
Structural Engineering and Mechanics, Vol. 64, No. 2 (2017) 145-153 

DOI: https://doi.org/10.12989/sem.2017.64.2.145                                                                 145 

Copyright ©  2017 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 

1. Introduction 
 

It is well-known that the classical theory of bending of 

beam based on Euler-Bernoulli hypothesis neglects the 

influences of the shear deformation. The theory is 

applicable for thin beams and is not applicable for thick 

beams since it is based on the supposition that the sections 

normal to neutral axis before deformation remain so during 

deformation and after deformation, implying that the 

transverse shear strain is zero. Since the model disregards 

the transverse shear deformation, it underestimates deflections 

in case of deep beams where shear deformation impacts are 

considerable. Bresse (1859), Rayleigh (1877) and 

Timoshenko (1921) were the first researchers to introduce 

both the rotatory inertia and shear deformation effects in the 

beam theory. Timoshenko demonstrates that the influence of 

transverse shear is much greater than that of rotatory inertia 

on the behavior of transverse vibration of prismatic bars. 

This theory is also known as a first-order shear deformation 

theory (FSDT) of beams. However, this theory has the 

drawback of considering unrealistic constant transverse 

shear strain within the beam thickness. It also requires the 

employ of a shear correction factor (Adda Bedia et al. 2015, 

Meksi et al. 2015, Bellifa et al. 2016, Bouderba et al. 

2016). The detailed investigations on employ of shear 

correction factors in Timoshenko beam theory are indicated 

by Cowper (1966), Jensen (1983), Hutchinson (2001). To 
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remove the discrepancies in Euler-Bernoulli (EBT) and 

FSDT, higher order or refined shear deformation theories 

were proposed and are found in the open literature for 

bending and dynamic analysis of beam. Levinson (1981), 

Bickford (1982), Rehfield and Murty (1982), Krishna 

Murty (1984), Baluch et al. (1984), Bhimaraddi and 

Chandrashekhara (1993), Bousahla et al. (2014), Fekrar et 

al. (2014), Hamidi et al. (2015), Ait Atmane et al. (2015), 

Ait Yahia et al. (2015), Attia et al. (2015), Barati and 

Shahverdi (2016), Becheri et al. (2016), Beldjelili et al. 

(2016), Ahouel et al (2016), Belkorissat et al. (2016), 

Merdaci et al. (2016), Draiche et al. (2016), Klouche et al. 

(2017), Fahsi et al. (2017), Chikh et al. (2017), Meksi et al. 

(2017), Bellifa et al. (2017) developed nonlinear shear 

deformation models by considering a higher variation of 

axial displacement in terms of thickness coordinate. These 

models respect shear stress free boundary conditions on 

upper and lower surfaces of beam and hence obviate the 

need of shear correction coefficient. Irretier (1986) 

investigated the refined dynamical influences in linear, 

homogenous beam according to models, which exceed the 

limits of the EBT. These influences are rotary inertia, shear 

deformation, axial pre-stress, twist and coupling between 

bending and torsion. Stein (1989) proposed refined shear 

deformation model for deep beams including trigonometric 

function in terms of thickness coordinate in kinematic. 

However, with this model shear stress free boundary 

conditions are not verified at top and bottom surfaces of the 

beam. Ghugal and Dahake (2012) presented a flexural 

analysis of thick beam under parabolic load using refined 

shear deformation theory. 

Lately, FG structures have attained a mentionable 
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attention of the research community (Kar and Panda, 

2015a,b.c, Alshorbagy et al. 2011, Ait Amar Meziane et al. 

2014, Swaminathan and Naveenkumar 2014, Bakora and 

Tounsi 2015, Larbi Chaht et al. 2015, Akavci 2015, Liang et 

al. 2015, Arefi 2015a,b, Arefi and Allam 2015, Akbaş 2016, 

Celebi et al. 2016, Ghorbanpour Arani et al. 2016, Bousahla 

et al. 2016, Hadji et al. 2016, El-Haina et al. 2017, 

Benahmed et al. 2017). Benatta et al. (2009), Sallai et al. 

