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1. Introduction 
 

The structural vibration control is a significant research 

subject in engineering. The damped composite structures 

can effectively suppress the structural vibration response to 

excitations. Beams are important engineering structures or 

structural components so that damped sandwich beams have 

been studied extensively (Timoshenko et al. 1974, Yu 1962, 

Ditaranto 1965, Mead and Markus 1969, Yan and Dowell 

1972, Rao and Nakra 1974, Rao 1977, Frostig and Baruch 

1994, Li and Crocker 2005, Kovac et al. 1971, Xia and 

Lukasiewicz 1994, Daya et al. 2004, Mahmoudkhani et al. 

2014, Rajagopal et al. 1986, Lee 1998, Baber et al. 1998, 

Jacques et al. 2010, Xi et al. 1986, etc.). The vibration 

equations of sandwich beams with nonadjustable 

viscoelastic cores described by complex moduli were 

derived. The dynamic characteristics, deterministic 

vibration response of the sandwich beams under external 

loading were analyzed (Yu 1962, Ditaranto 1965, Mead and 

Markus 1969, Yan and Dowell 1972, Rao and Nakra 1974, 

                                           

Corresponding author, Ph.D. 

E-mail: ceyfduan@zju.edu.cn 
a
Professor 

E-mail: yingzg@zju.edu.cn 
b
Professor 

E-mail: yiqing.ni@polyu.edu.hk 

 

 

Rao 1977, Frostig and Baruch 1994, etc.). For certain large 

vibration of the sandwich beams, the geometric nonlinearity 

of elastic layers and small physical nonlinearity of 

viscoelastic layers were considered. The spatial modal 

expansion and temporal multiple scales and harmonic 

balance methods were used to obtain the periodic vibration 

response (Kovac et al. 1971, Xia and Lukasiewicz 1994, 

Daya et al. 2004, Mahmoudkhani et al. 2014, etc.). The 

finite element method for the sandwich beams with 

viscoelastic cores was developed to calculate the 

deterministic vibration response (Rajagopal et al. 1986, Lee 

1998, Baber et al. 1998, Jacques et al. 2010, etc.). Several 

researches were given on the response estimation of the 

sandwich beams and plates with viscoelastic cores under 

external stationary random loading (Xi et al. 1986, 

Mahmoudkhani and Haddadpour 2013, etc.). However, only 

the single mode response amplitude of the sandwich plate 

with the small nonlinearity of viscoelastic cores under the 

special narrow-band phase random excitation was analyzed 

(Mahmoudkhani and Haddadpour 2013). Thus, the 

stochastic vibration of the nonlinear sandwich beams with 

viscoelastic cores needs to be study further by considering 

multiple modes and general random excitations. 

Due to the randomness of environmental loadings, the 

dynamic adjustability of damped composite structures is 

required for vibration control. Smart materials such as 

magneto-rheological liquid and magneto-rheological visco-

elastomer can supply the adjustable damping and stiffness 
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for structures. In particular, the adjustment of the smart 

structural dynamics is achieved only by applied magnetic 

fields and the structural design is unchanged. Thus, the 

smart materials are the reasonable replacement of the 

nonadjustable viscoelastic cores in composite structures. 

The structural vibration suppression using magneto-

rheological liquid dampers and the vibration response 

characteristics of linear sandwich beams with magneto-

rheological liquid cores have been studied (Dyke et al. 

1996, Spencer and Nagarajaiah 2003, Casciati et al. 2012, 

Hernandez et al. 2015, Rajamohan et al. 2010, etc.). 

