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1. Introduction  
 

Nano materials are attracting many researchers over the 

recent years due to their improvement of the quality 

properties (Ebrahimi and Barati 2016a, Ebrahimi and Salari 

2015). Atomistic modeling and experimental researches 

show that, the size effect gains important when the 

dimensions of structures become very small. Due to this 

fact, the size effect plays an important role in the 

mechanical behavior of micro-and nanostructures (Şimşek 

2014). Among various nano structures, nanobeams have 

more important applications (Daulton et al. 2010, Hu et al. 

2010, Ebrahimi and Barati 2017a, b, c, d, e, f, g, Ebrahimi 

and Daman 2016a, Ebrahimi and Daman 2017, Ehyaei and 

Daman 2017, Ebrahimi and Shaghaghi 2016, Ebrahimi and 

Dabbagh 2017, Ebrahimi and Salari 2016a, b, Ebrahimi and 

Shafiei 2016) and Lots of studies have been performed to 

investigate the size-dependent response of structural 

systems based on Eringen’s nonlocal elasticity theory 

(Ebrahimi and Salari 2015a, b, c, d, Ebrahimi et al. 2015a, 

2016c, Ebrahimi and Barati 2016 a, b, c, d, e, Ebrahimi and 

Hosseini, 2016 a,c). A nonlocal beam theory is presented by 

Thai (2012), in this research, bending, buckling, and 

vibration of nanobeams have been investigated. However, 

the nonlinear vibration of the piezoelectric nanobeams 

based on the Timoshenko beam theory and nonlocal 

modeling has been investigated by Liao-Liang et al. (2012). 

In addition, Murmu and Adhikari (2010), have investigated 

the nonlocal transverse vibration of double-nanobeam-

system. In this research, an analytical method has been 

developed for determining the natural frequencies of the 

nonlocal double-nanobeam-system. Also Eltaher et al. 

                                           

Corresponding author, Ph.D. 

E-mail: febrahimy@eng.ikiu.ac.ir 

 

 

(2012), have presented free vibration analysis of 

functionally graded (FG) size-dependent nanobeams using 

finite element method. However, wave propagation in a 

microbeam based on the modified couple stress theory has 

been studied by Kocaturk and Akbas (2013). Also, 

Taghizadeh et al. (2015) have presented nonlocal integral 

elasticity analysis of beam bending by using finite element 

method. Meanwhile, nonlinear vibration analysis of a 

nonlocal sinusoidal shear deformation carbon nanotube 

using differential quadrature method has been investigated 

by Pour et al. (2015).  In addition, buckling analysis of 

linearly tapered micro-columns based on strain gradient 

elasticity has been investigated by Akgoz and Civalek 

(2013). However, Zemri et al. (2015) have presented a 

mechanical response of functionally graded nanoscale beam 

by using refined nonlocal shear deformation theory beam 

theory. Nevertheless, comparison of various refined 

nonlocal beam theories for bending, vibration and buckling 

analysis of nanobeams has been studied by Berrabah and 

Tounsi (2013). Aissani et al. (2015) have presented a new 

nonlocal hyperbolic shear deformation theory for 

nanobeams embedded in an elastic medium. Also, bending, 

buckling and vibration of axially functionally graded beams 

based on nonlocal strain gradient theory has been presented 

by Li et al. (2017). Recently new classes of theories are also 

developed as functionally graded materials (Bourada et al. 

2015, Ebrahimi and Barati 2016b). Because the nanobeams 

has the high proportion of the surface to volume, the surface 

stress effects have important role in their mechanic’s 

behavior of these structures. Hence Gurtin and Murdach 

(1978) have considered surface stress effects. In this theory 

the surface is considered as a part of (nonphysical) the two-

dimensional with zero thickness (mathematically) which 

has covered the total volume. This theory has used in many 

researches about nanobeams.   

 The nonlinear flexural vibrations of small scale beams 
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in presence of surface properties have been studied by 

Gheshlaghi and Hasheminejad (2011). Nevertheless, 

nonlinear free vibration of functionally graded nanobeams 

with surface effects has been investigated by Sharabiani and 

Haeri-Yazdi (2013). In addition, Sahmani et al. have 

investigated Surface energy effects on the free vibration of 

post buckled third-order shear deformable nanobeams 

(2014). And they have studied Surface properties on the 

nonlinear forced vibration response of third-order shear 

deformable nanobeams (2014). In these papers they have 

been used to Gurtin-Murdach elasticity theory. Furthermore, 

the nonlinear free vibration of nanobeams with considering 

surface properties has been studied by Nazemnezhad et al. 

