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1. Introduction 
 

Estimation and reducing the structural vibration and 

noise on dynamic behavior is a sensitive issue because it is 

closely relate to human life and safety. For this reason, there 

are many studies to estimate the structural vibration and 

noise, and various techniques also have been developed. 

Hosoya et al. (2012) directly measures the vibration 

response of the structures having the pulsed-laser ablation 

excitation, Goncalves et al. (2013) investigates the non-

linear vibration of a thin-walled column having large 

amplitude by experimental method. Au et al. (2011) 

predicts the vibration of the bridge having the vehicular 

loading by numerical simulation, Lee et al. (2012) predicts 

the vibration of the pipe with pulsating fluid based on the 

finite element method. The direct measurement method and 

the numerical analysis mentioned above are the typical 

methods to estimate the vibration and noise of the structure. 

The measurement using sensors directly are very accurate 

and reliable method, but needs too many sensors and 

expensive measurement instruments to obtain vibrations 

over the entire surface. Another approach, numerical 

analysis, can easily predict the vibration field but is less 

accurate because it does not consider the actual dynamic 

conditions. Thus, the hybrid method of the measurement 
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and the numerical analysis are suggested to estimate the 

structural vibration more accurate and efficient (Jung et al. 

2011, Chen et al. 2012, Sun et al. 2014, Hadianfard et al. 

2015).  

Modal expansion technique (MET) is one of the hybrid 

methods to estimate vibration fields by using the measured 

signals of a few sensors and eigenmodes obtained from 

numerical analysis. The MET is based on the theory of 

modal superposition and calculates the modal contributions 

of the eigenmodes as the final output. The calculated modal 

contribution vectors are used to estimate a whole surface 

vibration without the direct measurement by using 

eigenmatrix. Avitabile et al. (2012) adapted this technique 

to get the dynamic strain of the structure. Wan et al. (2014) 

reconstructed the transient response of the structure having 

transient force based on the modal superposition and 

expansion technique. Iliopoulos et al. (2016) estimated the 

dynamic response of the offshore structure by using the 

limited number of the sensors. These researches have 

indicated that vibration responses using the MET are more 

efficient and accurate than those of the common numerical 

analysis because it utilizes the measured vibration signals 

obtained from the sensors. However, the MET has 

significant errors near the frequency of the highest 

eigenmode used in the MET calculation because it 

reproduces the vibration fields by using the finite number of 

the eigenmodes. Even if it estimates the vibration by using 

the some of the dominant eigenmodes (Jung et al. 2015), it 

still have the truncation error in the vibration responses. 

Block-wised modal expansion technique, which divides 

frequency of interest into several frequency blocks first, and 
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then reproduces the vibration field by using the eigenmodes 

existed in one of the blocks, is also developed (Jung et al. 

2016), but it still cannot completely recover the truncation 

error caused by the absence of other eigenmodes. 

Accordingly, this paper suggests an improved block-

wise modal expansion technique that can not only resolve 

the truncation error but also predict the vibration field more 

accurately at all over frequencies. It estimates the vibration 

fields of the cylindrical shell under dynamic excitation by 

using the established METs and the improved block-wise 

MET. Through the comparison, it shows the limits of the 

established techniques and demonstrates the advantages and 

excellence of the suggested technique. 

 

 

2. Theory of the modal expansion technique 
 

2.1 Common modal expansion technique 
 

The equation of motion for the structure in a linear 

multi-degree-of-freedom system is as follows 

     2ω ω ω ωi   M C K x F  (1) 

where M is the mass matrix, C is the damping matrix, K is 

the stiffness matrix, F is the external force, and ω  is the 

frequency. The vibration displacement x(ω) in Eq. (1) is 

defined from the theory of the modal superposition as 

follows 

         2 2 3 3

1

1 1ω ω ω ω ω

N

r r

r

   


    x a a aa  (2) 

where ϕr is the r-th eigenmode vector, ar is the modal 

participation factor of r -th eigenmode and N is the degree 

of freedom of the system.  

The eigenmode vectors are calculated from an 

eigenvalue problem of Eq. (1) as follows 

 2 0ωr r K M  (3) 

where ωr is the r-th natural frequency. Because the 

eigenmode has the characteristic of the linear independence, 

the equation of the physical coordinates is converted into 

modal coordinates by using the r-th eigenmode as follows 

     T T T Tω ω ωr r r r r r r r r r        a C a K a F  (4) 

     2 T2ω ζ ω ω ω ωr r r r r r r  a a a F  (5) 

ar refers to the r-th displacement in the modal 

coordinates and is defined as 

 

T

2 2ω ω ζ ω ωj2

r
r

r r r




 

F
a  (6) 

where ζr is the r-modal damping ratio. If the vibration 

response can be approximated by the summation of n 

eigenmodes, the approximated response xN(ω) is as 

represented below 

       
1

ω ω ω ω

n

k

N k k N n n  


  x x a  (7) 

