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Abstract. In this article, the vibration behavior of double-bonded sandwich microplates with homogeneous core and
nanocomposite facesheets reinforced by carbon nanotube and boron nitride nanotube under multi physical fields such as 2D
magnetic and electric fields is investigated. Symmetric and un-symmetric distributions of nanotubes are considered for
facesheets of sandwich microplates such as uniform distribution and various functionally graded distributions. The double-
bonded sandwich microplates rest on visco-Pasternak foundation. Material properties of sandwich microplates are obtained by
the extended rule of mixture. The sinusoidal shear deformation theory (SSDT) is employed to describe displacement fields of
sandwich microplates. Also, the dimensionless natural frequency is obtained by classical plate theory (CPT) and compared with
the obtained results by SSDT. It can be seen that the obtained dimensionless natural frequencies by CPT are higher than SSDT.
In order to study the material length scale parameters, modified strain gradient theory at micro scale is utilized and then, the
equations of motion are derived using Hamilton’s principle. The effects of different parameters such as foundation parameters
including Winkler, shear layer and damping coefficients, various distributions and volume fraction of nanotubes, core to
facesheet thickness ratio, aspect and side ratios on the dimensionless natural frequencies are discussed in details. The results of
present work can be used to optimum design and control of similar systems such as micro-electro-mechanical and nano-electro-
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mechanical devices.
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1. Introduction

Nowadays, the use of sandwich structures in many
applications of engineering are developed such as transport,
aerospace, marine, civil construction, and shipbuilding. It is
due to the significant features of sandwich structures
including high strength and stiffness with admissible
flexibility, low weight and suitable durability. Thus,
understanding the behavior of these structures in different
conditions is very important. Moreover, the sandwich
structures have been attracted by many researchers about
bending, buckling and vibration behaviors.

Nayak et al. (2002) studied free vibration analysis of
composite sandwich Reddy’s plate. They showed the
applicability of the Reddy type elements for a wide range of
free vibration problems, with various material properties,
geometric features, and boundary conditions. Wang et al.
(2008) presented free vibration analysis of composite
sandwich plates with soft and honeycomb cores. They
obtained the natural frequency of the thin and thick
composite sandwich plates using the extended formulation
that are consistent with the predictions of the higher-order
mixed layerwise theory. Ahn and Lee (2011) studied about
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transverse vibration characteristics of a sandwich plate with
asymmetrical faces. They used the Reissner-Mindlin's plate
theory to account the influence of shear deformation and
rotary inertia, and derived the equations of motion based on
energy method. Mantari et al. (2012) developed a new
trigonometric shear deformation theory for isotropic,
composite laminated and sandwich plates. They employed
the principle of virtual work and used Navier’s-type
solution to derive the governing equations. Also, they
showed a very good validation between their model and
Reddy’s and Touratier’s theories. Biaxial buckling analysis
of sandwich plates with soft orthotropic core is discussed by
Kheirikhah et al. (2012). They used the nonlinear geometric
Von-Karman relations. Also, the equations of motion and
boundary conditions are derived by the principle of
minimum potential energy. A trigonometric zigzag theory
for the static analysis of laminated composite and sandwich
plates is studied by Sahoo and Singh (2014). They
demonstrated a very close results with three dimensional
elasticity solution. Grover et al. (2013) illustrated inverse
hyperbolic shear deformation theory to analyze the free
vibration response of laminated composite and sandwich
plates. Their results showed that both analytical and finite
element (FE) solutions are useful for the prediction of the
free vibration response. Wang and Shen (2012) studied the
nonlinear vibration and bending analysis of sandwich plates
with carbon nanotube (CNT) reinforced composite
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facesheets. They used two-step perturbation technique for
solving governing equations. A detailed parametric of their
study conducted to investigate the effects of nanotube
volume fraction, core-to-face sheet thickness ratio,
temperature change, foundation stiffness and in-plane
boundary conditions on the nonlinear vibration
characteristics. Natarajan et al. (2014) presented application
of higher-order structural theory to bending and free
vibration analysis of sandwich plates with CNT reinforced
composite factsheets. They found that the in-plane stress
variation is nonlinear and has discontinuity at the layer
interface and by raising the volume fraction of CNT
distribution in the factsheet, decline the deflection. Static
behavior of visco-elastic sandwich plate with composite
facesheet under mechanical load is investigated by Kavalur
et al. (2014). They observed that the maximum static
bending deflection of the visco-elastic sandwich plate
decreases with an increase in amount fraction of CNTSs.
Also, thickness and material of visco-elastic core are
effective on static behavior. Sayyad and Ghugal (2015)
reviewed the recent works done on the free vibration
analysis of multilayered laminated composite and sandwich
plates. They compared the obtained results by considering
various shear deformation theories for displacement fields
of these structures. Ghorbanpour Arani et al. (2016b)
analyzed electro-magneto wave propagation of viscoelastic
sandwich nanoplates. They developed the quasi-3D
sinusoidal shear deformation plate theory for the sandwich
structure contains a single layered graphene sheet as core
with zinc oxide facesheets. Also, they used Kelvin-\Voigt
and Gurtin-Murdoch theories to assume structural damping
and surface effects, respectively and an exact solution
utilized to determine the natural, cut-off and escape
frequencies.