(2012). However, Hosseini-Hashemi and Nazemnezhad 

(2013) have presented nonlinear free vibration of 

functionally graded nanoscale beams with surface 

properties. As well as, Ansari et al. (2014) have investigated 

nonlinear forced vibration characteristics of nanobeams 

including surface stress effect. In this study, a new 

formulation of the Timoshenko beam theory has been 

developed through the Gurtin-Murdoch elasticity theory in 

which the effect of surface stress has been incorporated. 

Moreover, the surface and nonlocal effects on the nonlinear 

flexural free vibrations of elastically supported non-uniform 

cross section nanobeams have been investigated by 

Malekzadeh and Shojaee (2013) simultaneously. In 

addition, wave propagation in viscoelastic single-walled 

carbon nanotubes with surface effect under magnetic field 

based on nonlocal strain gradient theory has been studied by 

Hu and Ling (2016). Moreover, Ebrahimi and Daman 

(2016b) have presented investigating surface effects on 

thermomechanical behavior of embedded circular curved 

nanosize beams. However, a semi-analytical evaluation of 

surface and nonlocal effects on buckling and vibrational 

characteristics of nanotubes with various boundary 

conditions has been investigated by Ebrahimi et al. (2016). 

In addition, Ebrahimi and Boreiry (2015) have studied 

investigating various surface effects on nonlocal vibrational 

behavior of nanobeams.  Also, surface effects on large 

deflection of a curved elastic nanobeam under static 

bending has been presented by Liu et al. (2016). 

Meanwhile, Li and Hu (2017a), have studied Torsional 

vibration of bi-directional functionally graded nanotubes 

based on nonlocal elasticity theory. In addition, Post-

buckling analysis of functionally graded nanobeams 

incorporating nonlocal stress and microstructure-dependent 

strain gradient effects has been investigated by Li and Hu 

(2017b). 

In the case of elastic foundation there are linear and 

nonlinear which are named as Winkler and Pasternak 

respectively. Elastic foundations have been employed in the 

size of macro and nanobeams in many recent researches as 

explained below. 

Zhao et al. (2015), have investigated the axial buckling 

of a nanowire resting on Winkler–Pasternak substrate 

medium with the Timoshenko beam theory. In addition, 

Simple analytical expressions have been presented by 

Fallah and Aghdam (2011) for large amplitude free 

vibration and post-buckling analysis of functionally graded 

beams rest on nonlinear elastic foundation. Furthermore, 

Jang et al. (2011), have presented a new method of 

analyzing the non-linear deflection behavior of an infinite 

beam on a non-linear elastic foundation. Also, Niknam and 

Aghdam (2015) have obtained a closed form solution for 

both natural frequency and buckling load of nonlocal 

functionally graded beams resting on nonlinear elastic 

foundation. Moreover, the static instability of a nanobeam 

with geometrical imperfections with elastic foundation has 

been investigated by Mohammadi et al. (2014). In this 

paper, Size-dependent effect is included in the nonlinear 

model. Nevertheless, differential transformation method has 

been used to predict the buckling behavior of single walled 

carbon nanotube on Winkler foundation under various 

boundary conditions by Pradhan and Reddy (2011). 

In recent years vibration of curved nanobeams and 

nanorings, have been worked in many empirical 

experiments and dynamic molecular simulations (Wang and 

Duan 2008). Hence some researchers are interested in 

studding of vibration curved nanobeams and nanorings. A 

unified formulation for static behavior of nonlocal curved 

beams has been presented by Tufekci et al. (2016). Yan and 

Jiang (2011) have investigated the electromechanical 

response of a curved piezoelectric nanobeam with the 

consideration of surface effects. In addition, a new 

numerical technique, the differential quadrature method has 

been developed for dynamic analysis of the nanobeams in 

the polar coordinate system by Kananipour et al. (2014). 

Moreover, Khater et al. (2014) have investigated the effect 

of surface energy and thermal loading on the static stability 

of nanowires. In this research, nanowires have been 

considered as curved fixed–fixed Euler-Bernoulli beams 

and has been used Gurtin-Murdoch theory to represent 

surface effects. The model has taken into account both von 

Kármán strain and axial strain. As well as, Wang and Duan 

(2008) have surveyed the free vibration problem of 

nanorings/arches. In this research the problem was 

formulated on the framework of nonlocal elasticity theory. 

