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1. Introduction 
 

Concrete is a strongly heterogeneous material and thus 

exhibits a complex nonlinear mechanical behaviour. Failure 

under tension and low confined compression are 

characterized by softening which is a phenomenon of 

decreasing stress with increasing deformations. This 

softening response is associated with a reduction of the 

unloading stiffness of concrete, and permanent 

deformations, which occur in thin zones called cracks. On 

the other hand, the behaviour of concrete under high 

confined compression is characterized by a ductile 

hardening response, which is, nothing but an increasing 

stress with increasing deformations. These phenomena 

should be considered in a constitutive model for analysing 

the multi-axial behaviour of any concrete structure. 

Though there are many constitutive models for the 

nonlinear response of concrete proposed in the literature, 
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commonly used frameworks are plasticity models, damage 

mechanics models, and combinations of plasticity and 

damage mechanics models. Stress-based plasticity models 

are useful for the modelling of concrete subjected to triaxle 

stress states since the yield surface corresponds to the 

strength envelope of concrete at a certain stage of 

hardening. Hence, a constitutive model based on the 

combination of damage mechanics and plasticity is to be 

developed to analyse the failure of concrete structures. The 

model should describe the important characteristics of the 

failure process of concrete subjected to multi-axial loading. 

This can be achieved by combining an effective stress based 

plasticity model with a damage model based on plastic and 

elastic strain measures. Then the model response in tension 

and under uniaxial, biaxial and triaxle compression can be 

compared with experimental results. The Concrete Damage 

Plasticity (CDP) model is an apt model and its modelling in 

the finite element software ABAQUS/CAE can help us 

understand the nonlinear response of concrete. However, to 

understand the CDP model, knowledge on some basic 

failure criteria and models is a prerequisite. Initial 

understanding of the failure criteria of concrete under varied 

loading conditions and alternate state of stresses is essential 

for assessing the behaviour of concrete. Later, inferences 

from certain experimental works and the features of the 

concrete failure have been discussed. This is followed by a 

study on prominent failure criteria such as the Tresca and 

Von-Mises etc. which are one parameter models and a 

comprehensive discussion on the Drucker-Prager failure 

model and its application to the CDP model was also 

studied. Failure theory is the phenomenon of predicting the 
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conditions which cause failure of solid materials under the 

action of external loads. Two of the most significant 

concrete failure mechanisms are cracking under tension and 

crushing under compression. However, concrete strength 

observed under uniaxial compression or tension drastically 

varies from the one determined in complex states of stress. 

For example, the same concrete under biaxial compression 

reaches a strength of almost twenty percent higher than in 

the uniaxial state and under uniform triaxle compression, its 

strength is unlimited (theoretically). The behaviour of 

concrete changes radically when the nature of loading 

changes from compressive to tensile. Under uniaxial and 

biaxial tensile loads, the behaviour of concrete remains 

same. But, the same concrete exhibits different behaviour 

for uniaxial and biaxial compressive loads. Hence, the 

nature and type of loading play a vital role in the behaviour 

of concrete. In order to describe strength with the equation 

for triaxle stress, its plane should be presented in a three-

dimensional stress space (since concrete is assumed to be an 

isotropic material in a wide range of stress). The states of 

stress on this surface correspond to material failure, 

whereas the states of safe behaviour are inside. Also, the so-

called plastic potential surface is located inside this space. 

Once the plasticity surface is crossed, two cases may arise 

(Majewski 2003): 

1. Ideal Plasticity condition (i.e., an increase in strain 

with no change in stress) 

2. Rupture (material weakening) 

To understand the actual behaviour of concrete in 

compression and tension, numerous analytical models have 

been developed. These models are formulated based on the 

microscopic and macroscopic behaviour of concrete. The 

models based on macroscopic behaviour are essentially 

used in practice especially in construction field (Kupfer and 

Gerstle 1973, Kotsovos and Newman 1977, Mills and 

Zimmerman 1970, Lee et al. 2004). The deformation 

patterns and stress-strain curves are the two vital indicators 

of the behaviour of concrete. In order to define completely 

the deformational and stress-strain behaviour of concrete, 

the structure must be analysed till failure. The deformation 

of the structure is linearly elastic till the yield limit, and 

beyond this point, plastic deformation (irreversible) occurs. 