There are many worthwhile works in the case of
functionally graded (FG) plates study in literature (Lei et al.
2014, Zhang et al. 2014, Zhu et al. 2014, Lei et al. 20153,
Lei et al. 2015b, Zhang et al. 2015a, Zhang et al. 2015b,
Zhang et al. 2015c, Zhang et al. 2015d, Zhang et al. 2015e,
Zhang et al. 2015f, Zhang and Liew 2015a, Zhang and
Liew 2015b, Lei et al. 2016, Zhang et al. 2016a, Zhang et
al. 2016b, Zhang et al. 2016c, Zhang et al. 2016d, Zhang et
al. 2016e, Zhang et al. 2016f, Zhang et al. 20169, Zhang et
al. 2016h, Zhang et al. 2016i, Zhang and Liew 20164,
Zhang and Liew 2016b, Liew et al. 2017, Viet et al. 2017,
Zhang et al. 2017, Zhang 2017a, Zhang 2017b, Zhang
2017c). Apart from these cases, Zenkor (2005) studied the
buckling and free vibration of the simply supported FG
sandwich plate by the sinusoidal shear deformation plate
theory (SSDT). He investigated the influences of the
transverse shear deformation, aspect ratio, side to thickness
ratio and volume fraction distributions on the natural
frequency and critical buckling load. Free vibration analysis
of FG plates using higher order sandwich panel theory is
presented by Liu et al. (2015). They considered both FG
facesheets and FG flexible core by assuming that FG
material properties follow a power-law function and
demonstrated the influence of distribution of FG material
properties, thickness to side ratio on the natural frequencies
in their research. Kiani and Eslami (2012) investigated the

post-buckling behavior of sandwich plates with FG material
facesheets under uniform temperature which is placed on
Pasternak-type of elastic foundation. To obtain the
equilibrium and compatibility equations of imperfect
sandwich plates, they employed the non-linear von-Karman
strain-displacement relations. Also, they utilized the single
mode approach combined with Galerkin technique to
determine the critical buckling temperature and post-
buckling equilibrium path of the plate. The bending
response of sandwich plates subjected to thermo-
mechanical loadings is studied by Zenkour and Alghamdi
(2010). To show the effect of material distribution on the
deflections and stresses, they employed several theories
such as sinusoidal, third-order, first-order shear deformation
theories, and classical theory. Then, they demonstrated the
influences of thermo-mechanical loadings on the
deflections, axial and transverse shear stresses of FG
sandwich plate. Buckling analysis of the FG sandwich
rectangular plates integrated with piezoelectric layers under
bi-axial loads is demonstrated by Arefi (2016). He
considered non-homogeneous index of the material
properties for sandwich plate and showed that this
parameter has important influence on the buckling loads. A
three-unknown non-polynomial shear deformation theory
for the buckling and vibration analyses of FG sandwich
plates is presented by Tounsi et al. (2016). They considered
the non-linear in plane displacement and constant transverse
displacement through the plate thickness in their theory so
that it does not need to shear correction factor.
Mohammadimehr and Mostafavifar (2016) studied the free
vibration of sandwich plate with a transversely flexible core
and FG-CNTs reinforced nanocomposite facesheets under
one-dimensional (1D) magnetic field using a high-order
sandwich plate theory (HSPT). They assumed that
mechanical properties of the core are function of
temperature and according to this, analyzed the effects of
temperature changes on the natural frequency. Also, in their
results, it can be seen the natural frequencies increase by
applying the magnetic field. Finally, Daouadji and Adim
(2017) investigated mechanical behavior of FG sandwich
plates using a quasi-3D higher order shear and normal
deformation theory. They considered a hyperbolic and
parabolic shear and normal deformation theory for the
bending analysis to study the effect of thickness stretching
in FG sandwich plates.

The study of the researches indicates that there is not
any work about double-bonded sandwich microplates with
nanocomposite facesheets reinforced by symmetric and un-
symmetric distributions of nanotubes under multi physical
fields which resting on visco-Pasternak-type of elastic
foundation. Investigation of this matter can be much helped
to more accurate analysis of micro-electro-mechanical
(MEM) and nano-electro-mechanical (NEM) devices. Also,
the various distributions of carbon nanotube (CNT) and
boron nitride nanotube (BNNT) are considered for
nanocomposite facesheets. 2D magnetic fields are applied
on CNT reinforced composite facesheets and electric field
is applied on BNNT reinforced composite facesheets.
Because of the importance of shear deformations in thicker
sandwich microplate and require high precision in this
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Fig. 1 Schematic of double bonded sandwich microplates
embedded in visco-Pasternak medium and rested on
Winkler foundation from both sides

system, sinusoidal shear deformation plate theory (SSDT)
are considered. Also, modified strain gradient theory
(MSGT) is a proper approach to investigate the micro-
structures at micro scale which is employed to obtain strain
energy of sandwich microplates. Finally, the governing
equations are obtained using Hamilton’s principle and
solved by Navier’s approach.

2. Double-bonded FG sandwich microplates

Consider double-bonded sandwich microplates with
length a, width b and thickness h as shown schematically in
Fig. 1. Sandwich microplates consist of homogenous core
with thickness h. and nanocomposite facesheets with
thickness h; (h=h.+2h;). To derive the governing equations
of motion, the main assumptions are considered as follows
(Marynowski 2012):

* The core is thicker and softer than the facesheets.