Nevertheless, explicit solution has been shown for size and 

geometry dependent free vibration of curved nanobeams 

with including surface effects by Assadi and Farshi (2011). 

Ebrahimi and Daman (2016c) have presented an 

investigation of radial vibration modes of embedded 

double-curved-nanobeam systems. In addition, a nonlocal 

strain gradient refined beam model for buckling analysis of 

size-dependent shear-deformable curved FG nanobeams has 

been investigated by Ebrahimi and Barati (2017h). 

To the best of the author’s knowledge, there has been no 

record or any study regarding the vibration and buckling of 

circular nanoarches with surface effects and elastic 

foundations through any of the studies mentioned in the 

literature review. Therefore, there is strong scientific need 

to understand the vibration and buckling behavior of 

circular curved nanobeams with surface effects in 

considering the effect of elastic foundations. Actually, 

circular curved nanobeams or nanoarches can be applied in 

nano electro mechanical systems (NEMS) such as various 

nanosensors, nanogenerators and nanoactuators. The aim of 

this research is investigating the effects of Winkler and 

Pasternak elastic foundation on natural frequencies and 

critical buckling loads of nanoarches. Thus, the paper has  
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Fig. 1 Geometry of an element of a circular curved nanobeam 

with surface layers 
 

 

presented the effects of surface density, surface elasticity 

and surface residual stress on natural frequencies and 

critical buckling loads of nanoarches. 

 

 

2. Problem statements  
 

In plane free vibration of curved nanobeam is 

considered. As it shown in Fig. 1, the radius curvature and 

thickness are considered R and h respectively. Additional 

surface effects are supposed for all the external surfaces. 

The dynamic equilibrium equations for a circular curved 

Euler-Bernoulli beam, are given as 

2 2 2

2 2 2

2 2 2

2 2 2

0

sr r r

s

u u uV
P AR Rb fR

t t t

u u uP
V AR Rb pR

t t t

M
RV

  

 


 




 

 

   
     

    

   
     

    


 

  

(1) 

where F(θ,t) is the shearing force, P(θ,t) is the tensile force, A 

is the cross sectional area, ρ is the mass density, ρ
s
 is the 

surface density of the nanoring and b is the width of nanoring 

In Eq. (1). It should be notice the displacement components of 

the surface property must satisfy the following relations 

(Assadi and Farshi 2011). 

;
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(2) 

By employing Eq. (2) and substituting into Eq. (1) the 

equilibrium equations can be determined as follow. 
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(3) 

The normal stress resultant P from Eq. (3) should be 

vanished. Therefore, obtains the relation between radial 

displacement and bending moment such as Eq. (4) 
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(4) 

The stress components of the surface layers must satisfy 

the following equilibrium relations (Gurtin and Murdoch 1978) 
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where τ
±
 are residual surface tensions under unconstrained 

conditions, μ
s
 and λ

s
 are the surface Lamé constants for the 

surface material. 
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(6) 

Considering inextensible deformation of the curved 

element at x=0, it can be conclude that ur=∂uθ/∂θ. The stress-

strain relation for the surface material can be determined as 
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Bending moment resultant M due to normal stress σxx can 

be described by integrating the strain components on the cross 

section as follow as 
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(8) 

By inserting Eq. (6) and (7) into Eq. (8), the bending 

moment of curved element, can be obtained as 
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• Vibration equation 

 
Using Eq. (9) in Eq. (4) yields the governing equation for 

vibration of the curved nanobeam as 
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(10) 

where f and λ, defined as follow 
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• Critical buckling load equation 
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(13) 

where N is the critical buckling load  
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3. Solution method 
 

For free vibration of circular curved nanobeam or 

nanoring, analytical solution is considered. The radial 

displacement can be considered as 

      
   , ni t

r ru t u e  
 

(14) 

In which ωn is the natural frequency of the nanoring. 