A model chosen must be capable of exhibiting the above-

mentioned behaviour till failure. One such way of obtaining 

a model is by utilizing the plasticity theory (Chen and Chen 

1975). According to plasticity theory, yield limit is the limit 

below which the material property remains elastic and 

further loading beyond this point causes plastic flow. In the 

case of elastic-perfectly plastic, the initial yield surface 

becomes a failure/bounding surface, reflecting the increase 

in the strain without further change in stress. However, for 

concrete which has an elastoplastic behaviour, strain 

hardening and strain softening behaviour are to be included. 

Strain hardening is the region between the yield and peak 

stress which reflects the hardening nature of concrete with 

an increase in stress value. If the concrete hardens and 

attains the peak stress, further loading results in a decrease 

in stress with an increase in strain, hence enabling the 

softening behaviour. Thus, initial loading or yield surface is 

allowed to expand on the application of load resulting in the 

strain-hardening behaviour of concrete, defining the 

subsequent loading surface (Muthukumar and Kumar 

2014). 

 

 

2. Experimental behaviour of concrete 

 

It is well known that the analysis of plain concrete is 

quite complex in terms of its failure and presence of 

reinforcement makes it more difficult. However, the 

conditions responsible for the local failure are almost the 

same for both of these and hence, an understanding of the 

failure criteria of plain concrete, too, is vital (Brestler and 

Pister 1958a, Brestler and Pister 1958b). Experimental 

results show that four parameters, namely uniaxial 

compressive strength, strain corresponding to uniaxial 

compressive strength, initial tangent modulus and ultimate 

strain at failure can be regarded as the characteristic values 

for the stress-strain curve of concrete under uniaxial 

compression (Brestler and Pister 1958a, Brestler and Pister 

1958b). Also, the strength of concrete is dependent on the 

state of stress and it cannot be predicted without 

considering the interaction between stresses (Carreira and 

Chu 1985). The tensile strength of concrete was found to be 

almost equal under both uniaxial and biaxial stress 

conditions mentioned above but the biaxial compressive 

strength is higher than the uniaxial compressive strength 

and the compressive strength was found to decrease linearly 

with the increase in tensile stress under combined 

compression and tension (Kupfer et al. 1969, Kwak and 

Filippou 1990). Experiments also conclude that 

confinement of concrete significantly enhances the 

compressive strength of concrete (Gardner 1969, Chuan-Zhi 

et al. 1987). So, based on the above mentioned parameters, 

the Saenz Model, and Hsu and Hsu model had been 

developed to detail the compressive behaviour of concrete 

numerically. 

 
2.1 Formulation of stress-strain curves in 

compression 
 

The characteristic compressive strength, fck, is 

considered the base parameter. It is used to calculate mean 

compressive strength, fcm, as per IS 456:2000 (Cement and 

Concrete Sectional Committee, CED 2 2000), as follows 

fcm = fck + 1.65σ (2.1) 

where, ζ, the standard deviation, is given as 

σ = 3.5 MPa; if fck = 10,15 MPa 

σ = 4.0 MPa; if fck = 20,25 MPa 

σ = 5.0 MPa ; if fck ≥ 30 MPa 

(2.2) 

The moduli of elasticity as per European (European 

Committee for Standards 2008), and Indian standard codes 

of practice are given as 

Ecm = 22000(0.1 · fcm)0.3; EUROCODE 2 

Ecm =5000√𝑓𝑐𝑘 ; IS 456:2000 
(2.3) 

where, Ecm, fcm, and fck are in MPa. 
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Fig. 1 Sum-Squared-Errors vs. Factor Value (for IS 

456:2000) 

 
 
2.1.1 Saenz formula 
Saenz Formulation (Saenz 1964) consists of a Rational 

Function whose denominator is 3
rd 

degree polynomial and 

numerator is 1
st 

degree polynomial. The refined formulation 

of Saenz model by Kmiecik and Kamiński (2011), is given 

as follows 

𝜎𝑐 = 
𝜀𝑐

𝐴 + 𝐵𝜀𝑐 + 𝐶𝜀𝑐
2 + 𝐷𝜀𝑐

3
 (2.4) 

where, the parameters are given as 

𝐴 =
1

𝐸𝑐𝑚
; 𝐵 =  

𝑃3 + 𝑃4 − 2

𝑃3𝑓𝑐𝑚
 

𝐶 = −
2𝑃4 − 1

𝑃3𝑓𝑐𝑚𝜀𝑐1
;  𝐷 =

𝑃4 − 1

𝑃3𝑓𝑐𝑚𝜀𝑐1
 

𝑃1 =
𝜀𝑐𝑢
𝜀𝑐1

;  𝑃2 =
𝑓𝑐𝑚
𝑓𝑐𝑢
  

𝑃3 =
𝐸𝑐𝑚𝜀𝑐1
𝑓𝑐𝑚

; 𝑃4 = 
𝑃3(𝑃2 − 1)