Nevertheless, the magneto-rheological visco-elastomer has 

several advantages over the magneto-rheological liquid. For 

example, the magneto-rheological visco-elastomer 

improves the potential disadvantage of magnetic particle 

settlement in magneto-rheological liquid, and the magneto-

rheological visco-elastomer is more suitable for composite-

structural cores than the magneto-rheological liquid. Thus, 

the dynamic properties of the magneto-rheological visco-

elastomer and the application of the adjustable magneto-

rheological visco-elastomer to the structural vibration 

control have been studied (Bellan and Bossis 2002, 

Demchuk and Kuz’min 2002, Shen et al. 2004, Bose 2007, 

Koo et al. 2010, Kaleta et al. 2011, Ying et al. 2013, York et 

al. 2007, Hu and Wereley 2008, Hoang et al. 2011, Jung et 

al. 2011, Ying et al. 2015a, Ying and Ni 2016, etc.). The 

periodic vibration and adjustable stiffness of the linear 

sandwich beam with the magneto-rheological visco-

elastomer core described by complex modulus were 

analyzed and tested (Zhou and Wang 2005, 2006, Choi et 

al. 2010, Hu et al. 2011). The vibration equations with 

temporal periodic coefficients of the linear sandwich beam 

with the magneto-rheological visco-elastomer core under 

periodic longitudinal loading were derived. The dynamic 

stability of the sandwich beam with the time-varying 

coefficients was analyzed (Dwivedy et al. 2009, Nayak et 

al. 2011). The micro-vibration response of the linear 

sandwich beam with the magneto-rheological visco-

elastomer core under external stationary random loading 

was also estimated (Ni et al. 2011, Ying et al. 2015b). 

However, in all those researches, only the linear geometric 

and constitutive relations of the elastic layers and magneto-

rheological visco-elastomer layer were considered. Since 

the adjustable visco-elastomer has the nonlinear dynamic 

behavior for certain large deformation (Ying et al. 2013), 

the nonlinear vibration of the sandwich beam with nonlinear 

adjustable visco-elastomer core needs to be studied. At 

present, only the random vibration of the nonlinear 

sandwich beam with the linear electro-rheological visco-

elastomer core under the uniformly distributed band-limited 

Gaussian white noise excitation was studied, where the 

geometric nonlinearity of elastic layers was considered and 

the random response was estimated by the numerical 

method (Vaicaitis et al. 2008). Therefore, the nonlinear 

dynamic constitutive relation of the adjustable visco-

elastomer needs to be considered, and the stochastic 

vibration of the nonlinear sandwich beam with the visco-

elastomer core under general random excitations needs to 

be studied further to exhibit the difference of stochastic 

nonlinear and linear responses. 

As a representative practical subject, the vibration-

sensitive precise apparatuses require extremely stable 

operation environments. However, there exist inevitably 

environmental disturbances in random with wide frequency 

bands. Thus, the stochastic vibration control is very 

important to the vibration-sensitive apparatuses. The 

vibration-sensitive apparatus and its support structure can 

be modeled as a beam or plate with concentrated mass. The 

adjustable visco-elastomer can be used to construct a 

sandwich structure for vibration control. In the present 

paper, the stochastic vibration response of a sandwich beam 

with nonlinear adjustable visco-elastomer core and 

supported mass under stochastic support motion excitations 

is studied. The nonlinear dynamic properties of the visco-

elastomer core are considered. Firstly, the nonlinear partial 

differential equations for the horizontal and vertical 

coupling motions of the sandwich beam with the supported 

mass are derived by the dynamic equilibrium, constitutive 

and geometric relations. Secondly, the nonlinear partial 

differential equations are converted into the nonlinear 

ordinary differential equations by using the Galerkin 

method, which represent a multi-degree-of-freedom system 

with the cubic nonlinear stiffness and damping subjected to 

stochastic excitations. Thirdly, the nonlinear stochastic 

system is converted into an equivalent quasi-linear system 

by using the statistic linearization method. The frequency-

response function, response spectral density and mean 

square response expressions of the nonlinear sandwich 

beam are obtained. Finally, numerical results are given to 

illustrate new stochastic vibration response characteristics 

and response reduction capability of the sandwich beam 

with the (hard and soft) nonlinear visco-elastomer core and 

supported mass under stochastic support motion excitations. 

The numerical results are compared with those of the 

sandwich beam with linear visco-elastomer core to illustrate 

their stochastic response differences. 

 

 

2. Nonlinear differential equations of sandwich beam 
with nonlinear visco-elastomer core 

 

The vibration-sensitive apparatus and its support 

structure are modeled as a sandwich beam with 

concentrated mass for response characteristics analysis. 

Consider a simply supported horizontal sandwich beam 

with visco-elastomer core and a supported mass under 

stochastic support motion excitations, as shown in Fig. 1. 

The beam length and width are L and b, respectively. The 

two facial layers are linear elastic material and have the 

identical elastic modulus E1, mass density 1 and thickness 

h1. The core layer is nonlinear visco-elastomer material and 

has the mass density 2 and thickness h2. The supported 

mass is fixed on the beam and has the mass mbL (for 

simplicity in the final equation). Its size is very small 

compared with the beam length and then neglected. The 

supports have the identical vertical displacement w0 which 

is a stochastic disturbance excitation. 