* No slipping occurs at the interfaces between the core

and facesheets.

» The core and facesheets are fully bonded. Therefore,

the displacements in z=+h/2 and z=—h./2 are the same

for core-top facesheet and core-bottom facesheet,
respectively.

Bottom sandwich microplate (SP1) and top sandwich
microplate (SP2) are made of CNT and BNNT reinforced
composite  facesheets,  respectively.  nanocomposite
facesheets of SP1 are subjected to the 2D magnetic field
which is applied as longitudinal and transverse. Also,
piezoelectric nanocomposite facesheets of SP2 are
subjected to the electric field which is applied along the
thickness. Sandwich microplates are coupled with visco-
Pasternak medium and they are rested on Winkler
foundation from both sides. The Cartesian coordinate
system is selected for this problem as well as the origin is
located at the corner of the plate on the middle plane.

In this paper, six-type distributions of nanotubes (CNT
and BNNT) are considered for two sandwich plates as
shown in Fig. 2. Symmetric distributions are assumed as:
uniform distribution (UU) and FG distributions including
FG-OO0 and FG-XX, and un-symmetric distributions are
considered as: FG-UO, FG-UX and FG-XO, where each
types can be defined with volume fraction of own as
follows (Mohammadimehr et al. 2016c)

h h
For top facesheet (?C <z< ?C +h,)

(b) un-symmetric distribution

Fig. 2 Various distributions of nanotubes for composite
facesheets of sandwich microplate

V. u
[2—:2 —h“;hf}/ FG -0
Vi = . 'h . (1a)
4], _;P FG —X
h, 2

h h
For bottom facesheet (—?“— h <z < —?)

v, U
[2—: 7 h°;h'}vN; FG -0 (1b)
VNbT — f
iz+h°+h'#/N’T FG —X
h, 2
where:
. w

NT

W + (pNT /pM )(1_W NT ) ’

in which, w and p are called the mass fraction and mass
density, respectively. It should be noted that subscripts NT
and M are utilized to introduce nanotube and matrix,
respectively.

The extended rule of mixture (Esawi and Farag 2007) is
a simple and convenient way to estimate the effective
material properties of the two-phase composites. This rule
can be written as

NT

E11 = 771\/ h}+bE11NT +VM EllM ) (23)
th
i=VL+V_M, (2b)
E, E.ov Enu
n ViV
_:_+_! 2
G, G,. G (2¢)
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V12 =V NT VIZNT +V

Vi (2d)

t

P=V i P Vo Py (2¢)

where #; (i=1,2,3) are the efficiency parameters and v is
Poisson’s ratio. Also, Ej;, E»; and G indicate longitudinal,
transversely elastic moduli and shear modulus, respectively.
The efficiency parameters for CNTs are defined. These
values are obtained by molecular dynamics simulations
(Han and Elliott 2007). Since these values have not yet been
calculated for BNNTs, based on Mohammadimehr et al.
(2016a), we had to consider these values for BNNTSs.
Mohammadimehr et al. (2016a) in their paper assumed the
values for BNNTs and there is not any value for BNNTSs in
the literature based on molecular dynamics.

3. Constitutive equations

In this paper, because of the importance of shear
deformations in thicker sandwich microplate and require
high precision in this system, sinusoidal shear deformation
plate theory (SSDT) are considered. The displacement
fields for sandwich microplates can be expressed as
(Mohammadimehr et al. 2015)

Ux,y,z,t)=u(x,y,t)-z

mea(X,y,t),

ow (x,y,t)

V(X,y,Z,t)=V(X,y,t)—Z +l//(Z)¢y(X,y,t), (3)

W (x,y,z,t)=w(x,y,t),

where u, v and w are the displacement components of
microplate along the x, y and z axes, respectively, and y(2)

is equal to Esin(%) for SSDT and if w(z) is equal to
v

zero, the displacement fields are obtained for classical plate
theory (CPT). Also, ¢, and ¢, describe the rotational about x
and y axes, respectively.

Based on Eq. (3) and displacement-strain relations, the
kinematic equations for double-bonded nanocomposite
sandwich microplates can be obtained as

au _dw o¢,
. x ox? X
™ _ow %,
w [ ay +Z ay 2 + (//(Z ) ay
Yy 67u+ﬂ P ow %+% (4)
oy  ox ox oy oy o

Yo | _0w(z) 9,
7| e |4

in which, ¢ and y are normal and shear strains, respectively.
Also, &, is obtained equal to zero.

Therefore, the constitutive equations can be written in
the following form

ou] [Q, Q, 0 0 0 0 0 —e,]lén
Oy Q, Q, 0 0 0 0 0 &5 |6y
oy 0 0 Qs 0 0 0 0 0 |5
Oy, _ 0 0 0 Q44 0 0 € 0 Ty (5)
o, 0 0 0 0 Q4 —& 0 0 |y [
D, 0 0 0O 0 e ¢ O 0 ||E,
D, 0 0 0 e O 0 e, 0 E,
D, e, €, 0 0 O 0 0 &5 ||E,
where:
E vioE E
Qu = U Q=251 o, 22
1-wvpvyy 1-wpvyy 1-vpvyy

Qe6 =CG12, Q44 =G23, Qs5=Cy3,

o and Q are classical stresses and the material constants,
respectively. Also, D; is the electric displacement and E; is
the electric field components. It should be noted that recent
two parameters (D; and E;) are equal to zero for SP1.