Navier solution is employed for simply-simply supported of 

the circular curved nanobeam. Therefore Eq. (14) can be 

rewritten as follow  
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 is the corresponding deformation 

shape of the circular curved nanobeam and nanoring, and i 

is the conventional imaginary number 1 . Substituting 

Eq. (15) into Eqs. (10) and (13), dimensionless natural 

frequencies of the circular curved nanobeam and nanoring 

with surface properties and elastic foundation, can be 

obtained as 
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The dimensionless natural frequency of curved beam 

without surface effects and elastic foundation can be written 

as 
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(17) 

The dimensionless critical buckling load with surface 

effects and elastic foundations is determined as follow 
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4. Numerical results 
 

In this section, The bulk elastic properties are E=177.3 

Gpa, ρ=7000 Kg/m
3
, v=0.27 and b=5 nm. The surface elastic 

properties are λ
s
=−8 N/m, μ

s
=2.5 N/m, τ=1.7 N/m  and 

ρ
s
=7×10

-6
 Kg/m

2
 (Gurtin and Murdoch 1978). To validating 

results, elastic foundations are eliminated and Simply-Simply 

supported boundary conditions are considered. Therefore, the 

plot of frequency ratio, with and without surface properties, 

versus thickness of curved nanobeam illustrated in Fig 2 and 

Fig. 3. 

 
Fig. 2 Comparison of effect various surface properties on 

natural frequency respect to thickness h (nm) 

 

 
Fig. 3  Comparison of effect surface tension and elasticity, on 

natural frequency respect to thickness h (nm) 

 
 
We reached to reasonable results in this survey that can 

represent the validity of our research as it shown in Fig. 2 and 

Fig. 3 and It is detected, the results are very good agreement 

with reference (Assadi and Farshi 2011) 

 
4.1 Effect of thickness on frequency ratio with 

different radius of curvature 
 
In this subsection, the effect of the thickness (h) with 

various curvature radiuses on frequency ratio with and 

without surface effects is examined. The same material and 

geometric parameters are selected is used for the results by 

the present model in Fig. 2. In addition the Winkler and 

Pasternak elastic foundation for this case, are 10
10

 N/m
2
 and 

10
-6

 N respectively and opening angle is α=π/2. To 

highlight the elastic foundations properties effect, on the 

natural frequencies of the curved nanobeams with surface 

effects, the dispersion curves are presented in Fig. 4. It is 

clearly seen that, at the low values of thickness h, the 

greater values of curved nanobeams with elastic 

foundations effects. Hence, it is shown that by increasing 

thickness h, the elastic foundations effects tend to vanished. 

However, the Fig. 4 reveals that, the elastic foundations  
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Fig. 4 Frequency ratio with and without elastic foundations 

effects versus thickness h for different radius of curvature 

 

 

Fig. 5 First three frequency ratios of nanoarches with and 

without elastic foundations effects versus thickness h 

 

 

effects play important role in higher curvature radiuses. 

 
4.2 Analysis of higher modes on frequency ratio of 

curved beam with and without surface effects and elastic 
foundation 

 
The frequency ratio with different modes number, with 

and without elastic foundations has been illustrated in Fig. 

5. In this case, the following parameters are selected R=30 

nm, Kw=10
10

 N/m
2
, Kp=10

-6
 N. 

The trends of Fig. 5 are similar to Fig. 4. It is noted that 

with an increase of thickness in curved nanobeam h in Fig. 

5, the frequency ratios tend to one at three natural frequency 

mode numbers. It is revealed that in high values of 

thickness the influences of elastic foundations effects have 

been diminished in all mode numbers. 

 

Fig. 6 Dimensionless natural frequency of nanoarches 

respect to thickness h for various Winkler elastic 

foundations 

 

 

Fig. 7 Dimensionless natural frequency respect to thickness 

h for various Pasternak elastic foundations 

 

 

4.3 Effect of Winkler foundation on frequency 
parameter 

 

In this subsection, the effect of the Winkler elastic 

foundations of curved nanobeams with surface effects on 

the vibration frequencies is investigated respect to thickness 

of curved nanobeam. For this aim, the variation of 

fundamental dimensionless natural frequency respect to 

thickness with various Winkler elastic foundations is 

considered as shown in Fig. 6. In the case, the Pasternak 

elastic foundation assume constant and it is equal to 10
-6

 N. 

From Fig. 6, it is seen that the Winkler elastic 

foundation can significantly influence the vibration of 

curved nanobeam with surface effects. It is also observed 

that as thickness of curved nanobeam heightens, the 

fundamental frequencies decrease, which indicates that the  
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Fig. 8 Dimensionless natural frequency respect to radius of 

curvature for various curvature angles 

 

 

Winkler elastic foundation has an important role in 

dimensionless frequencies. As it shown in Fig. 6, as Winkler 

values increase, the dimensionless natural frequencies also 

increase. 