(𝑃1 − 1)
2
−
1

𝑃2
 

(2.5) 

The parameters εc1 and εcu are defined as strain at 

maximum compressive stress and ultimate compressive 

strain, respectively. Accurate quantification of these 

parameters was given by Majewski (2003), as follows 

𝜀𝑐1 = 0.0014[2 − exp(−0.024𝑓𝑐𝑚) 

−exp(−0.140𝑓𝑐𝑚)] 
𝜀𝑐𝑢 = 0.004 − 0.0011[1 − exp(−0.0215𝑓𝑐𝑚)] 

(2.6) 

These four parameters, viz. fcm, εc1, fcu and εcu, need to be 

known to obtain the Saenz Curve. Generally, fcu is unknown, 

and some value needs to be assumed to generate Saenz 

curve. 

Factor Value is defined as the ratio of fcu to fcm. It is 

found that, for any random Factor Value, the generated 

Saenz curve does not pass through 

(εc1, fcm) and (εcu, fcu). The Factor Value for which the 

Saenz curve passes through the above-mentioned reference 

points is termed as Correction Factor. It is obtained by 

minimizing least-squared-errors of stress values at abscissae 

of εc1 and εcu. Fig. 1 depicts the optimization scheme. Fig. 3 

shows the generated Saenz Curve passes through the 

reference points, which happens if Factor Value= 

Correction Factor. Fig. 4 shows that the generated Saenz  

 
Characteristic Compressive Strength (MPa) 

Fig. 2 Correction Factor vs. Characteristic Compressive 

Strength (for IS 456:2000) 

 

Table 1 Correction factor values 

Characteristic Correction Factor 

Compressive IS EURO- 

Strength (MPa) 456:2000 CODE 2 

20 0.5077 0.5764 

25 0.4926 0.5468 

30 0.4836 0.5294 

35 0.4252 0.4605 

40 0.4148 0.4416 

45 0.4052 0.4246 

50 0.4124 0.4256 

55 0.4040 0.4115 

 

 

Curve does not pass through the reference points as the 

Factor Value = Correction Factor. Hence, it is required to 

incorporate Correction Factor in existing Saenz Model. 

The Correction Factor values obtained using Ecm value 

as per IS 456:2000 and EUROCODE 2 are shown in Table 

1. The Factor Value, from Fig. 1, at minimum Sum-

Squared-Errors is the Correction Factor. The obtained 

Correction Factors are regressed against fck to obtain a trend 

line. The equation, using IS 456:2000, for which is 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟 

= 0.1043 ∙ 𝑒𝑥𝑝 (−(
𝑓𝑐𝑘 − 22

11.94
)
2

) + 0.4035 
(2.7) 

and, using EUROCODE 2 is 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟 = 

0.1887 ∙ 𝑒𝑥𝑝 (−(
𝑓𝑐𝑘 − 14.75

21.27
)
2

) + 0.4 
(2.8) 

The goodness parameters of the fit (Eqs. (2.7) and (2.8)) 

are: R
2
=0.9965 and 0.9731, RMSE=0.0080 and 0.0105, and 

SSE=4.45×10
−4 

and 7.7183×10
−4 

for IS 456:2000 and 

EUROCODE 2 respectively. The fit can be visualised in 

Fig. 2. By substituting the value of Correction Factor in 

Saenz Equation, we can model the compressive stress-strain 

curve. A typical stress-strain curve generated by Saenz 

Model is shown in Fig. 3. The reference points are (fcm, εc1) 

and (fcu, εcu) where, fcu = fcm × Factor Value. Factor Value can  

55 35 30 25 20 50 45 40 
0.4 

0.42 

0.44 

0.46 

0.48 

0.5 

0.52 
Optimum Factor Trend line 
Optimum Factors 
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Fig. 3 Saenz Curve for M40 gradeconcrete 

