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1. Introduction 
 

Thick cylinder shows a broaden application in 

engineering, such as civil engineering, petroleum 

engineering, nuclear engineering, mechanical engineering. 

Previous researches on such structure are mostly based on 

the classical same modulus theory, which argues that 

materials show only one elastic modulus in tension and 

compression (Chandrashekhara and Bhimaraddi 1982, Zhou 

1981). However, various experiments indicate that many 

materials in engineering have different tensile modulus and 

compressive modulus, such as concrete (Guo and Zhang 

1987), nuclear graphite (Medri 1982), metal alloy (Gilbert 

1961), biological materials (Cai and Qin 2014), polymer 

and composite (Bertoldi et al. 2008, Patel et al. 2014), and 

so on. Particularly, graphene, the thinnest but hardest 

material with minimum electrical resistivity does have 

higher compressive modulus than tensile modulus 

(Tsoukleri and Parthenios 2009, Geim 2009). For a structure 

composed of such materials, elastic coefficients not only 

depend on the structural material, but also change with 

displacement and stress state of a certain point in the 

structure, which means they are related to material, 
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geometry, boundary conditions and loads of the structure. 

The bi-modulus problem is actually a kind of non-linear 

problem caused by many factors. If the classical same 

modulus theory is still adopted, a significant error may 

generate in the structural calculation and design. Therefore, 

the bi-modulus theory is proposed to accomplish accurate 

analyses, excavate the potential of materials and invent 

novel materials, which is always a hot studying topic. 

Timoshenko (1994) proposed the concept of bi-modulus 

materials when he studied the mechanical behavior of a 

pure bending beam. Afterwards, the constitutive model, the 

finite element method and the analytical method of the bi-

modulus theory were put forward and applied to practical 

engineering.  

According to the combination of principal stresses with 

different signs, Ambartsumyan (1965) divided a structure 

into two kinds of region: (1) tensile region with three 

principle stresses being uniformly positive or compressive 

region with three principle stresses being all negative; (2) 

complex stress region with three principle stresses having 

different signs. The elastic matrix and the interface between 

tensile region and compressive region are key problems in 

the study on the constitutive model of bi-modulus materials. 

Ambartsumyan raised the bi-linear model to describe the 

stress-strain relation of a bi-modulus material. He also 

argued that the coefficients in the flexibility matrix were 

determined according to the sign of each principle stress. 

According to the sign of the first stress invariant, Shapiro 

(1971) proposed another criterion to obtain the flexibility 
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matrix. Considering the Poisson’s effect, Jones (1971) 

introduced the average value and the weighting coefficient 

to get coefficients out of the leading diagonal of matrix and 

established two modified models. Vijayakumar (1990) put 

forward that the computational model may be separated into 

some small sub-matrices and then the tensile region and the 

compressive region may be divided into more tiny zones. 

Green, Mkrtichian (1977), Ye (2001) suggested that 

material properties may more rely on the sign of strain 

comparing to stress and then they developed the principal 

strain model. 

In the early times, the finite element method (FEM) is 

widely used to solve bi-modulus problems. Until now, five 

main methods are suggested to improve the precision and 

the speed of calculation, including the initial stress method 

raised by Yang et al. (1992) , a modified method through 

introducing an accelerating convergence factor and a 

general formula to calculate the shear elastic modulus put 

forward by Zhang and Wang (1989), Liu and Zhang (2002), 

Liu and Meng (2002), a simplified model adopted the 

principle of μt/Et=μc/Ec presented by Ye (1997), the 

smoothing function method proposed by Yang and Zhu 

(2006) and the method by introducing  different shear 

modulus in tension and compression proposed by He et al. 

(2009). 

Superior to FEM, the analytical method enables 

researchers to easily get the stress field and deformation 

field of structures and execute the qualitative sensitive 

parameters analysis. Ambartsumyan (1965) derived the 

analytical expressions of stresses and deformation of 

various bi-modulus structures subjected to simple loads. 