 

4.4 Effect of Pasternak foundation on frequency 
parameter of curved nanobeam 

 

To evaluate the influence of the Pasternak elastic 

foundation on vibration curved nanobeam with surface 

effects, Fig. 7 presents the natural frequency of the Euler-

Bernoulli model with respect to different values of 

Pasternak elastic foundation. For this aim, the variation of 

fundamental dimensionless natural frequency respect to 

thickness with various Pasternak elastic foundations is 

considered as shown in Fig. 7. In the case, the Winkler 

elastic foundation assume constant and it is equal to 10
10

 

N/m
2
. 

It can be seen from Fig. 7 that the dimensionless 

frequency is more sensitive to low thicknesses. As the 

thickness of curved nanobeam increases, the dimensionless 

frequency decreases. However, it is observed from that as 

Pasternak values increase, the dimensionless natural 

frequencies also increase. 

 

4.5 Effect of radius of curvature with different 
curvature angle on frequency parameter 

 

To understand the influence of the radius change R on 

the first dimensionless natural frequency of curved 

nanobeam with surface effects Fig. 8. Present the natural 

frequencies of curved nano beam with respect to curvature 

radius for different angles of curvatures. Effects of the 

curvature radius change on the natural frequencies of 

curved nanobeams are shown in Fig. 8. In this case, the 

following parameters are selected: h=10 nm, Kw=10
10

 N/m
2
, 

Kp=10
-6

. 

In Fig. 8, it is noted that with an increase of radius of 

curvature R, the dimensionless natural frequency increase.  

Table 1 Radius of curvatures and opening angle effects on 

first three dimensionless frequency of a S-S curved 

nanobeam embedded in elastic medium with surface effects 

(h=10 nm) 

R 

(nm) 

n=1 n=2 n=3 

Opening angle Opening angle Opening angle 

π/4 π/2 π π/4 π/2 π π/4 π/2 π 

10 8.5860 7.9899 10.4824 35.5131 34.3442 31.9595 80.4543 79.1681 75.1266 

20 9.9584 14.5663 33.1482 36.7241 39.8337 58.2651 81.6298 84.1989 98.9823 

30 12.5597 26.0609 70.3180 38.8763 50.2389 104.243 83.6543 93.4159 143.790 

40 16.5435 42.3610 122.245 42.1267 66.1739 169.444 86.6159 107.609 210.267 

50 21.9300 63.3998 188.974 46.6265 87.7200 253.599 90.6203 127.320 297.848 

60 28.6895 89.1502 270.519 52.4893 114.758 356.601 95.7771 152.774 406.031 

70 36.7900 119.601 366.884 59.7808 147.160 478.403 102.187 183.985 534.516 

80 46.2081 154.746 478.071 68.5258 184.833 618.985 109.934 220.873 683.140 

90 56.9286 194.584 604.080 78.7233 227.714 778.334 119.078 263.334 851.811 

100 68.9415 239.111 744.914 90.3584 275.766 956.445 129.660 311.279 1040.47 

 

 

Meanwhile it is also found that at the same curvature radius, 

the frequency at higher angle of curvature is greater than 

other frequencies.  

According to Table 1, it is obviously can be seen, the 

dimensionless frequency increase with increasing radius of 

curvatures. It is interesting to say that natural frequencies 

also increase with increase opening angles. The results in 

Table 1 can be used for design of curved nanobeams and 

nanorings in future. 

 

4.6 Critical buckling loads of circular curved 
nanobeam embedded in elastic medium 

 

In this section, critical buckling loads of circular curved 

nanobeam embedded in elastic medium is discussed. For 

this purpose, the variation of critical buckling loads respect 

to radius and angle of curvatures with and without surface 

properties are presented in Table 2. In the case, the Winkler 

and Pasternak elastic foundation assume constant and it is 

equal to 10
9
 and 10

-5
 respectively. 

According to Table 2, it can be seen, the dimensionless 

critical buckling load increase with increasing radius of 

curvatures. Also should be noted that, critical buckling 

loads, decrease with increase opening angles. These results 

can be used for design of curved nanobeams and nanorings 

in future. 

The critical buckling load ratio with and without elastic 

foundations has been detected in Fig. 9. In this case, the 

following parameters are selected R=30 nm, Kw=10
9
 N/m

2
, 

Kp=10
-5

 N, 
2


   . 