(Factor Value=Correction Factor) 

 

 
Fig. 4 Saenz Curve for M40 grade concrete 

(Factor Value=Correction Factor) 

 

 

be any ratio of fcu to fcm. If, Factor Value=Correction Factor, 

the plot will pass through both the points, otherwise it will 

not. An example of such case is shown in Fig. 4, where the 

Correction Factor is 0.4148 (M40), but we adopt Factor 

Value as 0.4252 (≈2.5% deviation) while modelling. We can 

observe that the plot fails to pass to through the reference 

points. 

 
2.1.2 Hsu & Hsu formula 
The numerical model proposed by Hsu and Hsu (1994) 

has the capacity to develop compressive stress-strain 

relation till 0.3ζcu in the descending portion of the stress-

strain curve. This model is appropriate for both normal, and 

high strength concretes with minor modifications. The input 

parameters required for the model are ζcu (also, fcm) and Ecm. 

No modifications are necessary for normal concretes up to 

62 MPa (≈M55 grade). Modifications for high strength 

concretes are detailed in Hsu and Hsu (1994). 

The model for normal strength concrete is described 

below 

ζc = Ecm · εc                 ; if ζc ≤ 0.5ζcu 

𝜎𝑐 = (
𝛽∙
 𝜀𝑐

𝜀𝑜⁄

𝛽−1+(
 𝜀𝑐

𝜀𝑜⁄ )
𝛽)𝜎𝑐𝑢       ; till ζc = 0.3ζcu 

(2.9) 

The parameter ε◦ is the strain at maximum stress (ζcu) 

and the parameter β, which depends on the shape of the 

stress-strain curve, are given as 

𝜀𝑜 = 8.9 × 10
−5𝜎𝑐𝑢 +  2.114 × 10

−3 (2.10) 

𝛽 =
1

1 −
𝜎𝑐𝑢
𝜀𝑜𝐸𝑐𝑚

 (2.11) 

Note: For the above equations, the parameters ζc, ζcu, 

and Ecm are in 
kip

/in
2
. (1MPa = 0.145037743 

kip
/in

2
). 

The inelastic compressive strain (𝜀𝑐
1𝑛) is defined as the 

difference between total compressive strain (εc) and elastic 

compressive strain (𝜀𝑐
𝑒𝑙). 

ABAQUS/CAE requires the damage variation with 

respect to inelastic strain. As quantification of damage 

propagation is difficult, many theories have been put forth 

to quantify it (Birtel and Mark 2006, López-Almansa et al. 

2014). Here, the compressive damage (dc) is calculated as 

the ratio of inelastic strain at the point to the total strain 

(Wahalathantri 2012). 

 
2.2 Formulation of stress-strain curves in tension 
 

Here, for all simulated cases, only 2 values, one at 

maximum tensile stress and another at zero tensile stress, 

are adopted while modelling. 

Tensile Stress Cracking Strain Tensile Damage 

X 0 0 

0 0.01 0.9 

 

 

3. Determination of size independent fracture energy 
and characteristic length 

 
3.1 Fracture energy 
 
3.1.1 Boundary Effect Method (BEM) 
It is found that the local fracture energy varies with the 

width of the fracture process zone (FPZ). The FPZ becomes 

more and more restricted as it reaches the stress-free back 

of the specimen. As a result, the local specific fracture 

energy reduces as the crack reaches the back end. Hu and 

Wittmann (1992) were the first to observe this phenomenon. 

They observed that initially when the crack starts to grow 

from a pre-existing notch, the rate of decrease is negligible, 

but it accelerates as it reaches the stress-free back. They 

modelled this behaviour bilinear, after performing extensive 

tests. 