The visco-elastomer core has the adjustable dynamic 

properties (for example, the magneto-rheological visco-

elastomer has the damping and stiffness adjustable by  

260



 

Stochastic vibration response of a sandwich beam with nonlinear adjustable visco-elastomer core and supported mass 

 

Fig. 1 Sandwich beam with visco-elastomer core (VEC) and 

supported mass (m) under support excitation (w0) 

 

 

applied magnetic fields). The visco-elastomer core layer is 

soft compared with the elastic facial layers, and the elastic 

modulus of the core layer is much smaller than E1. 

However, the shearing deformation of the core layer is 

larger than the facial layers and then taken into account. For 

large shearing deformation, the shear stress 2 of the visco-

elastomer core depends nonlinearly on the corresponding 

shear strain 2. The nonlinear dynamic stress-strain relation 

can be described by (Ying et al. 2013) 
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where G2k and Gck are constant coefficients (adjustable by 

external action, for example, magneto-rheological visco-

elastomer by applied magnetic fields), and t is time 

variable. In general, the nonlinear coefficients are smaller 

than linear coefficients. There are G23<G22<G21 and 

Gc3<Gc2<Gc1. For certain large deformation, a single shear 

strain is determined by a shear stress. 
For the sandwich beam, it is assumed that: (1) the two 

elastic facial layers and visco-elastomer core layer are 

respectively homogeneous and continuous, and the facial 

layer materials are isotropic; (2) the normal stress of the 

core layer is small and neglected; (3) the normal stresses of 

the facial layers in the axis-z direction are small and 

neglected; (4) the vertical displacement of the sandwich 

beam is invariant along the thickness; (5) the cross section 

of each facial layer is perpendicular to the facial layer axis 

line, and the cross section of the core layer is a plane in 

deformation; (6) the longitudinal and rotational inertias of 

the beam are small and neglected; (7) the interfaces 

between the facial layers and core layer are continuous all 

the time. 
Based on above assumptions, the displacements and 

shear stresses on the interfaces between the facial layers and 

core layer are continuous. The vertical beam displacement 

relative to the supports is w=w(x,t), where x is the 

horizontal coordinate. The horizontal displacements of the 

facial layers can be expressed as (Ni et al. 2011) 
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where u10 and u30 are the horizontal mid-layer 

displacements of the upper and lower facial layers (layer 1 

and layer 3), respectively, z1 and z3 are the vertical local 

coordinates of the two facial layers. The horizontal 

displacements (uI1 and uI3) on the two interfaces between 

the facial layers and core layer can be obtained by Eqs. (2) 

and (3). Thus the shear strain of the core layer is 
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where ha=h1+h2. By using Eq. (1), the shear stress of the 

core layer is expressed as 
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where tuu  /1010
 , tuu  /3030

  and tww  / . 

The horizontal normal strains of the two facial layers 

can be obtained by the derivatives of displacements (2) and 

(3). The corresponding normal stresses of the upper and 

lower facial layers are 
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Based on the normal and shear stresses equilibrium of 

an element in the axis-x direction, the shear stresses of the 

upper and lower facial layers are expressed as (Mead and 

Markus 1969, Ni et al. 2011) 
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(9) 

According to the continuity of shear stresses (5), (8) and 

(9) on the interfaces between the facial layers and core 

layer, the differential equation for the horizontal 

displacement of the sandwich beam is obtained as follows 

0])
2

(

)
2

([

22

3

1 22

22

2

11



















ka
ck

k

ka
k

x

w

h

h

h

u
G

x

w

h

h

h

u
G

x

u
hE


 

(10) 

where u=u10=u30. With taking into account the vertical 

inertia, the dynamic equilibrium equation of an element of 

the sandwich beam with the supported mass in the axis-z 

direction is given by 
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where () is the Dirac delta function, x0 is the horizontal 

coordinate of the mass, 
22 / tww  , 2

0
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(5), (8) and (9) into Eq. (11) yields the differential equation 

for the vertical beam displacement 
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(12) 