Based on the plane cross-section assumption, Yao and Ye 

(2004a) proved that the position of the neutral layer in a bi-

modulus structure has no relationship with the shear stress. 

And then some analytical or semi-analytical models are 

established to study the mechanical behavior of bi-modulus 

structures in engineering, like bending beams (Yao and Ye 

2004a), bending-compression columns (Yao and Ye 2004b), 

statically indeterminate structures (Yao and Ye 2006a), 

composite structures (Yao et al. 2006b) and compression 

rods with small deflection (Yao and Ma 2013) and large 

deflection (Yao et al. 2015). By introducing the simplified 

equivalent cross-section method, He et al (2007, 2010a, 

2010b, 2012, 2015) deduced the analytical solution of bi-

modulus bending beams, bi-modulus bending-compression 

columns, bi-modulus thin plates, bi-modulus plates with the 

large deflection and bi-modulus curve beams. Leal et al. 

(2009) gave the compressive strength equation of high 

performance fiber with different modulus in tension and 

compression. Wu et al. (2010) studied the bending of bi-

modulus plates with large deflection. Shi and Gao (2015) 

realize the application of the bi-modulus theory in the 

structural topology optimization technology. 

By now, few researches have been conducted to study 

the mechanical response of bi-modulus structures placed in 

the axisymmetric temperature field. Kamiya (1977) 

deduced the displacement governing equation of the bi-

modulus cylinder under the axisymmetric temperature field. 

However, the semi-analytical model established by Kamiya 

(1977) is very complex with eight non-linear equations to 

 
Et>Ec                    Et<Ec 

Fig. 1 Constitutive model for bi-modulus materials (bi-

linear model) 

 

 

be solved and cannot be applied to the analysis and 

calculation of structures with slightly higher computational 

accuracy in practical engineering (Li et al. 2008, Fang et al. 

2014). In view of this, a stress function is introduced in this 

paper to simplify Kamiya’s model and accomplish the 

precise analysis of the mechanical response of a bi-modulus 

thick cylinder under the axisymmetric temperature field. 

Meanwhile, numerical studies are conducted, including 

developing a FEM procedure and the ABAQUS simulation. 

Finally, the calculation discrepancy between the bi-modulus 

solution and the classical same modulus solution is 

discussed. 

 

 

2. Mechanical model 
 

2.1 Basic concept 
 

In this paper, the bi-linear model proposed by 

Ambartsumyan (1965) is adopted to describe the stress-

strain relationship of a bi-modulus material, which is shown 

in Fig. 1. It means that a material may generate the 

corresponding tensile strain and compressive strain with 

different absolute values when it is subjected to tensile 

stress and compressive stress with the same absolute value. 

Therefore, the material has a tensile modulus Et and another 

compressive modulus Ec with different magnitudes. In the 

meantime, the Poisson’s ratio of a bi-modulus material 

meets the equation t c

t cE E

 
   , where t and c are the 

tensile Poisson’s ratio and the compressive Poisson’s ratio, 

respectively. 

 

2.2 Assumption 
 

The bi-modulus cylinder studied in this paper meets 

some basic assumptions in mechanics of elasticity, 

including a solid, continuity, homogeneity and isotropy. In 

addition, merely small deformation will happen during the 

whole loading process. Therefore, the difference of the bi-

modulus theory with the classical same modulus theory is 

only reflected in the constitutive equations but the 

equilibrium equations, geometric equations and deformation 

continuity equations are all the same. The material will  
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r=a

r=
b

 

Fig. 2 Structural model 

 

 

show different elastic properties (Ec, Et, c, t) according to 

different signs of principal stresses. 

 

2.3 Structural model 
 

As shown in Fig. 2, an infinite cylinder, with the inner 

diameter a and the external diameter b, is made of the bi-

modulus material. The tensile elastic modulus and the 

compressive elastic modulus are Et and Ec, respectively. 