4. Two dimensional magnetic fields

The Lorentz force, f=(f,, f,, f,), induced by the two-
dimensional (2D) magnetic fields, can be determined based
on Maxwell’s relations as follows (Kraus 1984)

J =Vxh, (6)
oh

V xe ——ﬂa—t, (7)

V-h=0, (8)

e:—n(%xHj, 9)

h=V><(U XH), (10)

f =n@ xH), (11)

where J, e and h denote current density, strength vectors of
the electric field and distributing vector of the magnetic

field, respectively. Also, U=UV W) is the
displacement vector, # is the magnetic field permeability,
and V= (%, %, 9%,) is the Hamiltonian operator.

To determine the Lorentz force, equations are solved
once for the longitudinal magnetic field as a vector H=(H,,
0,0) and once again for transverse magnetic field as a vector
H=(0, Hy, 0). Then, by using superposition principle, the
Lorentz force applied to SP1 can be calculated by using
Egs. (6)-(11) as the following form

ow ou ou
f =nH 2 +nH *—+pH *—,
ST e T e T oy’
fy:on26V2+on26V2+n Xzﬂ,

ox oy o1y 1o

, oV W oW (12)
f,=nH'——+nH'—+nH'—

oL oy oz OX

ow ow ou
+nH 2_+ H 2_+ H 2 X
(i oy’ T gt T o
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The virtual external work done due to the 2D magnetic
fields can be written as

1
% :Ej(fx Up+fy Vi+f, 'Wl)dv : (13)
v

By substituting Egs. (3) and (12) into Eg. (13), the
external work done due to the 2D magnetic field can be
obtained for facesheets of SP1.

5. Electric field

To satisfy the electric potential boundary conditions
along the thickness direction, a sinusoidal distribution of the
electric potential is considered for facesheets of SP2 as
follows (Hosseini Hashemi et al. 2010)

Sm(n(z ~h /2)

l<z <h—°+h,
\ 2

]t/)(x Wyt
D(x,y,zt)= N (14)
Sin[ﬁ(fz ~h,12)

t

h
X,Y,t ——=—-h <z <-——=%
]w( y.t) > M 2

where ¢(x,y,t) is the spatial and time variation of the electric
potential caused by bending. Using Eq. (14), the electric
field components is derived as follows (Mohammadimehr et
al. 2016b)

g .
oX
oD oo
E, =—— X, =X,¥,2) >4E, =——,
T, (X, =x,y,2) Ty (15)
£, -2
ford

6. Visco-Pasternak of elastic foundation

In this study, it is assumed that SP1 and SP2 are coupled
with visco-Pasternak medium and from both sides, they are
attached to Winkler foundation. Thus, the effects of
foundation are considered as an external force which

applied on the sandwich microplates as follows
(Ghorbanpour Arani and Amir 2013)
d
Fi= Ky Wy +ky1o (W, -W;)+Cy E(\NZ -W;)
a2 2 (163)
—Kex 6)7(\/\/2 -Wy)-kgy y(\’vz -Wy),
d
Fp =—ky W, +kw12(W1—W2)+Cd E(\Nl —Wz)
(16b)

&° o
—Kex axiz(\Nl_WZ)_kGy y(wl—wz)'

where k,, is spring modulus and C4 is damping modulus.
Also, ksx and kg, are shear layer constants along x and y
axes, respectively. Note that subscripts 1 and 2 are related to
the SP1 and SP2, respectively. The external forces can be
expressed as follows

Vlext =%I(F1 ~W1)dA,
L (17)

VS =2 [(F W, )dA,
2A

7. Governing equations of double bonded sandwich
micro-plates

Using Hamilton's principle (Ghorbanpour Arani et al.
2016a), the equations of motion for double bonded
sandwich micro-plates are derived as the following form

oll= 5j(H5P1+HSP2)dt
. (18)
=5f[(U =KV, -5 ) 4 (U, K, v ) Jdt =0,

in which, U and K present strain and kinetic energies,
respectively. Based on MSGT, strain energy for sandwich
microplates can be given by (Mohammadimehr et al.
2016¢)

1
U :EJ.(Jijgjk +D:7 +Ti§i)77i§t) +My % _DiEi )dV ! (19)
\

in which, y; Uiglk) and y;; represent the dilatation gradient

vector, deviatoric stretch gradient and symmetric rotation
gradient tensors, respectively, and their corresponding terms

(pi, 7§ and my) are the higher-order stresses.