(2009) investigated the static response of simply supported 

FG hybrid beams subjected to uniformly distributed 

transverse loads by using a higher-order shear deformation 

theory. The finite element method and the third-order shear 

deformation theory (TSDT) are employed by Kadoli et al. 

(2008) to examine the bending of FG beams by considering 

different boundary conditions. Sankar (2001) proposed a 

beam model to study the static problem of a simply 

supported beam. Li (2008) discussed the bending and 

transverse vibrations problem of FG Timoshenko beams. 

Hebali et al. (2014) developed a novel quasi-three-

dimensional hyperbolic shear deformation theory for the 

static and dynamic analysis of FG plate. Belabed et al. 

(2014) proposed an efficient and simple higher order shear 

and normal deformation theory for FG plates. Bourada et al. 

(2015) developed a new simple and refined trigonometric 

higher-order beam theory for static and vibration of FG 

beams with including the thickness stretching effect. 

Recently, a new class of plate theories with shear 

deformation effect is developed by both Tounsi et al. (2016) 

and Houari et al. (2016) by using only three unknowns in 

displacement field. Hassaine Daouadji and Adim (2017) 

investigated the mechanical behavior of FG sandwich plates 

using a quasi-3D higher order shear and normal 

deformation theory.  

This article presents a new simple two -unknown 

hyperbolic shear deformation theory for FG beams. The 

effectiveness of the proposed theory is demonstrated 

through illustrative examples for static and free vibrations 

of FG beams of rectangular cross-section. 

 

 

2. Mathematical formulation 
 

Consider a simply supported FG beam with the length L 

and rectangular cross-section b×h with b being the width 

and h being the height. Unlike the previous mentioned 

theories, the number of unknown functions involved in the 

present theory is only two as in EBT. The beam is made of 

isotropic material with material properties varying smoothly 

in the thickness direction. The FG beam is isotropic with its 

material properties vary smoothly within the thickness of 

the beam.  

The volume-fraction of ceramic Vc is defined by the 

following relation (Bessaim et al. 2013, Zidi et al. 2014, 

Bennai et al. 2015, Taibi et al. 2015, Benferhat et al. 2016, 

Bennoun et al. 2016, Besseghier et al. 2017) 
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                (1) 

Where k is the gradient index, which takes the value 

greater or equal to zero. Material nonhomogeneous 

characteristics of a FG beam may be determined using the 

Voigt rule of mixture (Suresh and Mortensen 1998). Thus, 

using Eq. (1), the material nonhomogeneous properties (P) 

of FG beam P, as a function of thickness coordinate, 

become (Bouderba et al. 2013, Tounsi et al. 2013, Zemri et 

al. 2015, Meradjah et al. 2015, Mahi et al. 2015, Laoufi et 

al. 2016, Bouafia et al. 2017) 

 ( ) ( )c m c mP z P P V z P              (2) 

where P is the effective material property of FG beam. Pm 

and Pc are the corresponding properties of the metal and 

ceramic, respectively. In the present study, we suppose that 

the elasticity modules E and the mass density ρ are defined 

by Eq. (2), while Poisson‟s ratio v, is assumed to be 

constant across the thickness (Bourada et al. 2015, 

Boukhari et al. 2016, Bounouara et al. 2016). 

 

2.1 Kinematics 
 

The displacement field of the proposed two unknowns 

shear deformation theory is built upon the Euler-Bernoulli 

beam theory (EBT) including the hyperbolic function in 

terms of thickness coordinate to represent shear 

deformation and is assumed as follows (Mouffoki et al. 

2017) 
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Where u0 and w0 are two unknown displacement 

functions of mid-axis of the beam. f(z) is a shape function 

representing the variation of the transverse shear strains and 

shear stresses through the thickness of the beam and is 

given as (Soldatos 1992) 
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The nonzero linear strains related to displacement field 

in Eq. (3) are 
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And 
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Where β is defined in Eq. (19). 

