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1. Introduction  
 

Laced Steel-Concrete Composite (LSCC) system is a 

form of Steel-Concrete Composite (SCC) construction 

developed by the authors (Anandavalli et al. 2012). LSCC 

system comprises of thin steel cover plates provided with 

perforations, through which reinforcements are introduced 

and held in position with the help of cross rods and in filled 

with concrete between the cover plates as shown in Fig. 1. 

Reinforcing members are continuously bent rods known as 

lacing, which transfer the force between steel cover plate 

and concrete core. This system is devoid of welding due to 

particular arrangement of lacings being inserted through the 

perforations at appropriate places and made to stay intact by 

using the cross rods.  

Preliminary studies have already been conducted to 

understand the basic response characteristics of LSCC 

beams under static or quasi-static loading. Experimental 

investigations on LSCC beams have been carried out by the 

authors (Anandavalli et al. 2012) and it has been observed 

that such beams possess large ductility and rotational 

capacity. This makes LSCC system suitable for structures 

which are subjected to shock loads such as due to 

blast/impact. Towards this, the support rotation of the tested 

LSCC beam specimens was found to be nearly 13º with 

maximum mid-span deflection of 170 mm (Anandavalli et 

al. 2012). Due to the conventional test set-up, the failure 
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Fig. 1 (a) Isometric view of the LSCC configuration; (b) 

Cross-section of LSCC system 

 

 

mechanism of the LSCC beam specimens could not be 

ascertained from the experiments. 

Finite element (FE) analysis of LSCC beam has also 

been carried out by the authors to determine the limiting 

deformation capacity and mode of failure (Thirumalaiselvi 

et al. 2016). FE model has proven to be effective in terms of 

predicting load-deflection response, post peak behaviour 

and failure mode of LSCC beam. Through detailed FE 

analysis, the beams are found to fail by yielding of the 

bottom cover plate. In spite of these, it is preferable to have 

simplified set of solutions which can be readily used to 

make a first-hand estimate of the member capacity and also 

the load-deflection response. This is the motivation to 

develop analytical solutions for obtaining flexural capacity 

of LSCC beams and to predict its load-deflection behaviour. 

Few analytical solutions for estimation of moment of 

resistance and deflection for SCC elements are available 

(McKinley and Boswell 2002, Xie et al. 2007, Liew and 

Sohel 2009, Liew et al. 2009, Sohel et al. 2012). Double 

Skin Composite (DSC), a form of SCC construction 

consists of two steel plates and a group of shear stud 

connectors (welded to either top or bottom steel plate). In 

finding the position of neutral axis of DSC panel, it has 
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been found that error in neglecting bending stiffness of 

plate about their own axes is less than 1%. The moment of 

resistance of DSC element has been determined by 

assuming linear stress distribution throughout depth of 

panel. Bending deflection has been calculated through pure 

bending theory and shear deflection has been obtained 

through the concept of effective shear modulus. However, 

deflections are relied upon for shear stiffness determination 

from experimental data (McKinley and Boswell 2002). Bi-

steel is another form of SCC construction, consisting of two 

steel plates, a concrete core and a group of shear connectors 

(welded to both plates). Equivalent steel beam method has 

been adopted by Xie et al. (2007) to calculate the bending 

stresses and deflection due to bending, slip and shear. But, 

disadvantage is that only linear response of bi-steel has 

been ascertained. Liew and Sohel (2009) investigated a 

composite structure comprising of lightweight concrete core 

sandwiched in between two steel plates which are 

interconnected by J-hook connectors. Using the Eurocodes 

as basis of design, analytical (Sohel et al. 2012) methods to 

evaluate the flexural and shear resistance of this type of 

composite system has been developed. Flexural resistance 

and deflection are computed as given by McKinley and 

Boswell (2002) and plastic moment of resistance is 

determined by assuming rectangular plastic stress block.  

Taking clue from all these, expressions for computing 

the flexural capacity of the LSCC beams are derived in 

accordance with the basic concept used in Reinforced 

Concrete (RC) beams after implementing suitable 

modifications to account for the composite nature of the 

geometry. Flexural capacity at yield point is computed by 

assuming linear stress distribution in LSCC section. Beyond 

yielding, flexural capacity is determined by assuming 

parabolic stress distribution for concrete in compression 

zone. In addition to this, analytical methods based on unit 

load and equivalent steel beam method are also proposed to 

determine the load-deflection response of LSCC beam. 

