differential equations (Clough and 

Penzien 1983, Bathe 1996, Belytschko et al. 2000, Chen et 

al. 2000, Paz and Leigh 2003, Sha et al. 2003, Keierleber 

and Rosson 2005, Leontiev 2007, Hejranfar and Parseh 

2016, Lindsay et al. 2016). 

There are two basic categories of solving an equation of 

motion by using step-by-step integration methods: explicit 

method and implicit method ( Pezeshk and Camp 1995, Paz 

and Leigh 2003, Alamatian 2013, Chang et al. 2015). The 

explicit method deals with the equation of motion in one 

time step to approximate the quantities of another time step 

(Houbolt 1950, Hughes 1987, Pezeshk and Camp 1995, 

Chang 2007, 2010). The implicit method deals with the 

equation of motion in the current time step to determine the 

quantities of the same time step (Tamma and Namburu 

1988, Zhou and Tamma 2004, Bathe and Baig 2005, Bathe 

2007, Razavi et al. 2007, Leontyev 2010, Gholampour et al. 

2011, Bathe and Noh 2012, Gholampour and Ghassemieh 

2013, Soares 2016). 

The predictor-corrector integration method is a 

combination of the explicit and implicit integration 

methods, in which displacement and velocity are assumed 

to be functions of accelerations of several previous time 

steps (Howe 1991, Zhai 1996, Lourderaj et al. 2007, 

Rezaiee-Pajand and Alamatian 2008). 

Implicit methods can be conditionally or 

unconditionally stable (Wilson et al. 1972, Krieg 1973, 

Hughes and Belytschko 1983, Dokainish and Subbaraj 

1989, Subbaraj and Dokainish 1989, Pezeshk and Camp 

1995, Bathe 1996). The Newmark family of methods stands 
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in this category. In the Newmark integration method, 

depending on the values of the constants used, the 

acceleration varies linearly or remains constant within two 

instances of time (Newmark 1959, Wood et al. 1980). A 

very popular member of this family is the Trapezoidal Rule, 

in which the acceleration remains constant within two 

instances of time. Wilson-theta (Wilson 1962) is the other 

example of an implicit method. 

In nonlinear systems, unconditional stable methods are 

preferred over any other method since there is a high chance 

of growing without bound. Stability and accuracy of the 

implicit methods have made them a popular choice for 

solving nonlinear dynamic problems. An unstable method 

makes the integration errors increase exponentially, and an 

arithmetic overflow can be expected even after just a few 

time steps (Goudreau and Taylor 1972, Bathe and Wilson 

1973, Hilber 1977, Zhong and Zhu 1996, Chopra 2007, 

Kim and Kim 2015). 

This paper deals with the accuracy and stability of direct 

time integration methods and proposes a method in which 

acceleration varies in a quadratic manner. By defining two 

parameters, a new family of unconditionally stable methods 

is created. The proposed method overcomes the stability 

problem, which is believed to be an imperfection of the 

classical methods. Although some classical methods are 

unconditionally stable, such as the trapezoidal rule, they 

demonstrate a lower order of accuracy than the proposed 

method. A proven way to deal with this fault is to use 

shorter time steps, but the duration of solving then becomes 

much greater, especially when the structure includes a 

number of degrees of freedom. Most problems which are 

related to finite element analysis are of this category. The 

simplicity of implementing the nonlinear solution systems 

of the finite element analysis makes the proposed method 

appealing. 

 

 

2. Proposed algorithm 
 

Consider the equation of motion in a single degree of 

freedom system with nonlinear stiffness, which is written in 

the following form 

tsttttttttt FRDKDCDM  
  (1) 

in which D is the displacement, D is the velocity, D is the 

acceleration, M is the mass, C is the damping, Kt 
is the 

tangent stiffness, Fst 
is the internal force of the system at 

time t, and R is the exciting force. Notice that the 

incremental form of displacement is written between time t 
and t+Δt. 