Eqs. (10) and (12) are two coupling nonlinear partial 

differential equations, which describe the horizontal and 

vertical motions of the sandwich beam with the supported 

mass under support motion excitations. In the case that the 

supported mass is fixed on the middle of the beam, there is 

x0=0. For the simply supported beam, the displacement 

boundary conditions are given by (Ni et al. 2011) 
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Introduce dimensionless coordinates and displacements 

as follows 
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where Wa is the amplitude of the support motion w0. The 

nonlinear differential equations of motion (12) and (10) and 

the boundary conditions (13) are transformed into 
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3. Nonlinear stochastic vibration response based on 
spatial modal expansion and temporal statistic 
linearization 

 

Under the homogeneous boundary conditions (17), the 

dimensionless displacements u  and w  of the sandwich 

beam can be expanded into 
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where pi and qi are the modal displacements, and N is an 

integer. According to the Galerkin method, substituting 

displacements (18) and (19) into Eqs. (15) and (16), 

multiplying the equations respectively by cos(2j-1)y and 

sin(2j-1)y, and integrating them with respect to y yield 

nonlinear ordinary differential equations for pi and qi. Note 

that the nonlinear terms and velocity terms of the horizontal 

displacement u  (or pi) are small and can be neglected. 

Then by eliminating the modal displacement pi, the 

nonlinear ordinary differential equations for the modal 

displacement qi corresponding to the dimensionless vertical 

beam displacement w  can be obtained. They are rewritten 

in the following matrix form 
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Eq. (20) represents a nonlinear multi-degree-of-freedom 

system subjected to stochastic excitations, which is derived 

from the sandwich beam with the supported mass under 

support motion excitations. The system has the cubic 

nonlinear stiffness and damping. Its nonlinear stochastic 

response cannot be exactly obtained, but an approximate 

response can be obtained. The nonlinear system is subjected 

to external stochastic excitations and the system response 

has a single value for an excitation based on the visco-

elastomer core nonlinearity. The statistic linearization 

method is just suitable for solving the stochastic nonlinear 

multi-degree-of-freedom system (Roberts and Spanos 1990, 

Caughey 1971, Socha and Soong 1991, Elishakoff and 

Falsone 1993). Based on the method, the equivalent quasi-

linear system of the nonlinear system (20) can be expressed 

as 

)()()( teqeq FQKKQCCQM    (22) 

where Keq and Ceq are equivalent quasi-linear stiffness and 

damping matrices, respectively. The difference of the left 

side terms of Eqs. (22) and (20) is 

QKQCQKQCΔ NLNLeqeq    (23) 

The minimization of mean square difference E[
T
] 

yields algebraic equations for the equivalent stiffness and 

damping as follows 

0])[(E

][E][E

T

TT





QQKQC

QQCQQK

NLNL

eqeq




 (24) 

0])[(E

][E][E

T

TT





QQKQC

QQCQQK





NLNL

eqeq  (25) 

where E[] denotes the expectation operation. The 

equivalent stiffness Keq and damping Ceq can be obtained 

by solving Eqs. (24) and (25), which depend on the second 

and fourth moments of the system response. For a Gaussian 

stochastic excitation, the equivalent linear system response 

is also a Gaussian stochastic process. Thus Eqs. (24) and 

(25) lead to the equivalent stiffness and damping 

1TT ][E])[(E  QQQQKQCK NLNLeq
  (26) 

1TT ][E])[(E  QQQQKQCC 
NLNLeq

 (27) 

which depend finally on the second moment of the system 

response. 
The stochastic vibration response of the equivalent 

linear system (22) can be estimated by using the power 

spectral density function. The frequency response function 

and response spectral density matrices of the system (22) 

are given by 

12 })(j{)(  MCCKKH  eqeq
 (28) 

)()()()(
0

T*T 
wCC S HFFHSQ   (29) 

where 1j  ,  is the vibration frequency, superscript 
*
 

denotes the complex conjugate, and )(
0


w

S   is the power 

spectral density of the support motion excitation )(0 tw . By 

using the expressions (19) and (29), the frequency response 

function of the dimensionless vertical displacement of the 

sandwich beam to the unit support excitation is obtained as 

Cw yyR FHΦ )()(),( T   , 

  T]π)12cos(,,π3cos,π[cos)( yNyyy  Φ  
(30) 

The spectral density function of the dimensionless vertical 

displacement response of the sandwich beam is 

)()()(),( T yyySw ΦSΦ Q    (31) 
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Fig. 2 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam versus stochastic excitation 

intensity (S0) for nonlinear visco-elastomer core 

(G23=0.02G21, Gc3=0.02Gc1) and linear visco-elastomer core 

(G23=0, Gc3=0) (dots: numerical simulation) 