In this equation, ΦNn 
and αn(ω) refer to the eigenmode 

matrix and modal contribution vector (or modal 

displacement), respectively. These are defined as follows 

1 2 3, , , ,[ ]Nn n      (8) 

          
T

1 2 3, ,ω ω ω ω , , ωn n  a a a a  (9) 

The MET is based on the vibration response 

approximation in Eq. (7). It is a method for estimating the 

modal contribution from some eigenmodes calculated by 

the eigenvalue problem of the numerical model and 

vibration signals of a few sensors attached to the surface of 

the structure. When the responses obtained from m  

sensors are defined as xm(ω) and the eigenmode matrix 

composed of p eigenmodes of the measured m  sensor 

locations is defined as Φmp, the modal contribution vector 

of p eigenmodes αp(ω) is calculated as 

   ω ωm mp p x  (10) 

       
1

T T †ω ω ωmp mp mp m mp mp    


 x x  (11) 

where T is the transposed matrix and †  is the generalized 

left inverse. In general, the left inverse problem must be an 

over-determinant problem to get reliable solution. In other 

words, the number of sensors m  must be greater than the 

number of eigenmodes p to obtain a reliable modal 

contribution vector αp(ω). The modal contribution vector 

αp(ω) identified in Eq. (11) is utilized to calculate the 

reconstructed vibration response   N(ω) as follows 

     ω ω ωNN Np p x x  (12) 

 

2.2 Improved block-wise modal expansion technique 
 

The common MET described in section 2.1 must satisfy 

the following equation to get reliable estimation results 

m p  (13) 

It means that the vibration responses obtained from the 

MET are determined by m sensors and p eigenmodes. In 

other words, the estimated response has a truncation error 

due to the absence of eigendmoes over the (p+1)-th 

eigenmode. This is represented as follows 

     ( 1)ω ωN Np p N p    x O  (14) 

In the above equation,  ( 1)N p O  refers to truncation 

error. According to Eqs. (13)~(14), the truncation error of 

the responses increases with the fewer sensors considered in 

the MET. This error especially increases close to the natural 

frequency of the highest eigenmode used in the MET. 

Accordingly, the present paper suggests an improved modal 

expansion technique that recovers the truncation error by 
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considering eigenmode vectors over the (p+1)-th 

eigenmode. 

We first divides the frequency bandwidth of interest into 

several frequency blocks defined as Ω1, Ω2,…, Ωk. The 

frequency bandwidth of each frequency block is determined 

by the natural frequencies of the lowest and the highest 

valid eigenmode existed in each block. Then, the modal 

expansion technique is performed frequency block by block 

by using the valid eigenmodes in one of the blocks. This 

method is a block-wise modal expansion technique. The 

vibration field estimated by the block-wise MET, however, 

also still have the truncation error caused by the absence of 

the other eigenmodes. To recover this error, this paper 

suggested an improved block-wise MET by utilizing the 

other eigenmodes existed in the other blocks. 

 Let assume that a whole frequency band of interest 

divides into 3 frequency blocks (Ω1, Ω2, Ω3) and the valid 

eigenmode matrix of each block defines as 
1mp , 

2mp , 

3mp  respectively, then the improved block-wise MET 

follows the process given below in the first frequency 

block. 

Modal contribution vectors of the valid eigenmodes can 

be calculated, and then reconstructed responses are 

predicted as follows 

   
1 11

†
1ω Ω ω Ωp m p m   x  (15) 

   
1 11 1ω Ω ω Ωm m p p  x  (16) 

However, there are truncation errors between the 

measured responses xm(ωΩ1) and the reconstructed 

responses   m(ωΩ1). Thus, additional process to calculate 

the modal contribution vectors of the other eigenmodes in 

the other blocks to recover the truncation errors as follows 
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2 3

2 3 2 3 2 3

††
[ , ]

1
T T

m p p

mp mp mp mp mp mp



     


              

 (18) 

The processes in the second and the third frequency 

block are given as follow 

   
2 2
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In other words, the modal participation factor of the one 

block is calculated from the measured vibration signals and 

the valid eigenmodes in that block, and then the residue or 

truncation error is recovered by utilizing the other 

eigenmodes existed in the other blocks. 

Accordingly, the reconstructed vibration response   N(ω) 
derived by the improved block-wise MET is as follows 

   

     
1 1 2 2 3 3

ω ω

ω ω ω

N

Np p Np p Np

N

p    


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x x
 (25) 

 
 

3. Numerical analysis and verification 
 
3.1 Numerical model 
 

The numerical model of a cylindrical shell under 

clamped boundary conditions on both sides was considered, 

as shown in Fig. 1. This cylindrical shell was 2 m in 

diameter, 4 m in height, and 0.003 m in thickness. Table 1 

presents the material properties of the structure. The point 

in Fig. 1 indicates the position of the vibration exciting 

force, which had a unit force from 0 to 400 Hz. 