Conventional unit load method is suitably modified to 

obtain non-linear load-deflection response. Moment 

curvature relationship for LSCC beam is incorporated into 

equivalent steel beam method to determine the deflection 

response. The analytically calculated ultimate flexural 

capacity is found to be about 85% of that measured in 

experiments. Also, the load-deflection curves obtained 

using the proposed methods are found to reasonably match 

with those from experiment and FE analysis though to a 

different degree. 

 

 

2. LSCC beam: structural concept 
 

The strength of bond between steel cover plate and 

concrete core, transfer of force between the cover plates and 

concrete core are the two governing factors in the design of 

SCC system (Liew et al. 2009). Most importantly 

composite action requires sufficient transfer of load 

between the concrete and steel. In LSCC beams, the lacings 

are structurally integrated with the cover plates through 

cross rods, and their primary function is to resist both 

transverse and longitudinal shear and to provide resistance  

 

Fig. 2 Strut and tie model of LSCC system 

 

 

Fig. 3 Loading arrangement on LSCC beam 

 

 

against outwards local buckling of the top plate when the 

beam is subject to loading. Lacings are the primary 

components that mainly transfer the load between the 

plates, even after the core concrete is completely 

disintegrated. Cross rod also plays a significant role in 

transferring forces and preventing local buckling of steel 

cover plates apart from holding the lacings in position. The 

steel cover plates confine the concrete and are used to 

prevent spalling of concrete core at failure.  

In the strut and tie model of LSCC system (Anandavalli 

2012) the bottom steel cover plate acts as tension member, 

top steel cover plate and the concrete above neutral axis are 

represented by the compression member. Inclined lacings 

which are connected to the top and bottom plates acts as 

tension member and resistance to compression is provided 

by virtual concrete strut as shown in Fig. 2. 

 
 

3. Experimental investigations 
 

Experimental investigations carried out on LSCC beam 

specimens by the authors were explained by Anandavalli et 

al. (2012) earlier. However, for the sake of completeness in 

reading, brief details about the experiments are given in this 

section. LSCC beam having cross section of 300 mm x 150 

mm and length of 2.4 m is chosen for the present study. 

Cover plates are made of 3 mm thick cold formed steel 

provided with a lip of 50 mm on each side. Average yield 

and ultimate stress of cold formed steel are found to be 210 

MPa and 300 MPa. Two test beam specimens, one with 

lacing angle of 45° (labelled as LSCC-45) and other with 

lacing angle of 60° (labelled as LSCC-60) are fabricated. 

The cover plate assembled with lacings and cross rods is 

shown in Fig. 1. Lacings and cross rods are made of mild 

steel. Average yield and ultimate stress of mild steel rods 

are found to be 400 MPa and 540 MPa. Diameter of lacing 

and cross rod is 8 mm and 10 mm respectively. 

Two LSCC beam specimens are subjected to 

monotonically applied loading under a typical arrangement 

to understand their behaviour. The specimens are tested 

with simply supported boundary conditions. Schematic 

diagram of four point bending set-up is shown in Fig. 3. 

Test set-up is shown in Fig. 4. During experiment, both the 

beams are found to possess large deformation and ductility.  
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Fig. 4 Test set up 

 

 

Fig. 5 LSCC section details (a) LSCC cross section 

ignoring lip portions; (b) Assumed linear stress distribution 

in section 

 

 

However, the test was discontinued to avoid the risk of 

support rod slipping at such large deformation. As the 

experiment has been stopped abruptly due to safety issues, 

the ultimate capacity could not be ascertained. The readers 

are referred to Anandavalli et al. (2012) for more details 

about the experiments.  

 

 

4. Analytical methods 
 

A set of analytical methods are developed to determine 

the load-deflection responses and flexural capacity of LSCC 

beam elements having equal plate thickness. The validity of 

the analytical methods is verified by comparing the 

analytical results with those obtained from experiments 

(Anandavalli et al. 2012). 

 

4.1 Flexural capacity of LSCC section 
 

Fig. 5 shows the cross-section of LSCC beam of width 

„b‟. The location of neutral axis, z and flexural capacity of 

LSCC sections, M are determined in consistent with the 

conventional RC theory, modified for the changes in basic 

cross-sectional property. In computing the location of the 

neutral axis of LSCC, concrete in tensile zone is assumed to 

be ineffective after cracking as in case of cracked theory of 

conventional RC. The flexural stiffness of thin steel plates 

about their own axes is assumed to be negligible (McKinley 

and Boswell 2002). Fully composite beam action is also 

assumed. In experiments, fully composite action is 

witnessed in such a way that slip at steel-concrete interface 

at the support regions is found to be insignificant. Thus, by 

assuming fully composite action, it is implied that the 

flexural capacity of beam is mainly due to the strength of 

the steel cover plates. It also has a corollary that the lacings 

contribute to the shear strength of the LSCC beams (Kwon 

2008). 