 

 
Fig. 3 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam with visco-elastomer core 

(VEC) (G23=0.02G21, Gc3=0.02Gc1) and beam without VEC 

versus stochastic excitation intensity (S0) (dots: numerical 

simulation) 

 

 

The response statistics of the sandwich beam subjected 

to stochastic excitations can be estimated by using the 

spectral density function (31). For example, the mean 

square displacement response is expressed as 





  d),()]([E 2 ySyw w

 (32) 

 
 

4. Numerical results 
 
To show numerically the nonlinear stochastic vibration 

response, consider a sandwich beam with nonlinear 

magneto-rheological visco-elastomer core and a supported 

mass under stochastic support motion excitation. It has 

basic parameter values as follows: L=4 m, h1=5 cm, h2=20 

cm, 1=310
3
 kg/m

3
, 2=1.210

3
 kg/m

3
, m=80 kg/m

2
, 

E1=10 GPa, G21=2 MPa, G23=0.02G21, Gc1=0.003 MPas, 

Gc3=0.02Gc1, x0=0, Wa=1 (Ni et al. 2011). The support 

excitation is a zero-mean Gaussian stochastic process with 

the following power spectral density 

02222

22

)/(4])/(1[

)/(41
)(

0

SS
ggg

gg

w 









 (33) 

where the dimensionless excitation intensity S0=1.0, 

constants g=23 rad/s and g=0.3. The number N in 

expansion (19) is determined based on the convergence of 

displacement responses. Numerical results on the equivalent 

frequency response and root-mean-square (RMS) response 

of the dimensionless vertical displacement at the sandwich 

beam midpoint (y=0) are obtained and shown in Figs. 2-20. 

 
4.1 Displacement response for sandwich beam with 

hard-nonlinear visco-elastomer core 
 
The visco-elastomer core with hard nonlinearity (G23>0, 

Gc3>0) is considered firstly. Fig. 2 shows the non-

dimensional RMS displacement ( w ) responses of the 

sandwich beam varying with the non-dimensional stochastic 

excitation intensity (S0) for the nonlinear visco-elastomer 

core (G23=0.02G21, Gc3=0.02Gc1) and linear visco-elastomer 

core (G23=0, Gc3=0). The RMS displacement responses 

obtained by the numerical simulation are also given, which 

validate the results obtained by the proposed analysis 

method. The numerical simulation is conducted as follows: 

samples of the stochastic excitation are firstly produced 

according to the power spectral density (33), the stochastic 

responses of nonlinear system (20) with (19) are calculated 

by using the Runge-Kutta algorithm and then the response 

statistics are estimated. It is seen that the RMS displacement 

response of the nonlinear sandwich beam is smaller than 

that of the linear sandwich beam (for example, RMS values 

are 0.0385 for linear case and 0.0287 for nonlinear case 

under S0=1), and the response difference increases with the 

stochastic excitation intensity. Thus, the RMS response of 

the sandwich beam can be overestimated by the linear 

model. Fig. 3 shows the non-dimensional RMS 

displacement ( w ) responses of the sandwich beam with the 

visco-elastomer core (G23=0.02G21, Gc3=0.02Gc1) and the 

corresponding beam without the visco-elastomer core, 

which are validated by the numerical simulation. The RMS 

displacement response of the visco-elastomer sandwich 

beam is much smaller than that of the beam without the 

visco-elastomer core. Thus, the RMS beam response can be 

reduced remarkably by using the nonlinear visco-elastomer 

core (for example, RMS value descends from 0.1331 to 

0.0287 for S0=1. The relative reduction is 78.4%). The 

reduction increases with the stochastic excitation intensity 

(S0). 

Figs. 4 and 5 illustrate that the non-dimensional RMS 

displacement ( w ) responses of the sandwich beam with the 

nonlinear visco-elastomer core (G23=0.02G21, Gc3=0.02Gc1) 

increase with the non-dimensional stochastic excitation 

intensity (S0) for different facial layer thicknesses h1 and 

core layer thicknesses h2, respectively. The RMS 

displacement response of the nonlinear sandwich beam 

decreases as the thicknesses h1 and h2 increase. The 

response reduction increases with the stochastic excitation 

intensity. 
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Fig. 4 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam versus stochastic excitation 

intensity (S0) for different facial layer thicknesses h1 

(G23=0.02G21, Gc3=0.02Gc1) 

 