 

2.2 Constitutive relations 
 

By assuming that the material of FG beam obeys 

Hooke‟s law, the stresses in the beam become 

  xx zQ  11  and   xzxz zQ  55       (8) 
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Where (ζx, ηxz) and (εx, γxz) are the stress and strain 

components, respectively. The stiffness coefficients, Qij, can 

be expressed as 

  )(11 zEzQ  ,  
 


12

)(
55

zE
zQ           (9) 

 

2.3 Governing equations 
 

Hamilton‟s principle is used herein to derive the 

equations of motion. The principle can be stated in the 

following form 

 dtKVU

t

t
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             (10) 

Where t is the time; t1 and t2 are the initial and end time, 

respectively; U is the virtual variation of the strain energy; 

V is the virtual variation of the potential energy; and K is 

the virtual variation of the kinetic energy. The variation of 

the strain energy of the beam can be stated as 
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In which the stress resultants Nx, Mx, Sx and Qxz are 

defined by 
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The variation of the potential energy by the applied 

transverse load q can be written as 
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The variation of kinetic energy is written as 
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Where dot-superscript convention indicates the 

differentiation with respect to the time variable t; ρ(z) is the 

mass density; and (I0, I1, J1, I2, J2, K2) are mass inertias 

defined as 
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Using the expressions for δU, δV, and δK from Eqs. 

(11), (13), and (14) into Eq. (10) and integrating by parts, 

and collecting the coefficients of δu0 and δw0, the following 

equations of motion of the beam are obtained 
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2.4 Governing equations in terms of displacements 
 

By substituting Eq. (5) into Eq. (8) and the subsequent 

results into Eq. (12), the stress resultants can be written as 

below 
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The expression of shape parameter „β „ is evaluated in 

the post-processing phase and is found to be as follows 
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For an isotropic beam 
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By substituting Eq. (17) into Eq. (16), the governing 

equations can be written in terms of generalized 

displacements (u0 and w0) as 
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3. Analytical solution 
 

The above governing equations are analytically solved 

for bending problems of a simply supported beam. Based on 

Navier solution procedure, the displacements are assumed 

as follows 
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Where λ=mπ/a, (Um, Wm) are arbitrary parameters to be 

determined, ω is the eigenfrequency associated with m-th 

eigenmode, The transverse load q is also expanded in 

Fourier sine series as 
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The coefficients Qm are given below for some typical 

loads. For the case of a sinusoidally distributed load, we 

have 
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and for the case of uniform distributed load, we have 

m

q
qmn

04
 ,  ,......5,3,1m           (25) 

Substituting the expansions of u0, w0, and q from Eqs. 

(21) and (22) into the equations of motion, Eq. (20), the 

analytical solutions can be obtained from the following 
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4. Numerical results and discussion 
 

In this work, bending and free vibration analysis of the 

simply supported FG beams is studied using the present 2- 

 

 
 
 

Table 1 Comparison of non-dimensional deflections and stresses of FG beams under uniform 

k Method 
L/h=5 L/h=20 

w  u  x  
xz  w  u  x  

xz  

0 

Li et al. (2010) 3.1657 0.9402 3.8020 0.7500 2.8962 0.2306 15.0130 0.7500 

Ould Larbi et al. (2013) 3.1651 0.9406 3.8043 0.7489 2.8962 0.2305 15.0136 0.7625 

Present 3.1654 0.9397 3.8017 0.7312 2.8962 0.2306 15.0129 0.7429 

0.5 

Li et al. (2010) 4.8292 1.6603 4.9925 0.7676 4.4645 0.4087 19.7005 0.7676 

Ould Larbi et al. (2013) 4.8282 1.6608 4.9956 0.7660 4.4644 0.4087 19.7013 0.7795 