They also came up with the relationship 

𝐺𝑓(𝑎, 𝐷) =
∫ 𝑔𝑓(𝑥)𝑑𝑥
𝐷−𝑎

0

𝐷 − 𝑎
 

=  

{
 
 

 
 𝐺𝐹 [1 −

𝑎𝑙
𝐷⁄

2(1 − 𝑎 𝐷⁄ )
] ; 1 − 𝑎 𝐷⁄ >

𝑎𝑙
𝐷⁄

𝐺𝐹 ∙
(1 − 𝑎 𝐷⁄ )

2 ∙
𝑎𝑙
𝐷⁄
            ;  1 − 𝑎 𝐷⁄ ≤

𝑎𝑙
𝐷⁄

 

(3.1) 

Where, 

Gf represents size dependent fracture energy calculated  
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Fig. 5 Stress-Strain curve generated by Hsu & Hsu model 

for M40 grade of concrete 

 

 

by RILEM work-of-fracture method.  

GF represents size independent specific fracture energy. 

al represents transition ligament length. 

a/D represents initial crack to depth ratio. 

After testing a lot of specimens, an over-determined set 

of equations is obtained, to determine GF and al which is 

solved by using the method of least squares. 

Karihaloo et al. (2003) found out that this lengthy 

procedure need not be applied. It was proposed to take 

specimens of the same size and separate the crack-to-depth 

ratio by large amount say, 0.05 & 0.5 or 0.1 & 0.6, with a 

restriction on aggregate size depending on span-to-depth 

ratio, which will provide an exact solution which is very 

close to the solution proposed by Hu and Wittmann. 

According to theory, at the start of load application on 

the notched specimen, the size of FPZ increases, then 

remains approximately constant for a certain range and then 

decreases as the crack reaches the stress-free back boundary 

of the specimen. This procedure gives better accuracy but is 

a time-consuming process requiring acoustic emission 

setup. Hence, the bilinear approximation is generally 

adopted. 

 

3.1.2 P − δ tail correction method 
Guinea et al. (1992), Planas et al. (1992), and Elices et 

al. (1992) identified several sources of energy dissipation 

that influence the measurement of Gf by the RILEM work-

of-fracture method RILEM Technical Committee 50-FMC 

(1985). They found most of them were due to experimental 

errors. The major part of the same was found to be the 

unrecorded energy at the tail of the P−δ curve which failed 

to reach P=0. They modelled the remaining part of the P−δ 

curve, i.e., Beam behaviour at low loads when the crack 

reached the free surface, as linear. 

The relationship they developed was 

𝐺𝐹 =
 (∫ 𝑃𝑑𝛿

𝛿𝑢
0

) + 𝑊𝑛𝑚

𝑏(𝐷 − 𝑎)
 (3.2) 

Where b (D−a) represents the area of the ligament at the 

start of the test. 

 
3.2 Characteristic length 

 

Fig. 6 Bilinear tension softening (Murthy et al. 2013) 
 

 

Fig. 7 P−δ tail correction Murthy et al. (2013) 

 

 

Hillerborg et al. (1976) proposed the Fictitious crack 

model in 1976, which assumes that the crack propagation 

occurs when principal tensile stress reached the tensile 

strength of the material (ft) and that the energy required to 

create new surfaces is negligible when compared to that 

required to separate them. The model introduces a material 

parameter, namely, characteristic length (lch), which 

depends on three other material parameter: size-independent 

fracture energy (GF), the tensile strength of the material (ft) 

and modulus of elasticity (E). 

 𝑙𝑐ℎ =
𝐸 ∙ 𝐺𝐹

𝑓𝑡
2  (3.3) 

This parameter is proportional to the length of the 

fracture process zone. 

 

 

4. Results and discussion 
 

ABAQUS/CAE software package is used for analysing 

the behaviour of beam under TPB test. 

The beam of size 500 mm×100 mm×100 mm is adopted 

for the present study. The notch width is adopted as 2 mm 

for all the simulated cases. Plasticity of concrete is 

modelled using Concrete Damaged Plasticity module 

available in ABAQUS/CAE. The sample meshing for 

a/D=0.1 and 0.6 are shown in Fig. 8. The load-displacement 

curves are generated as output. Using these load-

displacement curves, fracture energy (Gf) for each 

simulation is obtained using RILEM work-of-fracture 

method. The size-independent fracture energy (GF) is 

obtained using the modified boundary effect model (Murthy 

et al. 2013, Karihaloo et al. 2003). The characteristic length 

is obtained from expression proposed by Hillerborg et al. 

(1976). 

The study of the effect on the variation of mesh element 

type, mesh element size, grade of concrete, the model used  
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Fig. 9 Effect on fracture energy with variation in mesh 

element type and size 

 

 

for calculation of compressive behaviour, final tensile 

damage value, dilation angle, eccentricity, and notch-to-

depth ratio on fracture parameters is done. The results of the 

same are summarized further in this section. 