1 0u; éu,
G720, T, (208)
o
Y x (20b)
o =1 Oy 06y 06 | 1 o (00w , o0
Wl e T )50 e T, (200)
C
L (%m0 | L5 (O 0
5%, Tax, ) 15 ex,  Tox, )
1 Os, Og,
==, —L+e_ —%),
le 2( pq 6Xp Jpq 6Xp) (20d)
p, =21°Gy, (21a)
0 =216, (21b)
m, =21,’G g, (21c)

In Egs. (20), u;, i and ej,q denote the displacement
vector, kronecker delta and alternate tensor, respectively.
Also, in Eq. (21), lo, 13, and I, denote three additional
independent material length scale parameters associated
with the dilatation gradients, deviatoric stretch gradients
and symmetric rotation gradients, respectively. If the
parameters |, and I; should be equal to zero, then the
modified strain gradient theory (MSGT) in Eq. (21) is
converted to the modified couple stress theory (MCST).
Also, if three material length scale parameters should be
equal to zero, then the classical theory is obtained. Thus,
there is a discrepancy between the results of different
theories including MSGT(lg,l,1,#£0), MCST (lo=I,=0), and
CT (|o=|1:|2=O).



366 Mehdi Mohammadimehr, Hassan BabaAkbar Zarei, Ali Parakandeh and Ali Ghorbanpour Arani

By expanding Eqgs. (20) and substituting Eq. (4) into this
equation, the results can be obtained according to Appendix
A.

Kinetic energy of sandwich microplates can be
expressed as follows

B[22 o2 o
72 ot ot ot
ol (55 o
ot ot
Substituting Egs. (13), (17), (19), and (22) into Eq. (18),
the equations of motion for double-bonded sandwich
microplates with FG nanocomposite facesheets under 2D
magnetic and electric fields can be calculated. To change
the equations of motion in a dimensionless form, the

following parameters including geometric, mechanical and
electrical parameters are defined

(22)
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K _kexaz 7& h :l

It should be noted that in Eq. (23), superscript s refer to
SP1 and SP2. Also, other coefficients are mentioned in
Appendix B. Finally, the dimensionless equations of motion
for double-bonded sandwich microplates can be determined
as follows
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8. Solution procedure

To solve equations of motion for the simply-supported
sandwich microplates, the Navier’s type solution is chosen.
According to this approach, the displacements are
considered as functions which satisfy at least the various
geometric boundary conditions. Thus, the displacement
variables of sandwich plates can be written in the following
forms (Mohammadimehr et al. 2016d)

W, (x,y,t)= ZZW12mn sin(mzX )sin(nzy )e'%m7,

n=lm=1
¢X12(X y t) zz 1,2mn COS mﬂx )Sin(nfﬂ )eiQ"‘"T’

n=lm=1 (25)
Fra (Y1) = ZZQW sin(mzX )cos(nzy )e'%m?,

n=lm=1

(p(x,y,t):ii%n sin(mzX )sin(nzy )e',
n=lm=1
where m and n indicate half axial and transverse wave
numbers, respectively. Also, Q., is the dimensionless
natural frequency.
Substituting Eg. (25) into Eq. (24) leads to final
relations as matrix form

[MEQ+CHQ+K [Woy Prw Qe Wome Pow Qo 0] ={0)-

Coefficients matrix

(26)

The elements of matrices M, C and K in Egs. (26) are
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Table 1 Mechanical properties of core and facesheets for
sandwich microplate

E11 (TPa) E11 G12

Material p (Kg/m®) v
CNT (Zhu et al.
2012)
BNNT
(Ghorbanpour Arani 1.8 1.8
and Amir 2013)
PMPV (core of SP1
and SP2)
(Mohammadimehr
etal. 2016a)
PMMA (Facesheet
matrix of SP1)
(Natarajan et al.
2014)

PVDF (Facesheet
matrix of SP2)
(Mohammadimehr
et al. 2016¢)

5.6466 7.08 1.9445 1750 0.17

0.7895 2300 0.14

2.1x10°  2.1x10° Ep/2(1+v) 1150 0.34

2.5%x10°°

2.5x10° Epp/2(1+v) 1150 0.34

2x10°  2x10% Ep/2(1+v) 1780 0.3

Table 2 Electrical Properties of PVDF and BNNT
(Pietrzakowski 2008, Ghorbanpour Arani et al. 2012)

. S € €
Material ey (C/m?) e, €4 e —S(F/m) 2% =%

€, A €
PVDF  -0.13 -0.145-0.009-0.135 125 11.98 11.98
BNNT 0 0 0 0 1250 1250 1250

€, =8.854185x10™"

expressed in Appendix C with details.

By Substituting Eqg. (25) into Egs. (24a)-(24g), the
partial differential equations are converted to algebraic
equations as matrix form in Eq. (26). In order to obtain
dimensionless natural frequencies from Eq. (26) must be
determined eigenvalues of coefficients matrix. By
calculating determinant of coefficients matrix, characteristic
natural frequency equation is obtained in which smallest
root of this equation is the dimensionless fundamental
natural frequency.