Correspondingly, the Poisson’s rations in tension and 

compression are μt and μc. The coefficient of thermal 

expansion is α. A polar coordinate system O-rθz with the 

origin set on the center of a circle is established.  

The cylinder is placed in the axisymmetric temperature 

field T=T(r) and the temperature is distributed uniformly 

along the longitudinal direction. 

 

 

3. Theoretical analysis and analytical derivation 
 

3.1 Establishment of governing equation of stress 
function 

 

According to the theory of elasticity, the strain 

components in principal directions can be described as 

   11 12 13rr rr zza a a T         (1a) 

   21 22 23rr zza a a T        
 (1b) 

   31 32 33zz rr zza a a T       
 (1c) 

where  
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It is assumed that t c

t cE E

 
   . Then we can 

get
12 21 13 31 23 32

t c

t c

a a a a a a
E E

 
        

. 

Mechanical analysis of the infinite cylinder is regarded 

as a kind of plane strain problem. Then we have 

0zz 
 (2) 

Combine Eq. (1) and Eq. (2), we have 

11 12rr rrb b b T       (3a) 

21 22rrb b b T        (3b) 

where the elastic coefficients are 
2
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 
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For axisymmetric problems, the geometric equations can 

be simplified as 

rr
rr

u

r





  
(4a) 

rru

r
 

 
(4b) 

0r   (4c) 

According to Eq. (4), the continuity equation of strain is 

obtained as 

0rr

d
r

dr





   

 
(5) 

Considering the axial symmetry, the equilibrium 

equation can be written as  

0rr
rr

d
r

dr



   

 
(6) 

where the radial stress rr and the circumferential stress  

are the principal stresses unrelated to θ and are actually the 

function of r. Now we introduce the stress function ψ(r) to 

substitute the principle stresses as 

rr
r


 

 
(7a) 

d

dr



 

 
(7b) 

For the plane strain problem, we have 

 

 

0

0

t rr t zz

zz

c rr c zz

E T

E T





    


    

  
 

    
(8) 

Substituting Eq. (7) into Eq. (3) and then into Eq. (5) 

with considering Eq. (6) simultaneously, the governing 

equation of stress function can be gained as 

2
2 211

2

22 22

0
bbd d dT

r r r
dr dr b b dr

 
     (9) 

 

3.2 Derivation of stress expression with unknown 
parameters 
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Fig. 3 Stress distribution in the cylinder using the classical 

same modulus theory 

 

 

Taking a steady temperature field as an example, the 

analytical expressions of stresses of the bi-modulus cylinder 

can be deduced. It is assumed that the temperature at the 

inner wall is T0>0 and that at the outer wall is 0. The 

equation of heat conduction can be described as 

1
0

d dT
r

r dr dr

 
 

 
 (10) 

where the boundary conditions are 

when r=a, T=T0

 
(11a) 

when r=b, T=0 (11b) 

Considering the steady heat flow, the temperature 

function will be 

 

 0

ln

ln

b r
T T

b a
  (12) 

For the classical same modulus problem, in such 

working condition, the radial stress is compressive. That is 

to say, σrr<0 appears at the random point of the cylinder. 

The circumferential stress  and the axial stress zz are the 

continuous function of coordinate r and are negative at the 

inner wall and positive at the outer wall. The stress 

distribution in the cylinder is shown as Fig. 3. 

For bi-modulus materials, the stress distribution is 

similar to the classical same modulus solution (Kamiya 

1977). Therefore, we have σrr<0 and the signs of both the 

circumferential stress and the axial stress change with the 

increase of radius r. It is assumed that σθθ=0 when r=s1, and 

σzz=0 when r=s2, where a<s1<s2<b. 