 
Fig. 5 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam versus stochastic excitation 

intensity (S0) for different core layer thicknesses h2 

(G23=0.02G21, Gc3=0.02Gc1) 

 

 
Fig. 6 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam versus stochastic excitation 

intensity (S0) for different linear stiffness coefficients G21 of 

the core layer (G23=0.04MPa, Gc3=0.02Gc1) 

 
 

Figs. 6, 7, 8 and 9 illustrate that the non-dimensional 

RMS displacement ( w ) responses of the sandwich beam 

with the nonlinear visco-elastomer core increase with the 

non-dimensional stochastic excitation intensity (S0) for 

different linear stiffness coefficients G21 (G23=0.04MPa, 

Gc3=0.02Gc1), nonlinear stiffness coefficients G23 

 
Fig. 7 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam versus stochastic excitation 

intensity (S0) for different nonlinear stiffness coefficients 

G23 of the core layer (G21=2MPa, Gc3=0.02Gc1) 

 

 
Fig. 8 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam versus stochastic excitation 

intensity (S0) for different linear damping coefficients Gc1 of 

the core layer (G23=0.02G21, Gc3=60Pas
3
) 

 

 
Fig. 9 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam versus stochastic excitation 

intensity (S0) for different nonlinear damping coefficients 

Gc3 of the core layer (G23=0.02G21, Gc1=0.003MPas) 

 

 

(G21=2MPa, Gc3=0.02Gc1), linear damping coefficients Gc1 

(G23=0.02G21, Gc3=60Pas
3
) and nonlinear damping 

coefficients Gc3 (G23=0.02G21, Gc1=0.003MPas) of the core 

layer, respectively. The RMS displacement response of the 

nonlinear sandwich beam decreases as the stiffness 

coefficients G21, G23 and damping coefficients Gc1 and Gc3  
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Fig. 10 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam versus ratios of nonlinear 

to linear stiffness coefficients (G23/G21, Gc3=0.02Gc1) and 

nonlinear to linear damping coefficients (Gc3/Gc1, 

G23=0.02G21) of the core layer 

 

 
Fig. 11 Logarithmic non-dimensional (ND) RMS 

displacement ( w ) responses of the sandwich beam versus 

vibration frequency () for nonlinear visco-elastomer core 

(G23=0.02G21, Gc3=0.02Gc1) and linear visco-elastomer core 

(G23=0, Gc3=0) 

 

 

increase. The response reduction increases with the 

stochastic excitation intensity. Fig. 10 shows further the 

non-dimensional RMS displacement ( w ) responses of the 

nonlinear sandwich beam varying with the ratios of 

nonlinear to linear stiffness coefficients (G23/G21, 

Gc3=0.02Gc1) and nonlinear to linear damping coefficients 

(Gc3/Gc1, G23=0.02G21) of the core layer under the non-

dimensional stochastic excitation intensity S0=1. It is seen 

that the RMS displacement response of the sandwich beam 

decreases monotonously as the ratio of nonlinear to linear 

stiffness coefficients G23/G21 increases. However, the RMS 

displacement response of the sandwich beam decreases 

rapidly for small ratio of nonlinear to linear damping 

coefficients and then becomes steady as the ratio of 

nonlinear to linear damping coefficients Gc3/Gc1 increases. 

Thus, the RMS response of the sandwich beam can be 

reduced effectively by a small nonlinear damping (Gc3) of 

the visco-elastomer core. 
Fig. 11 shows the logarithmic non-dimensional RMS 

displacement ( w ) responses of the sandwich beam varying 

with vibration frequency () for the nonlinear visco-

elastomer core (G23=0.02G21, Gc3=0.02Gc1) and linear 

visco-elastomer core (G23=0, Gc3=0). The first three  

 
Fig. 12 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam versus stochastic excitation 

intensity (S0) for different excitation spectral density 

parameters g (G23=0.02G21, Gc3=0.02Gc1) 

 

 

Fig. 13 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam versus stochastic excitation 

intensity (S0) for nonlinear visco-elastomer core 

(G23=0.01G21, Gc3=0.01Gc1) and linear visco-elastomer 

core (G23=0, Gc3=0) (dots: numerical simulation) 

 

 

resonant frequencies of the sandwich beam are 3.78, 19.25 

and 48.61 Hz. The resonant frequency responses are large 

and decrease with the order number rising. Fig. 12 shows 

the non-dimensional RMS displacement ( w ) responses of 

the nonlinear sandwich beam varying with the stochastic 

excitation intensity (S0) for different excitation spectral 

density parameters g (G23=0.02G21, Gc3=0.02Gc1). The 

RMS displacement response of the sandwich beam 

decreases as the dominant excitation frequency (g) runs 

away from the resonant frequency (for example, 23 

rad/s=3.66 Hz to 40 rad/s=6.36 Hz, 57 rad/s=9.07 Hz). 