Considering a second ordered variation of acceleration 

given by Eq. (2) 
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Integration from Eq. (2) leads to the formulas of 

velocity and displacement 
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In which υ and μ are constants designed to control the 

behavior of this method and to make it unconditionally 

stable. These constants are discussed in detail in the 

stability section. 

The higher order derivatives for current time step are 

obtained as follows 

 ttttt DD
t

D  


 
2

1
 (5) 

 tttttt DDD
t

D  


  2
1

2

....
 (6) 

By introducing Eqs. (5) and (6) into Eqs. (3) and (4), the 

standard form of new implicit method is generated as 

follows 
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(8) 

Eqs. (7) and (8) can be used to approximate the 

displacement and velocity at time t+Δt, respectively. It can 

be proven that this strategy guarantees the second-order 

accuracy for any choices of υ and μ. For the special case of 

assuming μ=1/4
 
and υ=1/2, the proposed method leads to 

the linear acceleration method. 

According to Eqs. (7) and (8), prior to starting the 

calculations, it is necessary to have the responses at the 

initial time step (t=0) and second time step (t=Δt). Note that

0D and 0D are initial known quantities, and 0D can be 

calculated by using Eq. (1) at initial time step (t=0). Any 

one-step method, such as the Trapezoidal Rule, can be 

utilized to get the response at the next time step (t=Δt). 

Acceleration at the next time step ( tD 2
 ) is calculated 

by having the responses at the initial time step (t=0), as well 

as next time step (t=Δt), and introducing Eqs. (7) and (8) 

into Eq. (1). By substituting the calculated quantities in Eqs. 

(7) and (8), displacement and velocity at the next time step 

(D2Δt, tD 2
 ) are calculated. To reach the answers of 

displacement, velocity, and acceleration at a specified time, 

this procedure must be repeated until the related time step. 

Section 4 of this article presents the simplified and 

computerized algorithm of this recursive procedure by 

defining some constants and matrices. 

 

 

3. Stability 
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Evaluation of the stability is carried out, considering the 

equation of motion for a single degree of freedom, with free 

vibration at time step n+1 and calculating the amplification 

matrix [A]. The algorithm is stable if the eigenvalues of the 

amplification matrix are less than unit in modulus (Bathe 

and Wilson 1973, Chen et al. 2000, Chang 2002, 

Gholampour et al. 2011, Gholampour and Ghassemieh 

2013). 

Eq. (9) shows recursive matrix form of the proposed 

method in a free vibration. 
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in which the amplification matrix and the constants of the 

matrix is obtained, as follows 
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In the above equations, ξ represents the damping ratio, 

and ωn 
is the natural frequency of step n equivalence to tim

t to t+Δt. Due to material nonlinearity, stiffness has 

different values in different steps, as does natural frequency. 

Eigenvalues of the amplification matrix can be 

calculated. For various values of ϑ and μ and for the most 

critical case being ξ=0, the stability condition is in the form 

 

Fig. 1 Spectral radius as a function of natural frequency 

multiplied by time step 

 

 

of the following equation 

3/1 ; 6/12/    (12) 

Fig. 1 shows the spectral radius as the maximum 

eigenvalue of the amplification matrix in modulus (𝐴), as a 

function of natural frequency of the system multiplied by 

the time step size. According to this figure, the mentioned 

condition in Eq. (12) is a border between conditional and 

unconditional stability. In other words, if values of 

parameters μ and υ meet the condition of Eq. (12), the 

spectral radius will remain less than unit. There are no time 

step size limitations in Eq. (12); therefore, the proposed 

method becomes unconditionally stable. Another interesting 

fact about this figure is that if μ≥1/3
 
then the spectral radius 

value remains unit, provided that υ=μ−1/6. 

 

 

4. Accuracy 
 

Accuracy of the time step marching methods is 

measured by three significant factors: order of accuracy, 

amplitude decay, and period elongation. The proposed 

method is second-order accurate. Percentage amplitude 

decay and percentage period elongation can be evaluated by 

following the approach presented in several studies (Wilson 

et al. 1972, Bathe 1996, Bathe and Baig 2005). The 

evaluation is performed by solving a SDOF system without 

damping, and with unit initial displacement and zero initial 

velocity. 