Consequently, the random cross section of the cylinder 

can be divided into three regions: 

1. When 1a r s  , we have 0rr  , 0  , 0zz   

2. When 1 2s r s  , we have 0rr  , 0  , 0zz   

3. When 2s r b  , we have 0rr  , 0  , 0zz   

For the first region a<r<s1, we have σrr<0, σθθ<0, σrr<0 

and then we have 
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k
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The governing equation of the stress function can be 

simplified as 

 

2
2 0

2
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0
ln

a

a

b T rd d
r r

dr dr b b a

 
     (13) 

Solving Eq. (13), the expression of the stress function 

can be written as 

 
 

02
1
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ln
2 ln

a

a

b TC
r C r r r

r b b a
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where C1 and C2 are both the unknown parameters having 

no relationship with the radius r. 

Substituting Eq. (14) into Eq. (7), the radial stress σrr 

and the circumferential stress  can be obtained as 

 
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22

ln
2 ln

a

rr a

b TC
C r

r b b a

     (15a) 

 
 02

1 2

22

1 ln
2 ln

a

a

b TC
C r

r b b a


      (15b) 

According to Eq. (8), we can get 
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Analogously, for the second region s1<r<s2, the 

expression of the stress function can be written as 
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The expressions of three principle stresses can be gained 

as 
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where  
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C3 and C4 are both the unknown parameters unrelated to 

the radius r. 

And for the third region s2<r<b, we have the stress 

function 

 
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3 3 0
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22 3ln 1
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And the stress can be described as 
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C5 and C6 are both the unknown parameters independent 

of the radius r. 

 

3.3 Parameter solving of stress expression 
 

The boundary conditions of three regions are as follows 

when , 0rrr a    (20a) 

1when , 0r s     (20b) 
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2when , 0zzr s   

 

(20e) 
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(20f) 

Substituting the corresponding stress expressions into 

the above boundary condition expressions, the unknown 

parameters in the expressions of stresses can be solved as 
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Then the stress expressions of random points in the 

cylinder are as below 

when a<r<s1 
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when s2<r<b 
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3.3 Governing equation set of radii of curvature of the 
neutral layer 
 

On the interface of different regions, continuity 

conditions of stress should be satisfied, which are 

when 1r s or 2r s , 
rr rr    (23) 

Substitute Eq. (22a), Eq. (22b) and Eq. (22g) 

respectively into Eq. (23) and then we can get the simplified 

transcendental equation set about s1 and s2 as Eq. (24a) and 

Eq. (24b). 

A non-linear iteration procedure based on Newton’s 

method is developed on MATLAB platform to gain the 

solutions of the equation set Eq. (24). It’s worth noting that 

s1 and s2 are both limited to the range from a=1.5 to b=2.5. 

Rational initial values are chosen and substituted into the 

procedure. Numerical solutions of s1 and s2 are obtained. 

The calculation flow chart is shown as Fig. 4. 

Substituting s1 and s2 into Eq. (21), we have the 

expressions of stresses. According to Eq. (1), the 

expressions of strains can be obtained. Finally, the 

expressions of displacements can be deduced by 

substituting the expressions of strains into Eq. (4). 

 

 

4. Verification of semi-analytical solution 

 
4.1 Degeneration to the classical same modulus 

solution 
 

According to the classical same modulus theory, we 

have c tE E E  , c t    . The governing equation of the  

 

Fig. 4 Calculation flow chart of non-linear equation (set) 

 

 

stress function will be written as 
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By solving Eq. (25), the expression of the stress 

function containing unknown parameters can be deduced. 

Substituting the expression into Eq. (7), we have the stress 

expressions. Finally, according to the boundary conditions 

of Eq. (20a) and Eq. (20f), the unknown parameters can be 

solved and the stress expressions are written as below. 
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The stress expressions shown in Eq. (26) are the same as 

the results adopting the classical same modulus theory. That 

is to say, the semi-analytical solution using the bi-modulus 

theory can be totally degenerated to the classical same 

modulus solution, which partly verifies the validity and 

rationality of the semi-analytical method in this paper. 