Present 4.8285 1.6595 4.9920 0.7484 4.4644 0.4087 19.7003 0.7599 

1 

Li et al. (2010) 6.2599 2.3045 5.8837 0.7500 5.8049 0.5686 23.2054 0.7500 

Ould Larbi et al. (2013) 6.2590 2.3052 5.8875 0.7489 5.8049 0.5685 23.2063 0.7625 

Present 6.2594 2.3036 5.8831 0.7312 5.8049 0.5685 23.2052 0.7429 

2 

Li et al. (2010) 8.0602 3.1134 6.8812 0.6787 7.4415 0.7691 27.0989 0.6787 

Ould Larbi et al. (2013) 8.0683 3.1146 6.8878 0.6870 7.4421 0.7691 27.1005 0.7005 

Present 8.0675 3.1127 6.8819 0.6685 7.4420 0.7691 27.0989 0.6802 

5 

Li et al. (2010) 9.7802 3.7089 8.1030 0.5790 8.8151 0.9133 31.8112 0.5790 

Ould Larbi et al. (2013) 9.8345 3.7128 8.1187 0.6084 8.8186 0.9134 31.8151 0.6218 

Present 9.8271 3.7097 8.1095 0.5883 8.8181 0.9134 31.8127 0.5998 

10 

Li et al. (2010) 10.8979 3.8860 9.7063 0.6436 9.6879 0.9536 38.1372 0.6436 

Ould Larbi et al. (2013) 10.9413 3.8898 9.7203 0.6640 9.6907 0.9537 38.1408 0.6788 

Present 10.9375 3.8859 9.7111 0.6445 9.6905 0.9536 38.1383 0.6572 
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Fig. 1 The variation of the axial displacement u  through 

the thickness of an FG beam (L=2h) 
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Fig. 2 The variation of the axial stress 

x  through the 

thickness of an FG beam (L=2h) 

 

 

unknowns hyperbolic shear deformation theory. 

The FG beam is considered to be made of aluminum and 

alumina with the following material properties 

• Ceramic (Pc: Alumina, Al2O3): Ec=380 GPa, v=0.3, 

ρc=3960 kg/m
3
. 

• Metal (Pm: Aluminum, Al): Em=70 GPa, v=0.3, 

ρm=2707 kg/m
3
. 

For convenience, the following non-dimensional 

parameters are employed 
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4.1 Results of bending analysis 
 

Table 1 provides non-dimensional displacements and 

stresses of FG beams subjected to uniform load q0 for 

different values of gradient index (k) and span-to-depth 

ratio (L/h). The computed results are compared with the 

analytical solutions reported by Li et al. (2010) and the high 
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Fig. 3 The variation of the shear stress 

xz  through the 

thickness of an FG beam (L=2h) 

 

0,0 0,2 0,4 0,6 0,8 1,0

0

1

2

3

4

5

6

7

8

9

10

11

k=10

k=1

k=0,5

x/a

 Present 

 Ould Larbi et al, (2013)

k=0

 
Fig. 4 The variation of the transverse displacement w  

versus non-dimensional length of an FG beam (L=5h) 

 

 

shear deformation theory of Ould Larbi et al. (2013). It can 

be seen that our results are in an excellent agreement to 

those reported by Li et al. (2010), Ould Larbi et al. (2013). 

In Figs. 1-3, the variation of the axial displacement u , 

normal stresses 
x , and transverse shear stress 

xz  within 

the depth of the FG beam under uniform load is presented. 