9. Numerical results and discussion

In this section, the effects of various parameters such as
geometric, mechanical, elastic foundation and other
parameters, on the natural frequencies of double-bonded
sandwich micro-plates are discussed in details. The values
of materials properties are defined in Tables 1 and 2 for SP1
and SP2, respectively. According to Ghorbanpour Arani and
Haghparast (2015), h/l;=3 is assumed and the other
geometrical properties of sandwich microplates are
considered as h=4 um, b/h=10 and a/b=1. Also, the
efficiency parameters are considered by Mohammadimehr
et al. (2015) for V; =0.17 which are equal to #,=0.142,

n,=1.62 and #3=1.138. The efficiency parameters for CNTs
are obtained by molecular dynamics simulations (Han and
Elliott 2007). Since these values have not yet been
calculated for BNNTSs, based on Mohammadimehr et al.
(2016a), we had to consider these values for BNNTSs.
Mohammadimehr et al. 2016a in their paper assumed the

Table 3 Comparison between dimensionless natural
frequencies of a simply supported isotropic plate (E=30

GPa, p=1 kg/m’, v=3, D=Eh¥12(1—v%) and
@=awa’\|ph/D )
ab hia Author(s) Theory Frequency Error (%)
Aghababaei and
Reddy (2009) HSDT  19.1678 0.532
0.10 Hosseini-Hashemi
et al. (2015) HSDT  19.0653 0.003
Present SSDT 19.0659 -
1.0 Aghababaei and
Reddy (2009) HSDT  19.6695 0.544
Hosseini-
005  pashemietetal. HSDT  19.5625 0
(2015)
Present SSDT  19.5625 -
Aghababaei and
Reddy (2009) HSDT 12.1157 0.396
Hosseini-
010 Hashemietetal. HSDT  12.0675 002
(2015)
Present SSDT  12.0677 -
05 Aghababaei and
Reddy (2009) HSDT  12.3445 0.624
Hosseini-
005  Hashemietetal. HSDT 122675 0
(2015)
Presentwork  SSDT  12.2675 -

Table 4 Comparison between dimensionless natural
frequencies of a simply supported square sandwich
platewith a homogeneous core and UD type of CNT

reinforced composite facesheets (T=300, h/h=2,
2
Venr =17 and w:w%\/pc/Ec )
a/b Author(s) Theory Frequency Error (%)
Natarajan et al.
TSDT 4.3199
5 (2014) 7.750
Present work SSDT 4.6547
Natarajan et al.
10 (2014) TSDT 4.6655 6.109

values for BNNTSs and there is not any value for BNNTS in
the literature based on molecular dynamics. Except for
those mentioned, all figures are plotted for the following
conditions:

CT, UU distribution of nanotubes, k,,, =5000, kj=k,=1,
ke =Kg, =C4 =0 and t'=2.

In order to evaluate the reliability of the present work,
the dimensionless natural frequencies are compared with
previous works in the literature. Table 3 exhibits
comparison between dimensionless natural frequencies of a
simply supported isotropic plate at the different
temperatures. As can be seen, the results of present work
show excellent agreement with the reported results by
Aghababaei and Reddy (2009) and Hosseini-Hashemi et al.
(2015). Also, comparison between dimensionless natural
frequencies of a simply supported square sandwich plate
with a homogeneous core and CNT reinforced composite



Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets... 369

40

—== (=1 &CT
p ——y'= ~
a5l - (=2&CT
o —— (=4 & CT
a. o =1 & MCST
23805~ ™ 0= =2 & MCST||
P N «
2 o >~ (=4 & MCST
13} 5
256 . B (=1 & MSGT}
= ©"('=2 & MSGT
£ P (‘=4 & MSGT
8
5
g
£

Fig. 3 The dimensionless first natural frequency of double
bonded sandwich microplates versus length to thickness
ratio for different core to facesheet thickness ratio (t'=h./hy)
and various theories

facesheets are presented in Table 4. Natarajan et al. (2014)
suggest various theories for displacement field. The results
of this research for SSDT are compared with the TSDT
results obtained by Natarajan et al. (2014) that there is an
acceptable agreement between them.

Fig. 3 illustrates the dimensionless natural frequency of
double-bonded sandwich microplates versus length to
thickness ratio for different core to facesheet thickness ratio
(t'=h¢/hy) and various theories such as classical theory (CT),
modified couple stress theory (MCST), and modified strain
gradient theory (MSGT). Also, in Eq. (21), lo, 13, and I,
denote three additional independent material length scale
parameters associated with the dilatation gradients,
deviatoric stretch gradients and symmetric rotation
gradients, respectively. If the parameters I, and |; should be
equal to zero, then the modified strain gradient theory
(MSGT) in Eq. (21) is converted to the modified couple
stress theory (MCST). Also, if three material length scale
parameters should be equal to zero, then the classical theory
is obtained. Thus, there is a discrepancy between the results
of different theories including MSGT(ly, Iy, 1,0, MCST
(1o=1,=0), and CT (lp=I,= 1,=0).

As can be observed in this figure, increasing length to
thickness ratio of sandwich microplate leads to decrease
dimensionless natural frequencies. Due to core is softer than
facesheets, increasing t cause to decrease stiffness of
sandwich microplates. With considering three material
length scale parameters, the stiffness of sandwich micro-
plates increases. Thus, MSGT gives higher natural
frequencies in comparison with MCST and CT.