 
4.2 Numerical analysis by developing a new 

calculation procedure 
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Analytical and numerical study of temperature stress in the bi-modulus thick cylinder 

 

A numerical procedure, based on UMAT, User 

Subroutine, ABAQUS, is developed in this paper to study 

the stress field of the bi-modulus cylinder. The main 

purpose of the procedure is to continually update the 

Jacobian matrix, the increments of stresses and strains in 

each step and stresses at the end of each step (Zhuang 

2009). The principle in detail is as below.  

Subjected to a temperature field, the total strain 

increment of the cylinder can be written as 

d d d e T
ε ε ε

 
(27) 

where dε is the total strain increment, dε
e
 is the elastic strain 

increment and dε
T
 is the thermal strain increment as below 
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(30) 

Define the stress increments of the cylinder in three 

directions as 
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T
d d d d d d d     σ

 
(31) 

Then relationship between the stress increment and 

strain in the elastic stage can be derived 
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(32) 

where D is the elastic constant matrix which is also defined 

as the Jacobian matrix 
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(34) 

where E1,E2,E3,1, 2, 3 are determined according to the 

signs of principal stresses σ11,σ22,σ33. In detail, for example, 

if a principal stress is positive, the elastic parameters in that 

direction are tensile modulus Et, tensile Poisson’s ratio t, 

respectively. If the principle stress is negative, the elastic 

parameters in that direction are compressive modulus Ec, 

compressive Poisson’s ratio c, respectively. The elastic 

parameters meet c/t=Ec/Et. 

The accelerating convergence factor η (Liu and Zhang 

2000, Liu and Meng 2002), the ratio of the sum of positive 

principal stresses to the sum of the absolute value of the 

three principal stresses, is introduced to define the shear 

modulus. For instance: 

if 
11 0  ,

22 0  ,
33 0  , then 11 22

11 22 33

 


  




 
 

if 
11 0  ,

22 0  ,
33 0  , then 11

11 22 33




  


 
 

if 
11 0  ,

22 0  ,
33 0  , then 1   

if 
11 0  ,

22 0  ,
33 0  , then 0   

Hence, the range of η is 0 to 1. 

And then the shear modulus will be 

 

     

1

2 1 2 1 1

t c

t c

E E
G

 

   

 


   
 (35) 

Since Ec, Et, c, t and α will not change throughout the 

whole loading process, we have 

d D 0
 

(36) 

Substituting Eq. (36) into Eq. (32), we can get 

11 1111 12 13

22 2221 22 23

33 3331 32 33

12 12

23 23

31 31

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

d d Td d d

d d Td d d

d d Td d d

d dG

d dG

d dG

  

  

  

 

 

 

    
     
    
     

    
    
    
    

    
 

(37) 

In the numerical procedure, five parameters, including 

Et, t, Ec, c and α, are defined and a status variable is set to 

store and update the increment of the thermal strain at the 

end of each incremental step. By updating the Jocabian 

matrix continuously and the stresses at the end of each 

incremental step, the stress field in the cylinder will be 

gained at last. The calculation flow chart is shown as Fig. 5. 

 

4.3 Numerical analysis by adopting the common FEM 
software 
 

 

 

Fig. 5 Calculation flow chart of temperature stress in the 

cylinder 
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Fig. 6 Structural model in ABAQUS 

 

 

Fig. 7 Distribution of stress when Ec/Et=1 (case I) 

 

 
Fig. 8 Distribution of stress when Ec/Et=2 (case I) 

 

 

As is shown in Fig. 6, regard the bi-modulus cylinder as 

an orthotropic structure and build the 3D cylinder model 

with a length more than ten times the outer radius in 

ABAQUS. Divide the cylinder into three continuous parts 

according to the radius r. The initial boundary radii s1 and s2 

are calculated according to the classical same modulus 

theory. Ec and Et are determined on the basis of the sign of 

the stress in each direction in different parts. A steady 

temperature field is set in the cylinder. Considering that it is 

hard to simulate the mechanical response of a cylinder with 

infinite length, the cylinder in this paper is fixed at its ends 

in order to calculate accurately the axial stress. Finally,  

 

Fig. 9 Distribution of stress when Ec/Et=4 (case I) 

 

 

execute the calculation. By constantly updating the 

boundary radii and re-dividing regions in the cylinder after 

each calculation, the accurate stress field in cylinder can be 

gradually approached and finally obtained. 