Fig. 2 presents the percentage amplitude decay for 

various methods, as a function of Δt/T, where Δt is the time 

step size and T is the natural period of the system. The 

proposed method is seen to have a reasonable amount of 

amplitude decay when parameters have been adopted in the 

range given in Eq. (12). In some nonlinear cases, this  
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Fig. 2 Percentage amplitude decay for various methods 

 

 

amount of amplitude decay would help to prevent the 

answer from growing without bound. On the other hand, 

there is a special choice of parameters which produces zero 

amplitude decay. This means that the amount of amplitude 

decay in the proposed method can be controlled through 

parameters μ and υ. It is worthy of paying attention that 

choosing μ>1/3
 

and υ=μ−1/6
 

will produce no amplitude 

decay in the response. 

Fig. 3 present the percentage period elongation for 

various methods. According to this figure, the proposed 

method produces the same amount of period elongation that 

is produced by the Newmark Trapezoidal Rule. Other 

choices of constant parameters given in Eq. (12), in the 

unconditional stability range, result in slightly higher 

percentage period elongation; as they demonstrate for 

Newmark family of methods. Please be noticed that the 

choices of parameters being μ=0.38
 
or μ=0.35 with υ=μ−1/6 

produce an amount of period elongation close to Newmark 

trapezoidal rule; thus, in order to have a clear figure, their 

related curves have been removed from the Fig. 3. 

To summarize, according to Figs. 2 and 3, the amplitude 

decay and period elongation errors are the same for the 

proposed method and the Newmark Trapezoidal Rule. In 

pseudo-dynamic testing, or in some nonlinear cases 

damping out high-frequency responses, is particularly 

important because the higher modes of a system are more 

sensitive to experimental errors than the lower ones (Shing 

and Mahin 1985). However when introducing numerical 

damping (or amplitude decay) in the Newmark family of 

methods γ≠1/2, the method drops from second-order to 

first-order accurate, a significant reduction in the accuracy 

of the method. The proposed method, regardless of the 

values chosen for constant parameters, is second-order 

accurate, which is a huge advantage.  

 

 

Fig. 3 Percentage period elongation for various methods 

 

 

5. Steps of the proposed algorithm 
 

Steps of the proposed algorithm for the nonlinear 

structural dynamic problems are as follows: 

1. Initial Calculations 

A. Form elastic stiffness matrix [K], mass matrix [M], 

and damping matrix [C]. 

B. Select time step duration Δt and specify parameters 

υ and μ as follows: 

μ≥1/3; μ/2≤υ≤ μ−1/6 

C. Calculate acceleration ( 1D ), velocity ( 1D ), and 

displacement (D1) vectors at the end of the first time 

step, using a one-step method. 

D. Calculate the following integration constants 

obtained from Eqs. (7) and (8): 

  2
1 12/1 ta   ;   2

2 22/1 ta    

  2
3 12/1 ta   ;   ta  4/14   

  ta  215    ;   ta  4/16   

2. For each time step iteration: 

A. Calculate tangent stiffness matrix [Kt] according to 

stress level in the material behavior and related 

constitutive matrix. 

B. Calculate the following matrices obtained by 

inputting Eqs. (7) and (8) into Eq. (1): 

    tKCb t 1  

        22/121 2
2  tKtCb t  

       12/14/1 2
3   tKtCb t  

         12/14/1 2
4   tKtCMb t  

C. The acceleration vector at the end of the time step 

can be calculated as follows: 

   ttttstttt DbDbDbFRbD
t 


  

321
1

4  
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Fig. 4 Bar under dynamic axial force 

 