 
4.2 Displacement response for sandwich beam with 

soft-nonlinear visco-elastomer core 
 
The visco-elastomer core with soft nonlinearity (G23<0, 

Gc3<0) is considered secondly. Fig. 13 shows the non-

dimensional RMS displacement ( w ) responses of the 

sandwich beam varying with the non-dimensional stochastic 

excitation intensity (S0) for the nonlinear visco-elastomer 

core (G23=0.01G21, Gc3=0.01Gc1) and linear visco-

elastomer core (G23=0, Gc3=0), which are validated by the 

numerical simulation. It is seen that the RMS displacement  
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Fig. 14 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam with visco-elastomer core 

(VEC) (G23=0.01G21, Gc3=0.01Gc1) and beam without 

VEC versus stochastic excitation intensity (S0) (dots: 

numerical simulation) 

 

 
Fig. 15 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam versus stochastic excitation 

intensity (S0) for different core layer thicknesses h2 

(G23=0.01G21, Gc3=0.01Gc1) 

 

 

response of the sandwich beam with the soft nonlinear core 

is larger than that of the linear sandwich beam (for example, 

RMS values are 0.0384 for linear case and 0.0506 for 

nonlinear case under S0=1), and the response difference 

increases with the stochastic excitation intensity. Thus, the 

RMS response of the sandwich beam can be underestimated 

by the linear model. However, Fig. 14 illustrates that the 

non-dimensional RMS displacement ( w ) response of the 

sandwich beam with the soft nonlinear visco-elastomer core 

(G23=0.01G21, Gc3=0.01Gc1) is much smaller than that of 

the beam without the visco-elastomer core. Thus, the RMS 

beam response can be reduced remarkably by using the 

nonlinear visco-elastomer core (for example, RMS value 

descends from 0.1331 to 0.0506 for S0=1. The relative 

reduction is 62.0%). 
Fig. 15 illustrates that the non-dimensional RMS 

displacement ( w ) response of the sandwich beam with the 

soft nonlinear visco-elastomer core (G23=0.01G21, 

Gc3=0.01Gc1) decreases as the core layer thicknesses h2 

increases. The response reduction increases with the 

stochastic excitation intensity (S0). Figs. 16 and 17 show the 

non-dimensional RMS displacement ( w ) responses of the 

sandwich beam with the soft nonlinear visco-elastomer core  

 

Fig. 16 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam versus stochastic excitation 

intensity (S0) for different nonlinear stiffness coefficients 

G23 of the core layer (G21=2MPa, Gc3=0.01Gc1) 

 

 

Fig. 17 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam versus stochastic excitation 

intensity (S0) for different nonlinear damping coefficients 

Gc3 of the core layer (G23=0.01G21, Gc1=0.003MPas) 

 

 

for different nonlinear stiffness coefficients G23 (G21=2MPa, 

Gc3=0.01Gc1) and nonlinear damping coefficients Gc3 

(G23=0.01G21, Gc1=0.003MPas) of the core layer, 

respectively. The effect of the nonlinear damping coefficient 

on the RMS displacement response is much larger than that 

of the nonlinear stiffness coefficient.  The RMS 

displacement response of the sandwich beam increases as 

the nonlinear damping coefficient decreases. The response 

increment increases with the stochastic excitation intensity. 