 
4.4 Examples validation 

 

Consider a bi-modulus cylinder shown in Fig. 2, and the 

dimensions of the cylinder are a=1.5 m, b=2.5 m 

respectively. And the material parameters are as below: 

tensile modulus Et, compressive modulus Ec, tensile 

Poisson’s ratio μt, compressive Poisson’s ratio μc, 

coefficient of thermal expansion α=8×10
-6

/°C. The 

temperature at the inner wall of the cylinder is T0=60°C. 

The bi-modulus property is considered as the following 

two cases: (1) Ec=2.4×10
7 

kN/m
2
, Ec/Et=1/5~5; (2) 

=(Ec/Et)/2=2.4×10
7 
kN/m

2
, Ec/Et =1/5~5.  

Using the classical same modulus theory, the semi-

analytical method proposed in this paper, the semi-

analytical method proposed by Kamiya (1977), the FEM 

numerical calculation procedure, and the FEM software 

ABAQUS simulation method, the location of the neutral 

layer and the temperature stress field in the cylinder are 

obtained as shown in Table 1 and Figs. 7-9 (partial results 

list only). 

 

 

5. Discussion 
 

5.1 Advantage of the semi-analytical solution in this 
paper 

 

As shown in Table 1, the semi-analytical solution 

derived in this paper adopting the bi-modulus theory can be 

completely returned to the solution using the classical same 

modulus theory. Simultaneously, as shown in Table 1 and 

Figs. 7-9, the results calculated by using the semi-analytical 

model in this paper is consistent with the results that gained 

according to Kamiya’s method and ABAQUS simulation. 

The computational error is less than 3% which is 

acceptable. The error may be due to the iterative process 

and the round-off error. In consequence, the validity and  
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rationality of the semi-analytical method in this paper have 

been verified. 

Comparing to the semi-analytical method proposed by 

Kamiya (1977), the semi-analytical method in this paper 

simplifies the eight unknown parameters into two unknown 

radii of the curvature of the neutral layer. Observing 

coefficients in each expression of stress, we can find that 

the magnitude of zero-dimensional values in complex 

expressions relatively approaches to 1, which brings the 

great convenience and saves a large amount of time in 

calculation. Besides, this method can be easily extended to 

analyze the mechanical behavior of bi-modulus cylinder 

structures in practical engineering like civil engineering, 

nuclear engineering (Li et al. 2008, Fang et al. 2014). 

 
5.2 Advantage of the FEM procedure in this paper 
 
As shown in Table 1 and Figs. 7-9, the results gained by 

FEM procedure are in great consistence with the results 

obtained by the semi-analytical methods and ABAQUS 

simulation. Acceptable computational errors less than 3% 

can be found in all kinds of examples, which may be caused 

by the grid density, the iterative process, the round-off error 

of terminal value. Hence, the FEM procedure is verified to 

be rational and accurate.  

The FEM procedure has two advantages. First, the FEM 

procedure can simplify the modeling process. For the FEM 

software simulation, since the bi-modulus property of 

materials cannot be defined, initial boundary radii are 

required to be calculated by considering the same structural 

model with the same elastic modulus. And then complex 

iteration processes to seek new boundary radii are carried 

out continuously until the accurate boundary radii are 

 

 

finally obtained. However, the FEM procedure can calculate 

directly the boundary radii, which means that users merely 

need to establish one model. Therefore, the modeling 

process is greatly simplified. Second, the FEM procedure 

can calculate the mechanical behavior of bi-modulus 

structures with complex geometry and boundary conditions 

and subjected to complex loads. It is well known that the 

analytical methods can only be applied when a simplified 

model from an engineering structure is obtained. 