 

3.2 Sensor placement optimization for vibration 
response acquisition 

 

The MET utilizes the eigenmodes of the structure and 

the vibration responses to calculate the modal contributions 

of the eigenmodes. The eigenmodes can easily be calculated  

 

 

 
Fig. 1 Numerical analysis model of a cylindrical shell 

 

Table 1 Material properties of cylindrical shell 

Properties Value 

Young’s modulus 210 GPa 

Poisson ratio 0.3 

Mass density 7850 kg m-3 

Structural damping 0.005 
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Fig. 2 MAC calculated by the reconstructed eigenvectors 

corresponding to the optimal sensor positions 

 

 

from the eigenvalue problem of the finite element model of 

the cylindrical shell based on Eq. (3). The vibration 

responses are obtained from the sensors attached to the 

structure surface. However, the sensor placement is very 

important because the signals of the sensors reflect the 

dynamic behavior of the structure. Thus, the sensors should 

be attached to positions that can represent the dynamic 

characteristics and the shapes of the eigenmodes properly. 

For this reason, we use the sensor placement optimization 

technique. These are various sensor placement optimization 

techniques, but this paper utilizes modal assurance criterion 

(MAC), which is proceeded and used widely (Yi et al. 

2011, Jung et al. 2014, Jung et al. 2015, Yi et al. 2015), as 

objective function. 

 
, 1 ( )

Minimize   F MAC

n

i j i

i

j

jX

 

   (26) 

  
12

* * *MAC j iij ji i j     


 
 

 (27) 

 

The MAC, which is most widely used to check the 

correlation between two eigenmodes, is defined in Eq. (26), 

where ϕi is the i-th eigenmode vector, ϕj is the j-th 

eigenmode vector, and * the conjugate transpose. The MAC 

has a value from zero to unity. It is unity when two 

eigenmodes are exactly the same, while it is zero when both 

are orthogonal and have no correlation. The off-diagonal 

term of the MAC when i is not equal to j is theoretically 

zero because of the orthogonality of two different 

eigenmodes. Nevertheless, it can have a value greater than 

zero when the MAC is calculated by using the reconstructed 

eigenmode vector, which consists of values at the sensor 

attachment points. Accordingly, an objective function that 

minimizes the summation of the off-diagonal term of the 

MAC was used. The 1st to 60th eigenmodes were used to 

calculate the MAC. The 60th natural frequency was 495 Hz. 

A total of 30 sensor positions that were well-arranged to 

represent the vibration fields at the frequency bandwidth of 

interest from 0 to 400 Hz were extracted. Fig. 2 shows the 

MAC calculated from the reconstructed eigenmode vectors 

corresponding to the 30 optimal sensors. Fig. 3 indicates the 

optimal sensor positions of the cylindrical shell. The MET 

was performed by using the vibration responses of these 

optimal sensors and the eigenmodes calculated from the  

 
Fig. 3 Optimal sensor positions of the cylindrical shell 

 

 
Fig. 4 The frequency blocks for the improved block-wise 

MET 

 

 

eigenvalue problem of the finite element cylindrical shell 

model. 

 

3.3 Application of the modal expansion technique 
 

The common, the block-wise and the improved block-

wise MET were used to estimate the vibration fields of the 

cylindrical shell under dynamic conditions. Forced 

vibration analysis of the cylindrical shell was conducted to 

obtain reference results for the comparison and verification 

of the MET estimation results. 

To calculate the modal contributions of the eigenmodes 

by using the METs, the number of sensors m was set to 30, 

and the number of eigenmodes p was set to 20. These 

values satisfied Eq. (13), which defines the relationship 

between m and p. The natural frequency of the 20th 

eigenmode was 269 Hz. With the block-wise METs, the 

frequency bandwidth of interest was divided into three 

blocks, as shown in Fig. 4, and each block had 20 valid 

eigenmodes. Fig. 5 shows the surface normal acceleration 

fields of the reference, the common MET and the block-

wise METs at the 7th, 14th, 21st, and 28th natural frequencies. 

Fig. 6 indicates the surface normal acceleration responses at 

two points of the three different techniques. 