From Fig. 5, the position of neutral axis, z, is estimated 

by taking moments of area about the neutral axis 

bt1[z + t1 2⁄ ] + (b m⁄ )(z2 2⁄ ) = bt2[hc − z + t2 2⁄ ] (1) 

where b is the width of the beam, t1 is the thickness of top 

cover plate, t2 is the thickness of bottom cover plate, hc is 

the thickness of concrete core, m which equals Es/Ec is the 

ratio between the elastic moduli of steel and concrete. Eq. 

(1) when rearranged in terms of quadratic equation. 

z2 + 2mz(t1 + t2) − m(t2
2 − t1

2 + 2t2hc) = 0 (2) 

The only relevant solution to this equation is the 

positive value 

z = −m(t1 + t2) 

+√m2(t1 + t2)2 − m(t1
2 − 2t2hc − t2

2)  
(3) 

In computing the flexural capacity at yield point, it is 

assumed that the stress in the concrete in compression zone 

is linearly distributed in the LSCC section. The flexural 

capacity of LSCC section can be obtained by taking 

moments about the line of action of the concrete 

compressive force by (Fig. 5). 

M = Fcs (
z

3
+

t1

2
) + Fts(hc − z 3⁄ + t2 2⁄ ) 

= ζcbt1 (
z

3
+

t1

2
) + ζtbt2(hc − z 3⁄ + t2 2⁄ ) 

(4) 

where Fcs is the compressive force in top cover plate (= 

ζcbt1), Fts is the tensile force in bottom cover plate (= ζtbt2). 

Since the stress distribution throughout the depth of 

concrete is assumed to be linear, the stress in the top steel 

plate, ζc can be expressed in terms of that in the tension 

plate, ζt as 

ζc

z +
t1

2

=
ζt

hc − z +
t2

2

 

ζc =
ζt

(hc − z +
t2

2
)

(z +
t1

2
) 

(5) 

The point at which the bottom tensile plate starts 

yielding is considered as the yield point of the beam. At the 

stage of yielding of plate, ζt=ζy, hence from Eqs. (4)-(5), 

the flexural capacity of the LSCC section can be calculated 

as 

My = bt1 (
z

3
+

t1

2
)

σy

(hc − z +
t2

2
)

(z +
t1

2
) 

+σybt2 (hc −
z

3
+

t2

2
) 

(6) 

Beyond yielding of the bottom tensile plate, stress 

distribution of concrete in compression zone is non-linear. 

Thus the flexural capacity of LSCC section can be 

determined by assuming a parabolic stress distribution 

(Vakil 2012) for concrete in accordance with conventional 

RC theory (Fig. 6). The concrete beneath the neutral axis is  
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Fig. 6 Parabolic stress distribution assumed in the section 

after yielding 

 

Table 1 Comparison of flexural capacity (kNm) 

Beam Predicted Experiment 
(My)exp/ 

(My)ana 

(Mu)exp/ 

(Mu)ana 

 
At yield 

(Eq. (9)) 

At ultimate 

(Eq. (10)) 

At 

yield 

At 

ultimate 

At  

yield 

At  

ultimate 

LSCC-

45 
28.2 42.93 36.575 49.875 1.29 1.16 

LSCC-

60 
28.2 42.93 40.2 53.6 1.45 1.25 

 

 

assumed to be cracked and parabolic stress block of depth 

„z‟ is considered. 

In such case, to determine the location of neutral axis 

from top concrete surface, equilibrium condition is applied. 

Under equilibrium, total compressive force is equal to the 

total tensile force in the section. Thus equating the total 

compressive force to the total tensile force 

Fcs + Fcc = Fts (7) 

where Fcs is the compressive force in top cover plate 

(=ζcbt1), Fts is the tensile force in bottom cover plate 

(=ζtbt2), Fcc is the compressive force in concrete 

(=0.36fckbz). 

The depth of neutral axis can be obtained as 

z =  
(ζtt2 − ζct1)

0.36fck

 (8) 

Taking moments about the line of action of steel 

compressive force, Fcs the flexural capacity can be 

calculated as 

M = Fts (hc +
t1

2
+

t2

2
) − Fcc (

z

2
+

t1

2
) 

= ζtbt2 (hc +
t1

2
+

t2

2
) − 0.36fckzb (0.42z +

t1

2
) 

(9) 

After yielding of tensile cover plate, the concrete 

cracking continues to propagate upwards. As the crack 

propagates, neutral axis shifts towards the top cover plate. 