 

   ttttt DtDtDD  22/12  

    tttt DtDt    12/112/1 22   

   tttt DtDD  212  

    tttt DtDt    4/14/1 2   

3. In the equilibrium path iteration i, Newton-Raphson, 

Modified Newton-Raphson, or any other equilibrium 

path tracker algorithm can be utilized in order to find 

ΔD, as follows: 
i

tstttttt
i

tt FDCDMPR  
  

i
tt

i
t RDK   

4. In the material point iteration, based on the above 

displacement increment, values of strain increment 
and stress increment Δσ can be obtained by using the 

radial return algorithm or other algorithms. Thus, 

according to the [B] matrix, which is the strain 

displacement transformation matrix, the following 

internal force is obtained: 

   


dBF
T

i

ts 
1

 

5. Verify whether the tolerance condition for equilibrium 

path tracking algorithm is met. If it is, proceed to the 

next time step; if it is not, depending on the chosen 

equilibrium path tracking algorithm, any of the steps 

above could be the next step. 

Note that in linear cases, steps 2.A and 2.B can be 

performed in the initial calculations, so steps 3 and 4 must 

be eliminated. In that case, internal force can be calculated 

as follows: 

ttttts DKF 
  

 
 
6. Numerical examples 

 
To provide a quantitative assessment of the proposed 

method, the following two examples are benchmark 

 

Fig. 5 Exciting force equation acting on the bar 

 

 

Fig. 6 Finite element model of the bar structure 

 

 

problems chosen from (Bathe 1996), and the rest of the 

examples were generated by the authors. 

It is noteworthy that the analyses for all of the examples 

were conducted through a code written using MATLAB 

software. Nonlinear examples used the isotropic hardening 

material model, along with the von Mises yield function for 

the analysis (Chen and Han 2007) and the Modified 

Newton-Raphson algorithm, to track the equilibrium path 

(Crisfield 1979). 

 
6.1 Example 1 -Bar problem 
 

The bar shown in Fig. 4 was initially at rest and was 

subjected to a dynamic concentrated end load, as shown in 

Fig. 5. The response of the bar at time 0.01 sec. was sought. 

It is noteworthy that the bar consisted of two materials, 

which gave it a stiff and flexible section, and the load was 

applied to the stiff section of the bar. Both stiff and flexible 

sections are represented using the consistent mass matrix. 

In the analysis of this problem, the bar has been 

assumed to have linear elastic behavior, and according to 

(Bathe 1996), the static correction rendered the 

superposition method highly improved in accuracy. 

Consequently, in this example, the mode superposition 

method is considered as the reference solution. 

Solving this problem requires a sufficient number of 

elements; therefore, as shown in Fig. 6, the problem is 

modeled with twenty quadrilateral four-noded isoparametric 

elements. 

Fig. 7 shows the bar’s displacement responses, using the 

mode superposition, Trapezoidal Rule with two different 

time increments ( Bathe 1996), and the proposed method.  

The results of the reference solution and Trapezoidal Rule, 

using Δt=0.0004 sec. time increment and the proposed 

method using Δt=0.002 sec. time increment, are very 

similar. A close look at Fig. 7 reveals perceptible 

differences between the results around the middle 

(coordinate 0.4 m to 0.6 m from the bottom). In this region, 

the proposed method, with a time increment of 5 times 

greater than the one used in the Trapezoidal Rule, still 

provides acceptable accuracy, even with the use of a 

quadrilateral element. 
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Fig. 7 Responses of the axially loaded bar 

 

 

Fig. 8 Clamped uniaxial bar 

 

 

Fig. 9 Load acting on the clamped uniaxial bar 

 
 
6.2 Example 2 - Clamped uniaxial bar problem 
 

This example assessed the behavior of the proposed 

method in tracking the equilibrium path in inelastic regions 

of the analysis. According to (Bathe 1996), the load is 

applied slowly so that the entry to the inelastic part of the 

analysis is slow, which results in assessing merely the 

behavior of the method in inelastic regions. 

Consider the clamped uniaxial bar shown in Fig. 8. This 

bar was subjected to an axial dynamic load P (t), which is 

shown in Fig. 9. The response of D (t) (displacement of the 

point shown in Fig. 9) as a function of P (t) was sought. 