At nano scales, the stress field at a reference point x in
an elastic medium is considered to depend on not only the
strain at that point but also the strains at all other points in
the domain while based on local elasticity theory (or
classical theory), the stress field at a reference point x in an
elastic medium is only depend on the strain at that point.
Therefore, the use of modified strain gradient theory
(MSGT) and modified coupled stress theory (MCST) at
micro scale and nonlocal Eringen at nano scale were
suggested which are consider the size effects. In this work,
the geometrical parameters of sandwich plates are at micro

40
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Fig. 4 The dimensionless frequency of double bonded
sandwich microplates versus length to thickness ratio for
symmetric distributions of nanotubes and various theories
(t=1)

308

Dimensionless frequency ( Q)
N
=]

Fig. 5 The dimensionless frequency of double-bonded
sandwich microplates versus length to thickness ratio for
various distributions of nanotubes (t'=1)

scale. Thus, MSGT is used in the present work. In Fig. 3,
the dimensionless natural frequency of nancomposite plate
obtained by MSGT is higher than that of for CT and MCST.
This means that the nanocomposite plate becomes stiffer
with considering MSGT. On the other hands, the size effect
at micro scale leads to increase the stiffness of
nanocomposite plate as well as dimensionless natural
frequency.

Fig. 4 displays the dimensionless first natural frequency
of double-bonded sandwich microplates versus length to
thickness ratio for symmetric distributions of nanotubes and
various theories. It can be found that FG-XX distribution
gives higher dimensionless natural frequencies rather than
UU and FG-0O distributions, respectively. Generally, the
employing various distributions of nanotubes are effective
manner to achieve greater stiffness.

Fig. 5 shows the dimensionless natural frequency of
double-bonded sandwich microplates versus length to
thickness ratio for symmetric and un-symmetric
distributions of nanotubes. It is concluded that the highest
and lowest natural frequency belongs to the FG-XX and
FG-OO0, respectively. As one of the remarkable results of
this figure, it can be noted that the dimensionless
frequencies for the UU type are similar to the FG-XO type.
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Fig 6 The effect of volume fraction of nanotubeson the
dimensionless frequency of double-bonded sandwich
microplates for various distributions of nanotubes(t =1)
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Fig. 7 The effect of dimensionless Winkler constant on the
dimensionless frequency of double bonded sandwich

microplates in different side ratio

Because of the stiffness of obtained sandwich plates by two
distributions is equal.

Fig. 6 presents the effect of volume fraction of
nanotubes on the dimensionless frequency of double-
bonded sandwich microplates for symmetric and un-
symmetric distributions of nanotubes. According to this
figure, increasing the volume fraction of nanotubes leads to
increase stiffness of sandwich microplates and therefore,
natural frequency increases. Only by adding 30% of
nanotubes in the polymer matrix of facesheets, the natural
frequency can be grown up to 75%, approximately. It
proves the irrefutable role of nanotubes in reinforcement of
polymer matrix.

Fig. 7 presents the effect of dimensionless Winkler
constant on the dimensionless frequency of double-bonded
sandwich microplates in different side ratio (length to
width). The spring modulus of the elastic foundation
increases stiffness of system and cause to stable it. Also,
when the side ratio increases, the values of dimensionless
frequency decrease.

The dimensionless frequency of double-bonded
sandwich microplates versus aspect ratio (length to
thickness ratio) for various spring modulus ratio (k; and ky)
is illustrated in Fig. 8. It's obvious that increasing spring
modulus ratio leads to increase dimensionless frequency.

24
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Dimensionless frequency ( Q)
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Fig. 8 The dimensionless natural frequency of double-
bonded sandwich microplates versus aspect ratio (length to
thickness ratio) for various spring modulus ratio (k; and k)
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Fig. 9 The effect of shear layer constant along x direction on
the dimensionless frequency of double bonded sandwich
microplates for different shear layer constants ratio (k) and
various theories

The interesting point is that the effect of this ratio on
increasing dimensionless frequency is noticeable.

Fig. 9 depicts the effect of shear layer constant along x
direction on the dimensionless frequency of double-bonded
sandwich microplates for different shear layer constants
ratio (ke =kg, /kg, ) and various theories. In order to

enhance the stability of systems, one of the options can be
adding shear layers. Increasing shear layer constant along x
direction leads to improve natural frequency. Also, adding
shear layer along y direction and reinforcement it, can be
further increase natural frequency. Also, the dimensionless
frequencies of MSGT are larger than MCST and CT due to
consider three material lengths scale parameters in MSGT.

Fig. 10 shows the effect of dimensionless damping
coefficient on the dimensionless frequency of double-
bonded sandwich microplates for various theories. As the
damping coefficient increases, the natural frequency is
reduced until it reaches to the zero natural frequency. At this
time, the structure becomes unstable which knowing this
problem is very useful optimum design and control of
similar systems such as micro-electro-mechanical and nano-
electro-mechanical devices.

The influence of 2D magnetic fields on the dimensionless
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Fig. 10 The effect of dimensionless damping coefficient on
the dimensionless frequency of double-bonded sandwich
microplates for various theories. (k. ,, =0)
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Fig. 11 The influence of 2D magnetic fields on the
dimensionless frequency of sandwich microplates with
CNT reinforced facesheets for different transverse to
longitudinal magnetic field intensity ratio (H =H  /H)

frequency of sandwich microplates with CNT reinforced
facesheets for different transverse to longitudinal magnetic
field intensity ratio (H =H_/H_) is displayed in Fig. 11.
As can be observed, applying the longitudinal magnetic
field can increase the natural frequencies slightly, while
increasing the natural frequencies can be more by adding
the transverse magnetic field. It is due to enlarge the created
Lorentz forces by 2D magnetic fields where improves the
stability of sandwich microplates for CNT reinforced
facesheets.