The ultimate flexural capacity of the LSCC beam is attained 

when the neutral axis reaches the bottom portion of the 

compression cover plate (i.e., z=0). Substituting z=0, in Eq. 

(9), the ultimate flexural capacity can be written as, 

Mul = ζtbt2 (hc +
t1

2
+

t2

2
) (10) 

Values of flexural capacity obtained at yield and 

ultimate stages using the above relations are compared with 

the experimental values in Table 1. It is observed that for 

LSCC-45 beam the ultimate flexural capacity predicted 

analytically is about 14% less than the experimentally 

observed values. Also for LSCC-60 beam, the predicted 

ultimate flexural capacity is approximately 20% less than 

the corresponding values due to the experiment. This 

difference could be due to the reason that contribution of 

the lip portions in resisting flexure is not taken into account. 

The comparison indicates that the derived expressions are 

useful to obtain a first order conservative estimate of the 

beam capacity. 

 

4.2 Load-deflection behavior 
 

Load-deflection response of structural members gives an 

indication of ductility possessed by them. In this study, two 

analytical methods are proposed based on unit load method 

and equivalent steel beam method to determine the 

deflection of LSCC flexural member under monotonic 

loading:  

• Modified unit load method  

• Extended equivalent steel beam method 

Unit load method is suitably modified by equivalent 

linearization procedure to obtain non-linear load-deflection 

response. Bending and shear components of the deflection 

obtained using modified unit load method are explained in 

the subsequent sections. Equivalent steel beam method is 

also adopted to calculate the deflection of LSCC beam. 

Conventional equivalent steel beam method is used along 

with moment curvature relationships for the LSCC section, 

to predict non-linear load-deflection behaviour of LSCC 

beams. 

 

4.2.1 Modified unit load method 
Deflection determination using unit load method is well 

established procedure. Conventional unit load method is not 

capable of predicting non-linear load-deflection behaviour 

of structural members. But actually, the response of LSCC 

member subjected to monotonic loading is non-linear. 

Hence, in order to predict the non-linear response of LSCC 

beam, a modification is proposed to the unit load method. 

Modification is made by adopting moment curvature 

relationships for the LSCC section. The moment curvature 

relationship is obtained using the idealised stress-strain 

characteristics of concrete (as per IS 456:2000) and stress 

strain values of cold formed steel. The moments and 

corresponding curvatures are calculated for the following 

stages of response:  

Stage (i): Cracking of concrete 

Stage (ii): When the strain in tensile cover plate reaches 

strain corresponding to stress of 0.8 times fy, where fy is 

the yield stress of the cold formed steel 

Stage (iii):  When the strain in tensile steel cover plate 

reaches strain corresponding to stress of fy 

Stage (iv):  When the strain in concrete core reaches a 

value of 0.0035 

Stage (v): When the strain in tensile steel cover plate 

reaches a value of 0.02 

Until cracking, the transformed moment of inertia, „It‟, 

is used for computing the moment and the corresponding 

curvature. The cracking moment „Mcr‟ is given by 

Mcr =
fcrIt

(D
2⁄ )

 (11) 
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Fig. 7 Moment-curvature curve of LSCC beam 

 

 

where, fcr is the modulus of rupture which equals 0.7√(fck), 

fck is the characteristic strength of concrete, It is the 

transformed moment of inertia and D is the overall depth. 

The curvature, Фcr is given by 

Фcr =
Mcr

EcIt
 (12) 

where Ec is the modulus of elasticity of concrete. 

The values for the moments and the corresponding 

curvatures at other stages were computed using linearity of 

strain profile across section and equilibrium of tensile and 

compressive forces. Then, moment is obtained by the 

following equation 

M = Tjd (13) 

where M is the moment at any stage, T is the total tensile 

force and jd is the lever arm. 

The curvature is computed using the relation 

Ф =
εp

z
 (14) 

where z is the distance from the location  of neutral axis to 

concrete top surface, εp is the strain in steel cover plate 

The moment-curvature relation obtained for the LSCC 

beam is shown in Fig. 7. 

Deflection due to shear and flexure is uncoupled, and 

the total deflection is the sum of deflections due to flexure 

(δf) and shear (δs). 

 
Deflection due to flexure 
Based on unit load method, the maximum deflection at 

the mid span is obtained using the relation 

δf = ∫
Mm̅

EI

L

0

dx (15) 

δf = ∫ Φm̅ dx
L

0

 (16) 

where M is the moment at a distance „x‟ in the beam due to 

applied load, �̅� is the moment at same section due to unit 

load at beam mid span, EI is the flexural stiffness of beam. 