Fig. 10 shows that the material used in the uniaxial bar 

behaved in a bilinear manner, in both tension and 

compression. 

As is shown in Fig. 11, in order to get satisfactory 

responses, the bar structure was modeled using thirty 

quadrilateral four-noded isoparametric elements. 

The solution of this example was achieved by 

employing three different numerical procedures, namely 

Trapezoidal Rule, Wilson-theta, and the proposed method. 

From the results presented in Fig. 12, it is seen that, as 

 

Fig. 10 Stress-strain relation 

 

 

Fig. 11 Finite element model of the clamped bar structure 

 

 

Fig. 12 Force-displacement response of the clamped beam 
 

 

Fig. 13 Stress contour in clamped bar at 6
th

 second 
 

 

expected, the responses were very similar in the elastic 

region. However, in the inelastic region, there were 

deviations from the referenced solution for the Trapezoidal 

Rule and Wilson-theta method, while the proposed method 

kept tracking the reference solution. 

To analyze further, the von Mises stress contour of the 

clamped bar at the 6
th

 second of the analysis is presented in 

Fig. 13. From the stress color bar provided in the figure, it 

can be observed that in the loading region, the proposed 

method resulted in having different stress distribution than  
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Fig. 14 Dynamic force pattern applied to the clamped bar 
 

 

Fig. 15 Responses of the clamped beam under second load 

shape 
 

 

Table 1 Solution time of each method for second load shape 

Methods Proposed Method Trap. Rule Wilson Method 

Solution 

Time (sec.) 
93.4 104.7 267.3 

 

 

the other two methods. 

In order to highlight the number of errors created by 

each method, the dynamic load shown in Fig. 14 was 

applied to the bar. Since this loading was more periodic, it 

revealed that negligible errors of the first inelastic zone 

experience perpetuated as the method experienced more 

inelastic zones, until the errors became tangible. 

As shown in Fig. 15, the responses confirmed that the 

errors increased in the elastic-inelastic zone of the analysis 

cycle. This means that the Trapezoidal Rule and the Wilson 

method continued deviating from the reference solution as 

the analysis progressed, until the errors became tangible. 

For the proposed method, as presented in Fig. 15, the 

deviation was less than for the other two methods, resulting 

in more reliable responses. 

For the dynamic analysis, the time increment of 0.1 sec. 

was used for all of the methods except for the reference 

response, in which a time step of 0.01 sec. was used in the 

Newmark Trapezoidal Rule. The time increment of 0.1 sec. 

made other numerical methods, other than unconditional 

stable ones, grow without bound. The duration of solving 

the second shape of loading is given in Table 1. 

Meeting the tolerance condition is a major difficulty in 

 

Fig. 16 Clamped beam and its properties 

 

 

Fig. 17 Finite element mesh of the clamped beam with 

exciting force 

 

 

Fig. 18 Exciting force applied to each one of the loaded 

nodes 
 

 

nonlinear problems; therefore, it takes longer to solve the 

problems. The higher order of accuracy in the proposed 

method helps to meet the tolerance conditions more quickly 

than the other methods do, which is why the proposed 

method has the lowest solution time. 

 

6.3 Example 3 - Clamped beam problem 
 

A clamped beam was considered in this example to 

provide better insight into the effectiveness of the proposed 

method in solving nonlinear problems, using numerical 

damping. The beam was subjected to an exciting harmonic 

force (Fig. 16). 

Fig. 17 presents the finite element mesh of the modeled 

beam, consisting of one hundred and twenty quadrilateral 

four-noded isoparametric elements. The exciting forces 

shown in Fig. 17 are of the form shown in Fig. 18. 

Analysis of this problem was conducted by using 

different methods, and it was found that only unconditional 

stable methods with a time step of lower than 0.2 sec. 

offered satisfactory responses. Analysis of this problem 

with a time step of longer than 0.2 sec. would need 

numerical damping. As is mentioned in section 4, numerical 

damping in the Newmark method results in lowering the 

order of accuracy, which makes the responses grow without 

bound. 
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Fig. 19 Responses of the clamped beam 
 

Table 2 CPU solution time of different methods 

Methods 
Trap. Rule 

Δt=0.1 

Trap. Rule 

Δt=0.2 

Prop. Method 

Δt=0.2. 