A comparison with higher shear deformation beam theory 

developed by Ould Larbi et al. (2013) is also demonstrated 

in these figures for different values of the gradient k. It is 

deduced that there is an excellent agreement between the 

proposed two-unknown hyperbolic shear deformation 

theory and the theory of Ould Larbi et al. (2013) which 

involves three unknowns functions. It can be observed from 

Fig. 1 that increasing the gradient index k leads to an 

increase of the axial displacement u  and especially at the 

upper and lower surfaces of the beam. In Fig. 2, the 

longitudinal stress x  is tensile state at the upper surface 

and compressive state at the lower surface. The fully 

ceramic beam k=0 yields the maximum compressive 

stresses at the lower surface and the minimum tensile 

stresses at the upper surface of the beam. In Fig. 3 we 

plotted the through-the-thickness variations of the 

transverse shear stress xz . The through-the-thickness 

variations of xz  for FG beams are not parabolic as in the 

case of fully metal or ceramic beams. Fig. 4 shows the  
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Table 2 Comparison of non-dimensional fundamental 

frequencies of FG beam 

L/h Theory 
P 

0 0.5 1 2 5 10 

5 

Ould 

Larbi et 

al. (2013) 

5.1529 4.4108 3.9905 3.6263 3.4001 3.2812 

Present 5.1527 4.4107 3.9904 3.6265 3.4004 3.2817 

20 

Ould 

Larbi et 

al. (2013) 

5.4603 4.6511 4.2051 3.8361 3.6484 3.5389 

Present 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390 
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Fig. 5 Variation of the non-dimensional fundamental 

frequency w  of an FG beam with the gradient index k and 

span-to-depth ratio L/h 

 

 

distribution of the non-dimensional deflection w  versus 

non-dimensional length for different gradient index. It can 

be seen that the results predicted by the proposed theory are 

almost identical to those given by Ould Larbi et al. (2013). 

The results show also that the increase of the gradient index 

k leads to an increase of deflection 
xz .  

Also, one can note that, the proposed theory involves 

only two unknowns variables against the three unknowns 

variables in case of Timoshenko beam theory. Furthermore, 

it can be indicated that, the Timoshenko theory requires the 

use of a shear correction factor. In contrast, the proposed 

theory does not require a shear correction factor. 

 

4.2 Results of free vibration analysis 
 

In this part of study, the non-dimensional fundamental 

frequencies   predicted by the proposed theory are 

compared with those reported by Ould Larbi et al. (2013) of 

FG beams for different values of gradient index k and span-

to-depth ratio L/h and the results are listed in Table 2. It can 

be observed that the proposed theory with only two 

unknown‟s variables gives almost identical results to those 

of Ould Larbi et al. (2013) three unknown‟s variables. 

Fig. 5 presents the variation of non-dimensional 

fundamental natural frequency   versus the gradient 

index k for different values of span-to-depth ratio L/h and 

the results are compared to those computed using the theory 

developed by Ould Larbi et al. (2013). The examination of 

this figure demonstrates an excellent agreement between the 

proposed theory and that of Ould Larbi et al. (2013). It can 

be seen that the increase of the gradient index lead to a 

reduction of the frequency. The highest frequency is found 

for the fully ceramic beams (k=0). However, the lowest 

frequency values are obtained for fully metal beams (k→∞). 

This is due to the fact that an increase in the value of the 

gradient index results in a reduction in the value of 

elasticity modulus. 

 

 

5. Conclusions 
 

In this article, a simple two-unknown shear deformation 

theory for bending and free vibrations of a FG beam of 

rectangular cross-section is presented. Some of the 

important aspects of the beam theory presented herein can 

be summarized as follows: 

• The governing differential equation of the theory 

involves only two unknown variables as the Euler-

Bernoulli beam theories which are even less than the 

Timoshenko beam theory and other HSDTs. 

• The displacement field of the proposed beam theory 

gives rise to a realistic parabolic distribution of 

transverse shear stress across the beam cross-section. 

Furthermore, proposed theory does not require a shear 

correction factor. 

• Efficacy of the developed theory is shown within 

illustrative examples for bending and dynamic of 

rectangular cross-section FG beams. The obtained 

numerical results are compared with those of other 

higher-order shear deformation beam theory results. The 

obtained are found to be accurate. 

In conclusion, the beam theory proposed herein is a 

simple and an accurate theory for bending and free 

vibrations analysis of FG beams of rectangular cross-

section. 
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