Simultaneously, for the FEM software simulation, it can 

only be used when the initial neutral layer location is 

gained. In consequence, for complex engineering models, 

the analytical methods and the FEM software simulation 

will both have their own limitation, which makes the FEM 

procedure stand out. 

 

5.3 Distribution of radial stress 
 

As shown in Figs. 10-12, when the tensile modulus and 

the compressive modulus change, comparing to the 

circumferential stress and the axial stress, although the 

radial stress in the cylinder varies more obviously, it 

maintains in a small magnitude. Therefore, the effect of the 

bi-modulus property on the radial stress can be ignored in 

the structural design. 

 

5.4 Distribution of axial stress 
 

As shown in Fig. 11, for the axial stress, the neutral 

layer location shows little variation with the alteration of 

the tensile modulus and the compressive modulus. 

Consequently, the classical same modulus theory can be 

extended to the qualitative analysis of the axial stress in the  

Table 1 The results of neutral layer location and stress of cylinder under axisymmetric temperature effect 

Case I 
Analytical solution by the 

method in this paper 

Analytical solution by 

Kamiya’s model 

Numerical solution by the 

FEM procedure 

Numerical solution by the 

FEM software simulation 

Ec/Et 1 3 5 1 3 5 1 3 5 1 3 5 

Ec(×107kN/m2) 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 

Et(×107kN/m2) 2.4 0.8 0.48 2.4 0.8 0.48 2.4 1.2 0.8 2.4 1.2 0.8 

r (m) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

s1(m) 1.95814 1.82412 1.77040 1.95814 1.82412 1.77040 1.95814 1.82412 1.77040 1.95814 1.82412 1.77040 

s2(m) 2.40611 2.45601 2.47062 2.40611 2.45601 2.47062 2.40611 2.45601 2.47062 2.40611 2.45601 2.47062 

σrr(MPa) 0 0 0 0 0 0 0 0 0 0 0 0 

σθθ(MPa) -8.20017 -5.86612 -4.91194 -8.20045 -5.86666 -4.91253 -8.20066 -5.86659 -4.91221 -8.20106 -5.86701 -4.91263 

σzz(MPa) -12.9960 -12.5759 -12.4041 -12.9956 -12.5751 -12.4036 -12.9993 -12.5792 -12.4074 -13.0012 -12.5823 -12.4100 

Case II 
Analytical solution by the 

method in this paper 

Analytical solution by 

Kamiya’s model 

Numerical solution by the 

FEM procedure 

Numerical solution by the 

FEM software simulation 

Ec/Et 1 3 5 1 3 5 1 3 5 1 3 5 

Ec(×107kN/m2) 2.4 3.6 4.0 2.4 3.6 4.0 2.4 3.6 4.0 2.4 3.6 4.0 

Et(×107kN/m2) 2.4 1.2 0.8 2.4 1.2 0.8 2.4 1.2 0.8 2.4 1.2 0.8 

r (m) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

s1(m) 1.95814 1.81981 1.77040 1.95814 1.81981 1.77040 1.95814 1.81981 1.77040 1.95814 1.81981 1.77040 

s2(m) 2.40611 2.43138 2.47062 2.40611 2.43138 2.47062 2.40611 2.43138 2.47062 2.40611 2.43138 2.47062 

σrr(MPa) 0 0 0 0 0 0 0 0 0 0 0 0 

σθθ(MPa) 5.84861 3.83295 2.82717 5.84851 3.83289 2.82723 5.84869 3.83304 2.82785 5.84872 3.83310 2.82756 

σzz(MPa) 1.05275 0.34497 0.16963 1.05271 0.34491 0.16960 1.05279 0.34506 0.16997 1.05281 0.34500 0.16979 
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Fig. 10 Distribution of radial stress (case II) 

 

 

Fig. 11 Distribution of axial stress (case II) 

 

 

cylinder when the structural design is conducted. 