Prop. Method 

Δt=0.4 

Solution 

Time (sec.) 
75.2 41.5 35.7 24.7 

 

 

Fig. 20 Cantilever beam and its properties 

 

 

However, Fig. 19 shows that the proposed method, with 

a time step of 0.4 sec., continues to give acceptable 

responses. The fact that all of the other methods grow 

without bound or give extraneous responses using a time 

step longer than 0.2 sec., while the proposed method 

continues giving acceptable responses with a time step of 

0.4 sec., makes the proposed method a reliable method in 

dealing with problems with high nonlinearity. 

Table 2 presents the CPU solution time of each method. 

According to this table, the proposed method, as mentioned 

in example 2, due to having higher order of accuracy, had 

lower solution time. Moreover, if the error created by this 

method using time step of 0.4 sec is acceptable, the 

proposed method is deemed to be the most satisfactory. 

 

Fig. 21 Finite element mesh of the cantilever beam 

 

 

Fig. 22 Displacement of the free end of the beam with 

respect to time 
 

 

Fig. 23 Von Mises stress distributions at time 3 sec. 

 

 

6.4 Example 4 - Cantilever beam problem 
 

To further investigate the strength of the proposed 

method in nonlinear problems, the free end of a cantilever 

beam was subjected to an exciting harmonic force (Fig. 20). 

Numerical damping was used to solve this example. All of 

the methods were implemented with a time step of 0.1 sec. 
except for the reference solution, (Newmark method), in 

which a time step of 0.01 sec. was used. 

Fig. 21 presents the finite element mesh of the modeled 

beam, consisting of sixty quadrilateral four-noded 

isoparametric elements. The load was applied at the tip of 

the free end. 

Fig. 22 illustrates the displacement at the free end of the 

beam. Compared to the reference solution, the displacement 

response of the proposed method, due to having numerical 

damping and higher order of accuracy, was highly accurate. 

According to the figure, the Newmark method with μ=1/2 
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& υ=2/7 yielded a better response than the Newmark 

Trapezoidal Rule. This was because of the numerical 

damping, but the numerical damping in the Newmark 

method lowered the order of accuracy of this method. 

Fig. 23 presents the von Mises stress distributions of the 

methods at time 3 sec. to provide better insight into the 

accuracy of the responses. 

According to the figure and considering the color bar of 

each method, it is easy to see that the stress distribution in 

the proposed method is the most accurate. The accuracy of 

the Newmark methods is low because they either lack 

enough order of accuracy or don’t possess numerical 

damping. 

 

 

7. Conclusions 
 

In this research, a new direct numerical integration 

algorithm is proposed, with quadratic variation of 

acceleration. Whether the problem is linear or nonlinear, the 

proposed method has a greater degree of accuracy in its 

responses than other unconditionally stable methods. 

Moreover, the duration of the solving of linear systems can 

be controlled by stretching the time step increment. Even 

though the stretching of the time increment is limited, as it 

lowers the accuracy, the proposed method, with a 

remarkably greater time increment, indicates the same 

accuracy as the Trapezoidal Rule. In nonlinear systems, the 

proposed method, with the same time step increment, yields 

more accurate responses than the other methods, which 

continue digressing from the reference solution as the 

analysis proceeds. The proposed method also proved to 

have satisfactory responses when applied to nonlinear 

systems, using an extended time step. Additionally, keeping 

the order of accuracy while numerical damping is inserted 

into the analysis renders the proposed method a reliable 

method for solving such nonlinear problems. Because of the 

lower number of loops needed to meet the tolerance 

condition in the Modified Newton-Raphson loop of 

analysis, the proposed method has the lowest CPU solution 

time. Finally the simplicity of employing this method to 

nonlinear systems provides an additional motive to offering 

the proposed method. 
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