Fig. 18 shows the non-dimensional RMS displacement ( w ) 

responses of the soft nonlinear sandwich beam varying 

complicatedly with the ratios of nonlinear to linear stiffness 

coefficients (G23/G21, Gc3=0.02Gc1) and nonlinear to linear 

damping coefficients (Gc3/Gc1, G23=0.02G21) of the core 

layer under the non-dimensional stochastic excitation 

intensity S0=1. It is seen that the RMS displacement 

response of the sandwich beam increases in fluctuation as 

the ratio G23/G21 of nonlinear to linear stiffness coefficients 

decreases. The fluctuation can be caused by the increased 

soft nonlinearity corresponding to local periodic instability 

enlarged. However, the RMS displacement response of the 

sandwich beam has several peak values for certain ratios 

Gc3/Gc1 of nonlinear to linear damping coefficients. Thus,  
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Fig. 18 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam versus ratios of nonlinear 

to linear stiffness coefficients (G23/G21, Gc3=0.02Gc1) and 

nonlinear to linear damping coefficients (Gc3/Gc1, 

G23=0.02G21) of the core layer 

 

 

Fig. 19 Logarithmic non-dimensional (ND) RMS 

displacement ( w ) responses of the sandwich beam versus 

vibration frequency () for different nonlinear stiffness 

coefficients G23 of the core layer (Gc3=0.02Gc1) 

 

 

the damping coefficient of the soft nonlinear core 

corresponding to the region around the response peaks 

needs to be avoided for the response reduction of the 

sandwich beam. 
Fig. 19 shows the logarithmic non-dimensional RMS 

displacement ( w ) responses of the sandwich beam varying 

with vibration frequency () for different soft nonlinear 

stiffness coefficients G23 (Gc3=0.02Gc1) of the core layer. It 

is seen that the high-order resonant frequency responses can 

be larger than the low-order resonant frequency responses 

(for example, the fourth response peak is higher than the 

third response peak) for the soft nonlinear case. However, 

Fig. 20 illustrates that the non-dimensional RMS 

displacement ( w ) response of the soft nonlinear sandwich 

beam decreases as the dominant excitation frequency (g) 

runs away from the resonant frequency (for example, 23 

rad/s to 40 rad/s, 57 rad/s) (G23=0.01G21, Gc3=0.01Gc1). 
 

 

5. Conclusions 
 

The stochastic vibration response of the sandwich beam 

with the nonlinear adjustable visco-elastomer core and 

 

Fig. 20 Non-dimensional (ND) RMS displacement ( w ) 

responses of the sandwich beam versus stochastic excitation 

intensity (S0) for different excitation spectral density 

parameters g (G23=0.01G21, Gc3=0.01Gc1) 

 

 

supported mass under stochastic support motion excitations 

has been studied. The nonlinear dynamic properties of the 

visco-elastomer core have been considered. The nonlinear 

partial differential equations for the horizontal and vertical 

coupling motions of the sandwich beam with the supported 

mass have been derived by the dynamic equilibrium, 

constitutive and geometric relations. An analytical solution 

method for the stochastic vibration response of the 

nonlinear sandwich beam has been developed based on the 

Galerkin method and statistic linearization method. The 

multi-degree-of-freedom system with the cubic nonlinear 

stiffness and damping subjected to stochastic excitations 

has been obtained by using the Galerkin method. The 

nonlinear stochastic system has been converted into the 

equivalent quasi-linear system by using the statistic 

linearization method. The frequency-response function, 

response spectral density and mean square response 

expressions of the nonlinear sandwich beam have been 

obtained. The developed analysis method is applicable to 

sandwich beams with arbitrary high-power nonlinear cores 

under arbitrary stationary stochastic excitations. 

Numerical results illustrate that (1) the RMS response of 

the sandwich beam with the nonlinear visco-elastomer core 

under stochastic excitations can be overestimated for the 

hard nonlinearity and underestimated for the soft 

nonlinearity by using the linear core model; (2) the RMS 

response of the sandwich beam under stochastic excitations 

can be reduced remarkably by using the hard or soft 

nonlinear visco-elastomer core; (3) the RMS response of the 

stochastic nonlinear sandwich beam decreases as the facial 

layer thickness, core layer thickness, core stiffness and 

damping increase; (4) in the hard nonlinear case, the RMS 

response of the stochastic sandwich beam decreases rapidly 

for small ratio of nonlinear to linear damping coefficients 

and then becomes steady as the damping ratio increases, 

and however, in the soft nonlinear case, the RMS response 

of the stochastic sandwich beam has several large peak 

values for certain ratios of nonlinear to linear damping 

coefficients; (5) the high-order resonant frequency 

responses are smaller than the low-order resonant frequency 

responses for the hard nonlinear sandwich beam, and 
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however, the high-order resonant frequency responses can 

be larger than the low-order resonant frequency responses 

for the soft nonlinear sandwich beam. The above results are 

valuable for the stochastic vibration control design of 

sandwich beams with nonlinear visco-elastomer core. 
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