 

4.1 Mesh element: type and size 
 
The mesh element type is varied among quadrilateral or 

triangular elements. The mesh element sizes adopted for 

mesh dependency are 2 mm, 5 mm, 10 mm, and 25 mm. 

This study is done by modelling beam with a/D=0.1. The 

CDP data is adopted from Upreti et al. (2016). 

From Fig. 9, the difference between fracture energies of 

25 mm and 2 mm mesh element sizes are 146.7 N/m and 

97.0 N/m for triangular and quadrilateral meshing, 

respectively. For 2 mm and 5 mm mesh element sizes the 

fracture energies for quadrilateral and triangular elements 

are almost equal. 

 

4.2 Notch-to-depth ratio (a/D) 
 

The variation in the notch-to-depth ratio is done from 

0.1 to 0.6 with intervals of 0.1. This study is done for M50 

grade of concrete with Eccentricity (ϵ) 0.01, Dilation Angle 

(ψ) 34°, Young’s Modulus (Ecm) value as per IS 456:2000, 

and compression behaviour modelled as per Hsu and Hsu 

model. 

The mesh size is varied for each a/D such that each 

uncracked ligament length (D−a) is divided into 18 equal 

 

 

Fig. 10 Load-Displacement curves for different notch-to-

depth ratios (M50 Grade Concrete) 

 

 

Fig. 11 Effect on peak loads with varying notch-to-depth 

ratios (M50 Grade Concrete) 

 

 

parts. 

From Figs. 10 and 11, the peak loads for each notch-to-

depth ratio from 0.1 to 0.6, in same order, are: 7961 N, 6094 

N, 4846N, 3518 N, 2455 N, and 1615 N. The residual loads 

for each notch-to-depth ratios, from 0.1 to 0.6, are: 1397 N, 

873 N, 856 N, 248 N, 450 N, and 141 N respectively. The 

average ratio of residual load to peak load is 13.9%, with a 

standard deviation of 2.2%. From Fig. 12, the fracture 

energies at each notch-to-depth ratio from 0.1 to 0.6, in 

order, are: 133.3 N/m, 120.3 N/m, 105.5 N/m, 96.5 N, 86.8 

N/m, and 71.8 N/m, respectively. These values follow a 

linear trend with R
2
 value of 0.994 and RMSE value of 1.59 

N/m. 

 
(a) a/D=0.1 

 
(b) a/D=0.6 

Fig. 8 Tensile damage propagation path 
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Table 2 Summary of FE modelling for various mesh 

element types and sizes 

Mesh 

element type 

Mesh 

element size 

no. of 

elements 

no. of 

nodes 

Quadrilateral 

2 

5 

10 

15286 

2417 

596 

15362 

2501 

651 

25 108 133 

Triangular 

2 

5 

10 

25761 

4259 

1091 

13187 

2253 

608 

25 205 129 

 

Table 3 Summary of FE modelling for various notch-to-

depth ratios 

Notch-to-depth 

ratio 

Mesh element 

size 

no. of 

elements 

no. of 

nodes 

0.1 5 2417 2501 

0.2 4.44 3036 3158 

0.3 3.89 3996 4097 

0.4 3.33 5396 5522 

0.5 2.78 7764 7893 

0.6 2.22 12356 12478 

 

 

 

Fig. 12 Effect on fracture energy with variation in notch-to-

depth ratio (M50 Grade Concrete) 

 
 
4.3 Eccentricity (ϵ) and Dilation Angle (ψ) 

 

The CDP parameters, Eccentricity (ϵ) and Dilation 

Angle (ψ), are varied to investigate their effect on fracture 

energy and characteristic length. The beams are modelled 

for Ecm values as per IS 456:2000 and compressive 

behaviour as per Hsu and Hsu model. This study has been 

done for M20 and M40 grades of concrete. From Fig. 13,  

 

 

 
(a) M20 grade of concrete 

 
(b) M40 grade of concrete 

Fig. 13 Effect on Fracture energy with variation in ϵ and ψ (a/D=0.1) 
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(a) M20 grade of concrete 