The bending moment variation along the span of LSCC 

beam due to applied loading as well as unit load is shown in 

Fig. 8. In conventional unit load method, from the relation 

given in Eq. (15), only linear response can be obtained. 

 

Fig. 8 M and �̅� variation along the length of beam 

 

 

Equivalent curvature corresponding to particular 

moment level, computed using a procedure similar to 

equivalent linearization (Anandavalli et al. 2005) is written 

as 

Ф′ =  
2Amϕ

M
 (17) 

which is twice the area of the multi-segmental moment 

curvature diagram up to the moment level under 

consideration divided by the moment, forgiven element. 

Hence the equation for computation of deflection at 

particular stage is obtained as 

δf = ∫
Ф′

2a
x2 dx 

a

0

+ ∫
Ф′

2
x dx 

L
2⁄

a

 (18) 

 Integrating Eq. (18), the value of δf can be obtained as 

δf =
Ф′

48
(3L2 − 4a2) (19) 

where a is the distance between support and loading point. 

 
Deflection due to shear 
Based on unit load method, the maximum deflection due 

to shear at the mid span is computed using the relation 

δs = ∫
Vv

GA

L

0

 dx (20) 

where V is the shear at a distance „x‟ in the beam due to 

applied load which equals P/2 (Fig. 9), v is the shear at 

same section due to unit load at mid span which is 1/2. GA 

is the shear stiffness of the LSCC beam. Shear stiffness is 

computed using the procedure proposed by Anandavalli et 

al. (2005) and is explained below. 

 The resistance mechanism in a LSCC member is already 

discussed by adopting strut and tie concept. In accordance 

with the established RC theory, in LSCC beams, lacings 

(shear reinforcements) contribute significantly to the overall 

shear resistance. Neglecting the small contribution due to 

the concrete in the form of shear friction and aggregate 

interlock, the entire shear is assumed to be resisted by the 

shear force „V‟ developed in the lacings. Hence 

V = 2n Asfs sin(α) (21) 
 

M variation 

m̅ variation 

315



 

A. Thirumalaiselvi, N. Anandavalli and J. Rajasankar 

 

 

Fig. 9 V and v variation along the length of beam 

 

 

Fig. 10 Shear deformation 

 

 

where As is the cross sectional area of steel lacings, fs is the 

stress in lacings steel, n is the number of lacings crossing 

the section and α is the angle of lacing. 

Shear deformation (∆V) over the depth, d is the sum of 

change in length of concrete strut (∆C) and resultant change 

in length of lacings (∆R). Change in length of lacing, ΔS is 

given by 

∆S = original length x εs =
d

sin(α)
(

fs

Es
) 

=  
V

2 n As sin(α)
(

d

Essin (α)
) 

(22) 

where εs is the strain in lacing steel and Es is the modulus of 

elasticity of lacing steel. 

The resultant change in length of lacing, ∆R is given by 

∆R = √2∆S =
Vd

√2 n As sin2(α) Es

 (23) 

The force in strut is given by 

C = V = 2 n Asfs sin(α) (24) 

Change in length of the strut, ΔC is given by 

∆C =
stress in concrete

Ec
 original length 

=
V

d bwEc
 d 

(25) 

where bw is the effective width of LSCC beam.  

Modulus of elasticity of cracked concrete 

(EI)eff = Ec (
1

12
bD3) 

Ec = [
12(EI)eff

bD3
] = [

12 (
M
Ф

)

bD3
] (26) 

where b is the width of LSCC beam and D is the depth of 

LSCC beam. 

Thus, the shear deformation over a distance, d is given 

by 

ΔV = ΔR + ΔC 

(
Vd

GA
) =

Vd

√2 n As sin2(α) Es

+
V

bwEc
 

(27) 

Hence, shear stiffness can be written as 

1

GA
= [

1

√2n  Assin2(α)Es

+
1 

d bwEc
] (28) 

Substituting this in Eq. (20), the value of δs can be 

obtained as 

δs = ∫ Vv
L

0

[
1

√2n  Assin2(α)Es

+
1 

d bwEc
] dx (29) 

Thus, the total deflection, δ at the mid span of the beam 

is given by δ=δf+ δs. 

 

4.2.2 Extended equivalent steel beam method 
Equivalent steel beam method has been recommended 

by Xie et al. (2007) for calculating the bending stresses and 

deflection of steel-concrete-steel (SCS) sandwich beams.  