 

5.5 Distribution of circumferential stress 
 

As depicted in Fig. 12, considering the circumferential 

stress in the cylinder, the neutral layer location changes 

distinctly as the tensile modulus and the compressive 

modulus alter. When Ec>Et, with the increase of Ec/Et, the 

neutral layer moves toward the inner wall of the cylinder. 

The tensile region will enlarge and the compressive region 

will correspondingly diminish with a gradually decreasing 

rate. For the concrete widely used in civil engineering, the 

tensile region will extend because of the bi-modulus 

property. If the classical same modulus theory is still 

adopted, the crack may increase in the concrete cylinder, 

which may have an adverse effect on the normal operation 

of such structure. 

 

5.6 Computational error of stress between bi-modulus 
and same modulus theory 
 

According to the analysis above, the circumferential 

stress should be paid enough attention to when designing  

 

Fig. 12 Distribution of circumferential stress (case II) 

 

 

Fig. 13 Computational error of circumferential stress 

between two theories (case I) 

 

 

Fig. 14 Computational error of circumferential stress 

between two theories (case II) 

 

 

cylinder structures composed of bi-modulus materials. As 

shown in Figs. 13-14, the computational error of the 

circumferential stress between the bi-modulus theory and 

the classical same modulus theory increases as the  
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Fig. 15 Response of radial displacement (case II) 

 

 

difference between the tensile modulus and the compressive 

modulus magnifies.  

For the concrete material, the ratio of the compressive 

modulus to the tensile modulus is approximately 2.5. The 

maximum computational error between two theories is 

about 70%. Hence, a large amount of concrete may be 

saved if the bi-modulus theory is introduced into the 

structural design of the cylinder. 

 
5.7 Radial displacement 

 

As shown in Fig. 15, keep the total stiffness of the cross 

-section constant and change the value of Ec/Et. The 

displacement of the cylinder increases as Ec/Et increases. It 

indicates that when the bi-modulus property is considered, 

comparing to the classical same modulus theory, the 

displacement increases as a result of the non-uniformity of 

the cross-section stiffness, which means that the resistance 

to the deformation of the cylinder decreases. 

 

 

6. Conclusions 
 

In this paper, a stress function is introduced to modify 

the existing semi-analytical method to calculate the 

axisymmetric temperature stress in the bi-modulus thick 

cylinder, which simplifies the calculation process and 

increases the calculation velocity and is easier to be used to 

study the influence of the bi-modulus property of materials 

on the mechanical response of structures in the practical 

engineering. Meanwhile, a numerical procedure is 

developed to calculate the temperature stress in bi-modulus 

structures, which simplifies the modeling process of a bi-

modulus structure and can be extended to analyze the 

temperature stresses of bi-modulus structures with arbitrary 

geometric shapes and complex boundary conditions. 

Finally, some rational suggestions on qualitative analysis 

and quantitative design of such structure are proposed as 

follows. 

• Comparing with the circumferential stress and the 

axial stress, the radius stress changes with a small 

magnitude after the bi-modulus property of materials is 

considered. The influence of the bi-modulus property on 

the radial stress can be ignored in the design of the bi-

modulus cylinder. 

• The location of the neutral layer shows little variation 

when the difference between the tensile modulus and the 

compressive modulus enlarges. The classical same 

modulus theory can still be adopted to execute the 

qualitative analysis of the axial stress in the design of 

the bi-modulus cylinder. 

• When the bi-modulus property is considered in the 

structural design of the cylinder, the key problem is to 

analyze its effect on the circumferential stress 

distribution. For the concrete widely used in 

engineering, tensile region will extend and more cracks 

may appear when the bi-modulus property is considered. 

The tensile stress will decrease approximately 70% in 

maximum comparing to the result gained by the 

classical same modulus theory. Rationally choosing the 

strength grade of concrete may excavate the potential of 

the mechanical property of materials and avoid the 

excessive consumption of materials. 

• The bi-modulus property of materials will lead to the 

increase of the discreteness of the structural stiffness 

and the decrease of the resistance to the external force 

and the deformation. 
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