 
(b) M40 grade of concrete 

Fig. 14 Effect on Fracture energy with variation in ϵ and ψ 

(a/D=0.6) 

 

 
(a) M20 grade of concrete 

 
(b) M40 grade of concrete 

Fig. 15 Effect on Size Independent Fracture energy with 

variation in ϵ and ψ 
 

 
(a) M20 grade of concrete 

 
(b) M40 grade of concrete 

Fig. 16 Effect on Size Independent Fracture energy with 

variation in ϵ and ψ 

 

 

the average fracture energy for M20 and M40 grade of 

concrete with notch-to-depth ratio 0.1 are 72.6 N/m and 

114.6 N/m for eccentricity 0.01, and 72.6 N/m and 114.7 

N/m for eccentricity 0.1, respectively. The maximum 

percentage deviations from the average values, in same 

order as above, are 1.12%, 1.24%, 1.12% and 0.52%. 

Similarly, from Fig. 1, the average fracture energy for M20 

and M40 grade of concrete with notch-to-depth ratio 0.6 are 

38.8 N/m and 62.1 N/m for eccentricity 0.01, and 38.7 N/m 

and 61.4 N/m for eccentricity 0.1, respectively. The 

maximum percentage deviations from the average values, in 

same order as above, are 1.70%, 0.99%, 5.64% and 4.48%. 

From Fig. 15, the average size-independent fracture 

energy for M20 and M40 grade of concrete are 102.9 N/m 

and 161.0 N/m for eccentricity 0.01, and 103.2 N/m and 

162.6 N/m for eccentricity 0.1, respectively. The maximum 

% deviations from the average values, in same order as 

above, are 1.44%, 1.60%, 2.62% and 3.80%. From figure 

(16), the average characteristic length for M20 and M40 

grade of concrete are 471.0 mm and 413.6 mm for 

eccentricity 0.01, and 472.1 mm and 417.5 mm for 

eccentricity 0.1, respectively. The maximum percentage 

deviations from the average values, in same order as above, 

are 1.44%, 1.60%, 2.62% and 3.80%. 

 

4.4 Grade of concrete and model used for 
determination of compressive behaviour 

 
As discussed in section (2.1), compression behaviour is  
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Fig. 17 Saenz Model Compression Curve (M40) - with and 

without modification 

 

 

Fig. 18 Effect on fracture energy with varying grade of 

concrete and compressive behaviour design model 

(a/D=0.1) 

 

 

Fig. 19 Effect on fracture energy with varying grade of 

concrete and compressive behaviour design model 

(a/D=0.6) 

 

 

modelled in two different ways. It was found that the initial 

tangent modulus while modelling compressive stress-strain 

curve using Saenz model was more than the input value of 

Ecm. Thus, one more refinement is proposed and carried out 

for Saenz Model. The initial part of the Saenz model is 

substituted with a straight line passing through the origin 

and slope Ecm until the line intersects the Saenz Curve as 

explained in section 2.1.1. The Fig. 17 shows the described 

modification. This modification leads to a decrease in the  

 

Fig. 20 Effect on Size-independent fracture energy with 

varying grade of concrete and compressive behavior design 

model 

 

 

Fig. 21 Effect on characteristic length with varying grade of 

concrete and compressive behaviour design model 

 

 

peak stress for grades of concrete above M25 but it is 

necessary to refrain it from generating negative inelastic 

and plastic strain values. 

The value of eccentricity for this study is adopted to be 

0.01, Dilation angle is 34°, and Ecm values is adopted as per 

IS 456:2000. The effect of adopting different model on 

fracture energy and characteristic length is discussed below. 

From Fig. 18, the fracture energy for notch-to-depth 

ratio 0.1 increases at an average of 10.5 N/m (standard 

deviation=1.1 N/m) for each subsequent grade of concrete 

starting from M20 to M40 for Hsu & Hsu Model. The 

average for Saenz Model is 11.1 N/m (standard deviation = 

0.7 N/m). The fracture energy values, for notch-to-depth 

ratio 

0.1, obtained using Saenz model are, at an average, 1.8 

N/m (standard deviation=0.9 N/m) less than those obtained 

using Hsu & Hsu model. From Fig. 19, the fracture energy 

for notch-to-depth ratio 0.6 increases at an average of 5.9 

N/m (standard deviation=0.5 N/m) for each subsequent 

grade of concrete starting from M20 to M40 for Hsu & Hsu 

Model. The average for Saenz Model is 5.6 N/m (standard 

deviation=0.4 N/m). The fracture energy values, for notch-

to-depth ratio 0.6, obtained using Saenz model are, at an 

average, 0.9 N/m (standard deviation=0.2 N/m) less than 

those obtained using Hsu & Hsu model. From Fig. 20, the 

size independent fracture energy increases at an average of 

14.4 N/m (standard deviation=3.2 N/m) for each subsequent  
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Table 4 Validation of numerical work-2 