According to the recommendation, deflection is calculated 

using the equivalent steel section with steel modulus Es. 

The method does not provide means for calculating the non-

linear response of SCS sandwich beams since it has been 

assumed that the steel and concrete are elastic. But in 

practice, the member will be in inelastic state at an early 

stage itself due to cracking of concrete. Hence, in the 

present study, equivalent steel beam method is extended 

with the aim of capturing non-linear load-deflection 

response of LSCC beams under bending. The basis of 

extended equivalent steel beam method is to make use of 

moment curvature relationships in determining the 

deflection response of LSCC beams. 

Fig. 11 shows the cross-section of LSCC beam of width 

„b‟, top and bottom steel plate of thicknesses „t1‟ and „t2‟ 

respectively and concrete core of thickness „hc‟. In 

accordance with the equivalent steel beam method, the 

tensile strength of concrete is assumed to be negligible and 

steel cover plates are assumed to be continuously connected 

to the concrete. Width of steel plate is retained and that of 

concrete core is assumed to be reduced in proportion to the 

modular ratio „m‟, which is equal to Es/Ec as shown in Fig. 

11. Deflection is calculated for the equivalent section with 

steel modulus Es. 
The maximum deflection at the centre of a beam in a 

two point loading system can be calculated by using the 

relation 

δ =
Mmax

24EsI
(3L2 − 4a2) (30) 

where L is the span of the beam; Mmax is the maximum 

moment at the mid-span due to concentrated loads, applied  
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Fig. 11 LSCC section details (a) LSCC cross section 

ignoring lip portions; (b) Equivalent steel section 

 

 

at a distance „a‟ from the support; Es is the modulus of 

elasticity of steel; and I is the effective moment of inertia of 

the beam section after cracking.  

Using the relation given above only linear load-

deflection response of member can be obtained (Xie et al. 

2003). To capture the non-linear deflection of LSCC beams, 

curvature corresponding to particular load level is adopted 

in determining the deflection. Moments and corresponding 

curvatures at different stages (as explained in previous 

section) for LSCC section is evaluated using the stress-

strain model for concrete proposed by Hognestad (1995) 

and stress-strain values of cold formed steel. Depth of 

neutral axis, z is obtained iteratively by equating the 

compression and tension forces. Then maximum moment, 

Mmax is calculated from the derived neutral axis depth. 

Curvature,  is given by 

Φ =
Mmax

EsI
 (31) 

Substituting this in Eq. (30), δ can be written as 

δ =
Φ

24
(3L2 − 4a2) (32) 

Using above relation, deflection can be obtained at 

different stages of loading by making use of curvatures 

corresponding to that particular load level. This provided 

means to obtain the non-linear load-deflection response of 

LSCC beams. To illustrate the effectiveness of extended 

equivalent steel beam method, for LSCC-45 beam, 

deflection is obtained by using both the equivalent and 

extended equivalent steel beam methods and compared with 

the experimental values as shown in Fig. 12. 

It is observed that equivalent steel beam method is 

capable of predicting only the linear response of LSCC 

beam (till a load level of about 65 kN) and fails in the non-

linear range. However, the performance of extended 

equivalent steel beam method is found to be quite 

satisfactory in the entire load range. 

 

4.2.3 Load-deflection response 
As the load-deflection response of LSCC beams is non-

linear, mid-span deflection corresponding to two-thirds the 

peak load and yield of the bottom cover plate is considered 

for validating the proposed analytical methods (Roberts et 

al. 1996). Predicted deflection values are presented in Table 

2 along with the corresponding measured values. In spite of  

 

Fig. 12 Load-deflection behaviour of LSCC-45 beam due to 

equivalent steel beam method 

 

Table 2 Comparison of the deflection of LSCC beam 

Beam 
Load 

(kN) 

Predicted (mm) 

Experiment 

(mm) 

FE 

analysis 

(mm) 

Modified 

unit load 

method 

Extended 

equivalent 

steel beam 

method δB δS δtotal 

LSCC-

45 

2Pu/3=100 

Py=110 

3.5 

4.9 

1.3 

1.4 

4.8 

6.3 

13.8 

16.9 

6.0 

7.6 

8.59 

10.8 

LSCC-

60 

2Pu/3=106.7 

Py=120 

4.4 

10.7 

1.2 

1.6 

5.6 

12.3 

15.9 

20.9 

9.91 

13 

9.92 

13.1 

 

 

Fig. 13 Load-deflection behaviour of LSCC-45 beam 

 

 

complex factors governing the behaviour of LSCC beams 

(concrete cracking, buckling of cover plates), the analytical 

results are seen to follow the trend of experimental results. 