Fig. 12 demonstrates the influence of 2D magnetic fields
on the dimensionless frequency of sandwich microplates
with CNT reinforced facesheets for different t° and
symmetric and un-symmetric distributions of SWCNT.
According to this figure, decreasing the thickness ratio (the
core thickness with respect to facesheets thickness) as well
as enhancing the intensity of 2D magnetic fields, leads to
increase the dimensionless frequency. Also, the slope of
curves is almost constant for symmetric and un-symmetric
distributions of SWCNT in this figure. Moreover, in lower
the thickness ratio, the effects of FG-CNTs on the
dimensionless first natural frequency are noticeable.

Fig. 13 presents the effect of material length scale
parameter on the dimensionless frequency of double-

30
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Fig. 12 The influence of 2D magnetic fields on the
dimensionless frequency of sandwich microplates with
CNT reinforced facesheets for different t* and various

distributions of SWCNT (k__, =0)
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Fig. 13 The effect of material length scale parameter on the
dimensionless frequency of double bonded sandwich
microplates for various theories

bonded sandwich microplates for various theories. This
figure reveals that the value of dimensionless frequency
predicted by MSGT is more sensitive to h/l rather than
MCST. The effect of material length scale parameter in
MSGT and MCST on the dimensionless frequency is
negligible for h/I>5 (Mohammadimehr et al. 2016d).
According to this, the appropriate selection of h/l is very
important in order to achieve the best results.

A sandwich structure are made of a core and top and
bottom facesheets that core is thicker and softer than
facesheets. For this reason, it must use a high order theory
to consider in-plane and higher order out of plane
deformations. Classical plate theory (CPT) considers in-
plane and bending deformation while sinusoidal shear
deformation plate theory (SSDT) considers in-plane and
higher order out of plane deformations with high accuracy.
CPT can be obtained by inserting w(z)=0 in Eq. (3).
Therefore, in this research, it can be considered SSDT for
all layers of sandwich plate to simplify final relationships.
In order to compare the results of CPT and SSDT for core
and two facesheets in this work, the dimensionless natural
frequency of double-bonded sandwich microplates versus
length to thickness ratio is shown Fig. 14. It can be seen, the
dimensionless natural frequencies obtained by CPT are
higher than SSDT. Moreover, it is evident that the results of
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8- CPT
—e—8SDT

Dimensionless frequency ( Q)

a/h
Fig. 14 The dimensionless natural frequency of double-
bonded sandwich microplates versus length to thickness
ratio for CPT and SSDT

CPT are close to SSDT for higher a/h. It is better that the
CPT and SSDT are used for two facesheets and core,
respectively, that in this work, we consider SSDT for
facesheets and core that these results cover the obtained
results by the CPT and SSDT for two facesheets and core,
respectively.

10. Conclusions

In this paper, the free vibration of double-bonded
sandwich microplates with homogenous core and composite
facesheets was investigated under two dimensional
magnetic fields and electric field. The extended rule of
mixture was employed to obtain structural properties of
composite facesheets reinforced by symmetric and un-
symmetric distributions of FG-SWCNT and FG-BNNT.
Also, the influences of material length scale on the
dimensionless frequency of double-bonded sandwich
microplates were studied based on modified strain gradient
theory (MSGT). Hamilton's principle was utilized to derive
the equations of motion and Navier’s type solution was
used to solve them for all edges simply supported boundary
conditions. The results of this work were compared with the
existing researches in the literature to confirm the verity of
relations and obtained results. The outstanding
conclusions of present study are classified as follows:

» Due to facesheets of sandwich microplate are stiffer
than core, increasing thickness of core to facesheets
ratio leads to decrease the natural frequency.
» Based on MSGT, considering the material length scale
parameter causes to increase the dimensionless natural
frequency of double-bonded sandwich microplates.
Also, the dimensionless natural frequency for MSGT is
higher than modified couple stress theory (MCST) and
classical theory (CT).
* In each three theories, for FG-XX and FG-OO
distributions of nanotubes, highest and lowest
dimensionless natural frequency of double-bonded
sandwich microplates happens, respectively. Also, the
obtained results for uniform distribution (UU) are
completely similar to FG-XO.

 Increasing volume fraction of nanotubes in the
polymer matrix of facesheets leads to enhance stiffness
of sandwich microplates and thus, natural frequency
increases. According to the obtained results, the natural
frequency can be grown up to 75% by adding 30%of
nanotubes, approximately.
« The dimensionless natural frequency of double-bonded
sandwich microplates can increase by increasing
Winkler and shear layers constants and decreasing
damping constant.
« Applying 2D magnetic fields (longitudinal and
transverse magnetic fields) in comparison with 1D
magnetic field (just longitudinal magnetic field) has
more enhance on the stability of sandwich microplates.
The results of present work can be utilized to design
micro-electro-mechanical and  nano-electro-mechanical
devices.
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Note that the coefficients of Matrices M, C and K where
aren’t mentioned, are equal to zero.