Notch-to-depth 

Ratio 

Fracture Energy (N/m) 

Value Numerical Model Murthy et al. (2013) 

M50 (fcm = 58.18 MPa) NSC (fcm = 57.1 MPa) 

0.1 133.3 135.3 

0.2 120.3 107.5 

0.3 105.5 95.5 

 as per Modified BEM as per BEM 

Size-Independent 188.1 190.3 

 

Table 5 Validation of numerical work-2 

Notch-to-depth 

Ratio 

Fracture Energy Value (N/m) 

Numerical Model Alyhya et al. (2016) 

Hsu and Hsu M30 Saenz M30 Mix 30A 

(fcm=38.20 MPa) (fcm=37.49 MPa) (fcm=35.4 MPa) 

0.1 94.3 92.8 96.2 

0.6 50.9 50.7 53.5 

 as per Modified BEM 

Size-Independent 132.9 129.7 132.8 

 

 

grade of concrete starting from M20 to M40 for Hsu & Hsu 

Model. The average for Saenz Model is 16.4 N/m (standard 

deviation=1.5 N/m). The size-independent fracture energy 

values, obtained using Saenz model are, at an average, 2.6 

N/m (standard deviation=2.2 N/m) less than those obtained 

using Hsu & Hsu model. From Fig. 21, the characteristic 

length decreases at an average of 14.4 mm (standard 

deviation=12.4 mm) for each subsequent grade of concrete 

starting from M20 to M40 for Hsu & Hsu Model. 

The average for Saenz Model is 7.2 mm (standard 

deviation=5.7 mm). The characteristic length values 

obtained using Saenz model are, at an average, 7.6 mm 

(standard deviation=6.6 mm) less than those obtained using 

Hsu & Hsu model. 

 

 

5. Experimental validation 
 

From Table 4, the percentage difference of the numerical 

values from the experimental values (Murthy et al. 2013) 

for notch-to-depth ratios 0.1, 0.2, and 0.3 are 1.48%, 

−11.91%, and −10.47% respectively. The percentage 

difference in the numerically obtained size-independent 

fracture energy (using modified BEM) and the 

experimentally obtained size-independent fracture energy is 

1.16% 

From Table 5, the percentage difference of the numerical 

fracture energy values from the experimental fracture 

energy values (Alyhya et al. 2016) for notch-to-depth ratios 

0.1 are 1.98% and, 3.53% for Hsu & Hsu model, and 

Modified Saenz Model, respectively. The percentage 

difference values for notch-to-depth ratio 0.6 are 4.86% and 

5.23%, for Hsu & Hsu model, and Modified Saenz Model 

respectively. The percentage differences in the numerically 

obtained size-independent fracture energies (using modified 

BEM) and the experimentally obtained size-independent 

fracture energy are −0.08% and 2.33%, for Hsu & Hsu, and 

Saenz model respectively. 

6. Conclusions 

 
• The Saenz Model is successfully modified to the needs 

of Concrete Damaged Plasticity model, such that it 

doesn’t generate negative inelastic strain values. 

• Due to high deviations in peak loads in triangular 

elements with an increase in mesh size, quadrilateral 

elements should be preferred. 

• A reduction in peak loads and fracture energy is 

observed while increasing the notch-to-depth ratio. The 

strain-softening behaviour is negligibly affected with 

increase in the notch-to-depth ratio. 

• The change in the eccentricity and the dilation angle 

has negligible impact on both, fracture energy and 

characteristic length. 

• Fracture energy increases and characteristic length 

decreases with an increase in the characteristic 

compressive strength of concrete, using both, Hsu & 

Hsu, and Saenz models. 

• The proposed CDP model is able to predict fracture 

properties of concrete which are at par with the 

experimentally obtained values. 
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