As generally expected, deflection due to shear is found to 

be negligible when compared with that due to flexure. 

Among the two analytical methods, the results from 

extended equivalent steel beam method are found to be on 

higher side because of which this method is ideal for use in 

preliminary design verification of LSCC beams. 

For LSCC-45 beam, deflection curves obtained using 

extended equivalent steel beam method and modified unit 

load method are presented in Fig. 13 along with those 

obtained from experiment and FE analysis. In the initial 

elastic region up to a load of about 70 kN, it is observed that 

the deflection obtained using both the extended equivalent 

steel beam method and modified unit load method coincides 

well with the those measured from experiment. Among  
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Fig. 14 Load-deflection behaviour of LSCC-60 beam 

 

Table 3 Parameters considered in the study 

Parameters Abbreviation Values 

Plate thickness, mm PT 2,3,4,5 

Angle of lacing, degees LA 30,45,60 

 

 

these two methods, the extended equivalent steel beam 

method is found to perform better. Between 70 kN and 150 

kN, it is seen that the extended equivalent steel beam 

method depicts flexible behaviour for the beam when 

compared to the experiment. The critical post peak 

behaviour shows minor deviation from the experimental 

values. Beyond 70 kN, load-deflection curve obtained from 

modified unit load method matches with experimental curve 

though with little discrepancy till peak load is reached. 

However, this method is found to be unsuitable to know the 

softening response of the beam. 

Deflection responses of LSCC-60 beam obtained using 

extended equivalent steel beam method and modified unit 

load method are presented in Fig. 14 along with those 

obtained from the experiment and FE analysis. The results 

due to experiment is taken as reference in the comparative 

study. The comparison indicates the excellent performance 

of extended equivalent steel beam method in predicting the 

entire load-deflection response of the beam. In the initial 

elastic region up to around 70 kN, the curve is found to 

coincide with that of experiment. The response between 70 

kN and 150 kN predicts a mild flexible behaviour for the 

beam. Post peak softening response also matches quite well 

with that of experiment. On the other hand, modified unit 

load method predicts stiffer behaviour for the beam besides 

failing to capture the softening response in the post-peak 

range. 

 

 

5. Validation studies 
 

The improved analytical methods proposed in the paper 

are based on basic principles of mechanics, though with 

simplifying assumptions. Before accommodating these 

methods into use, it is proposed to understand the 

performance of the methods by comparing their prediction 

against that of another source, like an experiment. However, 

as already seen, laboratory experiments may not reveal the 

complete response of LSCC beams because of constraints in 

measuring their large deflection. As a possible solution, 

extensive parametric studies are carried out to generate the 

results for comparison. The results of such studies can also 

be used for comprehensive assessment of the influence of 

the model parameters such as the beam geometry (length 

and width of beam, angle and diameter of lacing, thickness 

of cover plates) and concrete grade on the response. 

Parameters considered and their corresponding values are 

given in Table 3. 

For conducting the parametric studies, the validated FE 

model of LSCC beam reported by the authors earlier 

(Thirumalaiselvi et al. 2016) is used. Brief details about FE 

model are explained here for the sake of continuity in 

reading while interested readers can refer to the source for 

more details. Solid, shell and link elements are used to 

represent the concrete core, steel plates and shear 

connectors respectively. Stress-strain curve of concrete in 

compression including strain softening is defined using 

empirical relationship proposed by Attard and Setunge 

(1996). Linear stress–strain relationship is used for concrete 

in tension up to concrete cracking stress. To consider the 

post-cracking resistance in tension, the stiffening model 

proposed by Guo and Zhang (1987) is adopted. Concrete 

damaged plasticity model is adopted to represent complete 

inelastic behaviour including damage characteristics of 

concrete both in tension and compression. Plasticity based 

model is used to describe the non-linear behaviour of steel 

with nominal stress-strain values obtained from the coupon 

tensile tests results (Anandavalli 2012). Mechanical 

interaction between the cover plate and in-filled concrete is 

modelled by surface to surface contact interactions using 

friction formulation in tangential direction and hard contact 

in normal direction. The classical Coulomb model is 

employed to define friction between the surfaces. Lacings 

are embedded in concrete and also restrained by cross rods 

at intersections. The analysis is terminated when the tensile 

strain in bottom cover plate reach the failure strain of steel. 

The response of the beams for two-point loading is 

critically studied by the authors (Thirumalaiselvi et al. 