Figs. 5-6 indicate that the estimated responses of the 

common MET showed good agreement below the natural 

frequency (269 Hz) corresponding to the highest eigenmode 

used in the MET calculation, but had considerable errors 

over that frequency. On the other hand, the estimated 

responses of the block-wise METs were very similar to the 

reference results at all of frequencies. Especially, the  
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(a) Vibration field at 7th natural frequency (181Hz) 

 
(b) Vibration field at 14th natural frequency (215Hz) 

 
(c) Vibration field at 21st natural frequency (271Hz) 

Fig. 5 Comparison of the vibration fields obtained by 

reference and METs 
 

 
(d) Vibration field at 28th natural frequency (320Hz) 

Fig. 5 Continued 

 

 

Fig. 6 Comparison of the frequency responses obtained by 

reference and METs 

 

 

Fig. 7 Nodal absolute errors normalized by the maximum 

reference acceleration between reference and METs at 7th 

(151Hz), 14th (215Hz), 21st (271Hz), and 28th (320Hz) 

natural frequencies 
 

283



 

Byung Kyoo Jung, Weui Bong Jeong and Jinrae Cho 

 

Fig. 8 RMS errors index, σ(ω) between reference and METs 

 

 

improved block-wise MET showed the best agreement. 

Fig. 7 shows the nodal absolute errors normalized by the 

maximum reference acceleration between the reference 

results and the normal acceleration responses of the 

common MET, the block-wise METs at the 7th, 14th, 21st, 

and 28th natural frequencies of the cylindrical shell. The 

errors between the reference and the common MET below 

269 Hz corresponding to the 7th (181 Hz) and 14th (216 Hz) 

natural frequencies were not large. However, those over 269 

Hz corresponding to the 21st (271 Hz) and 28th (320 Hz) 

natural frequencies were significantly large. In contrast, the 

errors between the reference and the block-wise METs were 

small at those natural frequencies. In this case, the 

improved block-wise MEt also showed the best prediction. 

In other words, the improved block-wise MET estimated 

the vibration fields more accurately than the other METs. 

To evaluate quantitatively, two indices were used in this 

work: the root mean square (RMS) error and the parallelism 

between two response vectors. 

The RMS error σ(ω)
 
is defined as follows 

 
   

2

1

y ω y ω
ω

2

M

k

k k



 
    

 
  (28) 

where yk(ω) is the normal acceleration responses of the 

reference, ȳk(ω) is the normal acceleration response of the 

common or the block-wise METs, k is the node number, 

and M is the total number of nodes of the cylindrical shell 

model. The RMS errors are close to zero when the 

responses of the METs are similar to the reference results. 

The parallelism between two response vectors P(ω) is 

defined as follows 

 
   

   

verifrefer

refer verif

ω
P ω

ω ω

 


V V

V V

 (29) 

where  refer ωV  is the response vector of the reference and 

 verif ωV  is the response vector of the common or the 

block-wise METs. This index is close to unity when the 

response vectors of the METs are similar and parallel to the 

reference vectors. 

Figs. 8-9 indicate the RMS error and parallelism, 

respectively, as calculated from Eqs. (28)-(29). The  

 

Fig. 9 Parallelism index, P(ω) between reference and METs 

 

 

estimated results of the improved block-wise MET were 

more similar to the reference results than those of the other 

METs. This was especially evident at frequencies over 269 

Hz, which was the limit frequency of the common MET. 

For example, the RMS error of the improved block-wise 

MET was closer to zero than that of the other METs at all 

over frequencies. In the case of the parallelism, the value of 

the improved block-wise MET was closer to unity than that 

of the other METs at all over frequencies. In other words, 

the improved block-wise MET was better at estimating the 

vibration fields of the cylindrical shell than the established 

METs in both cases. 

 

 

4. Conclusions 
 

This paper estimated the vibration fields of the 

cylindrical shell by using the modal expansion technique 

(MET), and showed the weakness of the established METs. 

The common MET and the block-wise MET have the 

truncation errors to reproduce the vibration responses since 

it only uses the finite number of the eigenmodes existed in 

one of the blocks. This leads to the inaccurate estimation of 

the vibration fields. Thus, this paper suggested an improved 

block-wise MET to recover the weakness of the established 

METs. The improved block-wise MET divides the 

frequency bandwidth of interest into several of segment 

called the block, and recovers the truncation error in the 

block by using the other eigenmodes in the other blocks.  

The estimated vibration results of the improved block-

wise MET were compared to the results of the established 

METs and the reference results obtained from the forced 

vibration analysis for the verification by using two indices: 

the RMS error and parallelism between two response 

vectors. The vibration fields of the improved block-wise 

MET were more accurate than those of the other METs for 

all frequencies. The responses of the established METs had 

significant errors near the natural frequency of the highest 

eigenmode of the block, but the responses of the improved 

block-wise MET is practically accurate at all frequencies. In 

other words, the responses of the established METs 

calculated by the superposition of p eigenmodes cannot 

represent the actual responses because of the absence of 

over (p+1)-th eigenmodes, and this leads to significant 

errors in the vibration field estimation. However, the 
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improved block-wise MET estimates the vibration 

responses more accurately because it utilizes valid 

eigenmodes existed in the other blocks to reduce the 

truncation error in the present block. 
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