To highlight the elastic foundations effect, on the critical 

buckling loads of the circular curved nanobeams, the 

dispersion curves are presented in Fig. 9. It is obviously 

seen that, at the low values of thickness h, the greater values 

of curved nanobeams with elastic foundations effects. 

Hence, it is shown that by increasing thickness h, the elastic 

foundations effects tend to vanished. However, the Fig. 9, 

reveals that, the elastic foundations effects play important 

role in higher curvature radiuses. To evaluate the effect of  
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Table 2 Radius of curvatures and opening angle effects on 

critical buckling load of a S-S curved nanobeam embedded 

in elastic medium with and without surface effects (h =10 

nm) 

R 

(nm) 
4

 
 2

 
 

α=π 

With. S* Without. S With. S Without. S With. S Without. S 

10 9.0538 9.0920 7.1973 7.2217 6.6806 6.6806 

20 10.3064 10.3445 12.2079 12.2323 26.7304 26.7304 

30 12.3940 12.4321 20.5605 20.5849 60.1735 60.1735 

40 15.3169 15.3551 32.2577 32.2821 107.0500 107.0500 

50 19.0754 19.1135 47.3029 47.3273 167.4159 167.4159 

60 23.6696 23.7077 65.7008 65.7252 241.3434 241.3434 

70 29.0999 29.1380 87.4567 87.4811 328.9207 328.9207 

80 35.3668 35.4049 112.5772 112.6016 430.2520 430.2520 

90 42.4706 42.5087 141.0698 141.0942 545.4575 545.4575 

100 50.4120 50.4501 172.9431 172.9675 674.6735 674.6735 

*S: Surface Effects 

 

 
Fig. 9 Critical buckling load ratio with and without elastic 

foundations effects versus thickness h for different radius of 

curvatures 

 

 

the Pasternak elastic foundation on critical buckling load of 

circular curved nanobeam with surface effects, Fig. 10 

presents the critical buckling load with respect to different 

values of Pasternak elastic foundations. For this aim, the 

variation of dimensionless critical buckling load respect to 

thickness with various Pasternak elastic foundations is 

considered as shown in Fig. 10. In the case, the Winkler 

elastic foundation assume constant and it is equal to 10
9
 

N/m
2
. 

It is seen from Fig. 10 that the dimensionless critical 

buckling load is more sensitive to low thicknesses. As the 

thickness of curved nanobeam increases, the dimensionless 

critical buckling load decreases. However, it is observed from 

that as Pasternak values increase, the dimensionless critical 

buckling load also increase. 

Therefore, the effect of the Winkler elastic foundations of 

curved nanobeams with surface effects on the critical buckling 

load is investigated respect to thickness of curved nanobeam.  

 
Fig. 10 Dimensionless critical buckling load respect to 

thickness h for various Pasternak elastic foundations 

 

 
Fig. 11 Dimensionless critical buckling load respect to 

thickness h for various Winkler elastic foundations 
 
 

For this purpose, the variation of fundamental 

dimensionless critical buckling load respect to thickness with 

various Winkler elastic foundations is considered as shown in 

Fig. 11. In the case, the Pasternak elastic foundation assume 

constant and it is equal to 10
-5

 N. 

From Fig. 11, it is seen that the Winkler elastic foundation 

can significantly influence the buckling of curved nanobeam 

with surface effects. It is also observed that as thickness of 

curved nanobeam heightens, the critical buckling loads 

decrease, which indicates that the Winkler elastic foundation 

has an important role in dimensionless critical buckling loads. 

As it shown in Fig. 11, as Winkler values increase, the 

dimensionless critical buckling loads also increase. 

 
 
5. Conclusions 

 

Derived herein are the governing equations for the free 
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vibration and critical buckling load of circular curved 

nanobeam including surface elasticity, surface density and 

surface tension. The Winkler and Pasternak elastic 

foundations were considered on vibration and buckling 

behavior of the circular curved nanobeam. In addition, the 

simply-simply boundary conditions were assumed for this 

case. Hence the Navier method was employed to solve the 

governing equations. The effects of the thickness of circular 

curved nanobeam, Winkler and Pasternak elastic 

foundations, opening angle and radius of curvature, were 

investigated on the frequency and critical buckling load 

parameters of the circular curved nanobeams. It is observed 

that by increasing thickness h, the elastic foundations 

effects tend to vanished. Furthermore, it is shown that the 

elastic foundations and surface effects play an important 

role in vibration and buckling behavior of circular curved 

nanobeams. 
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