2016) for different set of parameters such as plate thickness, 

concrete grade and angle of lacing. Parametric study carried 

out by them reveals the fact that lacing angle and plate 

thickness significantly influence the capacity of LSCC 

beams. 

This is taken into account while evaluating the 

performance of the proposed analytical methods. Thus the 

response of LSCC beams defined by different values of 

cover plate thickness (PT) and lacing angle (LA) given in 

Table 3 are obtained by the proposed analytical methods. In 

addition, with the aim to derive a deeper understanding of 

the performance of these methods, the analysis is repeated 

for another beam whose length and width are chosen as 1.8 

m and 400 mm but retaining the depth as 150 mm. The 

analytical methods are proposed to capture the load-

deflection response of the LSCC beams. However, these 

methods do not include a termination criterion to know the  
maximum deflection of the beam. Therefore, initially, an 
approximate value for the rotation capacity of the beams is 
calculated depending on the lacing angle. Then the load-
deflection response of the beams is obtained by applying 
the analytical methods up to maximum deflection defined 
by the rotation capacity of the beams. Analytically predicted  
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load-deflection response is compared with that of the FE 

analysis in Tables 4 and 5 for LSCC beams of length 2.4 m 

and 1.8 m respectively. 

From the comparison made, it is observed that extended 

equivalent steel beam method makes better prediction of the 

response in the entire range of interest. This is particularly 

observed to be true in case of beams with higher capacities 

such as the ones made of thicker cover plates. Further, it is 

once again confirmed that this method is able to trace the 

post-peak softening response of the beam for all the cases 

analysed while the modified unit load method is not that 

successful.  

It needs to be emphasized that analytical solutions are 

obtained by employing simplifications and the consequent 

limitations of these solutions should be realized. The 

maximum deflection calculated using the analytical 

methods is based on the approximate estimate of the 

support rotation of the beams which depends on the lacing 

angle. Also, it is observed from FE analysis that the ultimate 

 

 

deflection of LSCC beams varies with the thickness of steel 

cover plate. As this variation is only marginal, it is thought 

that the influence of plate thickness can be ignored while 

using the simple analytical methods. With this background, 

reasonable results are achieved for various configurations of 

LSCC beams and the analytical solutions provide 

acceptable first estimate of the response of LSCC beams. 

This is specifically valid as long as the peak load and the 

pattern of load-deflection behaviour is of prime importance. 

 
 
6. Conclusions 
 

Laced Steel-Concrete Composite (LSSC) beams are 

reported to possess unusually large ductility due to the 

specific assembly of steel cover plates with the continuous 

lacings by using short cross rods. An attempt is made in the 

present paper to estimate the load-deflection behaviour of 

LSCC beams through simple analytical methods. Initially,  

Table 4 Load-deflection response of 2.4 m long LSCC beam 

Lacing 

Angle 

Width, b (mm) 

300 400 

30º 

  

45º 

  

60º 

  

 

FE analysis Extended equivalent steel beam method Modified unit load method 

2 mm 3 mm 4 mm 5 mm 
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Table 5 Load-deflection response of 1.8 m long LSCC beam 

with width 300 mm 

Lacing Angle Response 

30º 

 

45º 

 

60º 

 

 
 

 

an analytical expression is derived based on the 

conventional reinforced concrete theory to find the flexural 

capacity of the beams. The derived expression is found to 

make a conservative estimate of the flexural capacity by a 

maximum of about 20% which makes it ideal for first-hand 

estimation of the beam capacity during preliminary design.  

Further to these, two methods, based on i) unit load 

method and ii) equivalent steel beam method, are developed 

to trace the non-linear load-deflection response of LSCC 

beams for monotonic loading. In equivalent steel beam 

method, the beam deflection is calculated by introducing 

moment curvature relationship derived for LSCC beam 

section. On the other hand, the modification in unit load 

method is due to replacement with the curvature computed 

using equivalent linearization procedure to predict the load-

deflection behaviour of LSCC beams. A comparison among 

the two methods denote that extended equivalent steel beam 

method overestimates the deflection values while modified 

unit load method underestimates the same compared to the 

experimentally measured and those obtained from extensive 

parametric studies using validated FE model. The beam 

deflection values obtained by using modified unit load 

method are found to be only grossly correlating with those 

from experiments and FE analysis. Mainly, post peak 

response could not be predicted using this method. Thus, 

extended equivalent steel beam method is found to provide 

acceptable load-deflection response of the beams including 

the critical post-peak behaviour. The proposed simple 

methods are particularly useful in the light of difficulties 

experienced in conducting laboratory experiments on LSCC 

beams due to their unusually large deformation capacity. 
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