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1. Introduction 
 

1.1 Background 
 

The last decade has witnessed the tremendously quick 

development of smartphones and other portable smart 

devices in their ever-increasing user numbers and new 

abilities. In China for example, there are in total 1.3 billion 

registered cellphones by the end of 2015, which means 95.5 

cellphones for every hundred people. Meanwhile, the 

cellphones are becoming „smart‟ and „multifunctional‟ with 

more and more integrated powerful sensors resulting from 

rapid development of micro-chip technology. Taking 

Apple
®
 phone as an example, various sensors are packed 

into an iPhone such as accelerometer, gyroscope sensor, 

magnetometer and light sensor, to name a few. With a 

proper software, i.e., applications or APP, the records of all 

these embedded sensors can be acquired and analyzed to 

measure responses of a structure and to recognize the 

activities (walking, jumping, etc) of the phone‟s user. The 

smartphone with embedded-sensors was used as human 

activity recognition equipment (Khan et al. 2010), and as 

earthquake monitoring equipment (Reilly et al. 2013). IPod 

was also used as telegraph pole vibration monitoring 

equipment (Orai et al.2013). Finally, iPhone was used as 

bridge cable vibration monitoring equipment (Yu et al. 

2015).  

Dynamic loads will be generated when an individual or 

a group of people is walking/jumping/bouncing on a 
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structure, which are termed as pedestrian-induced loads. 

Typical pedestrian loads include walking, jumping and 

bouncing. In this study, bouncing is defined as a rhythmic 

body movement that is similar to jumping action but the 

feet remain in contact with the ground. These loads can 

cause large vibration to structures when their frequencies 

are close to the natural frequencies of the structure. Large 

resonant structural vibrations can make people feel 

uncomfortable so that leads to the so-called vibration 

serviceability problem as already happened in structures 

like footbridges (Zivanovic et al. 2005), high-rise buildings, 

stadia (Jones et al. 2011) and long-span floors. At the 

design stage of a vibration-prone structure, a proper model 

for human-induced load is critical for assessing its 

performance when it is subjected to pedestrain-induced 

loads. To this purpose, researchers have conducted 

experiments to record human-induced loads by two 

methods: direct measurement and indirect measurement. 

The former utilizes devices as force plate instrumented 

treadmill or pressure insole to directly measure time history 

of the load (Fig. 1). The latter usually measures the 

responses of a stiff structure under human-induced loads. 

The load‟s properties are then identified by inverse dynamic 

analysis. The two test methods, however, are not suitable 

for long-duration individual load measurement and for 

crowd load measurement due to the limited number of 

devices or experimental space. The measurement of human-

induced loads in real situation for individual and for a group 

of people remains a challenge. 

The smartphone, the most ubiquitous electronic 

appliance in modern people‟s daily life, provides a 

significant opportunity to establish a new, low-cost and 

convenient way to measure pedestrian-induced loads of 

individual or a group in real situation. Inspired by this idea,  
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Abstract.  The applications of smartphones or other portable smart devices have dramatically changed people‟s lifestyle. 
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(a) Force plates (b) Treadmill (Belli et al. 2001) 

 
(c) Insole 

Fig. 1 Measurement devices for individual walking load 

 

 

we conducted feasibility study to verify the measurement 

accuracy of smartphones and their possibility for pedestrain-

induced load measurements (Chen et al. 2016). We found 

that with the help of smartphone‟s powerful sensors, we can 

measure the acceleration of a person while he/she is 

walking or jumping. The corresponding loads can be 

reconstructed from the measured accelerations. The current 

paper improves this idea by proposing coordinate transition 

rules for smartphone‟s records, checking the dynamic load 

factors measured by smartphones and force plates, and 

extending this technique to crowd-load measurement.  

Section 2 elaborates the measurement principle of 

smartphones and the coordinate‟s transition rules. Section 3 

discusses validation experiments that are extensions of that 

in the feasibility study (Chen et al. 2016). In Section 4, 

smartphones are adopted to measure individual walking, 

jumping and bouncing loads. The measurements are 

compared with that by three-dimensional motion capture 

technique and force plates in both time domain and 

frequency domain. Crowd load measurements by 

smartphones are discussed in Section 5. Finally, the main 

findings of this study are summarized in Section 6.  

 

 

2. Smartphone’s measurement working principle 
 

2.1 Smartphone’s embedded sensors 
 
The development of the phone‟s embedded sensors is 

the main distinction between the traditional phone and the 

smartphone. There are various kinds of sensors in a 

smartphone like accelerometer, gyroscope sensor, GPS, 

touch sensor, infrared sensor, magnetometer, temperature 

sensor and fingerprint sensor. The accelerometer and 

gyroscope sensor are the two mainly used sensors to record 

the motion trial of the smartphone. 

The accelerometer and gyroscope sensor are all regarded 

as MIMU (Micro Inertial Measurement Unit), which 

integrates six-dimension inertia parameters together in a 

micro electronical unit to record tri-axial accelerations and  

  

Fig. 2 The coordinate axis of the iPhone and the positive 

direction of the acceleration sensor 

 

 

tri-axial angular velocity. The gyroscope‟s precision 

decides the smartphone‟s measurement precision. Factors 

that affect the accuracy of gyroscope include scale factor, 

zero-bias stability, measurement range, output noise, 

bandwidth, and resolution ratio. The accelerometer and 

gyroscope sensor in iPhone5s and the up (manufactured by 

Apple Inc.) are advanced and their measurement range 

(frequency and amplitude) covers that of the human 

activities (InvenSense
®  

on-line website). We thus selected 

iPhone5s (and higher generations) for the following 

experiments.  

 

2.2 Local coordinates and coordinates 
transformation 

 
Fig. 2 shows the local coordinate system in order to 

describe a smartphone‟s motion. The built-in tri-axial 

accelerometer can measure acceleration of the phone in x, y 

and z direction. The tri-axial gyroscope sensor can measure 

the angular rotation velocity about the three axes. There are 

many Apps available for acquiring records of the two 

sensors. We adopted one called Sensorlog
 ®

 in the following 

experiments because it can provide records of latitude, 

longitude, acceleration and gyro rotation data with a high 

sampling frequency of 100 Hz. 

Suppose we know the orientation of a phone‟s local 

coordinates before using it for vibration measurement, e.g., 

y-axis is perpendicular to the ground and x-axis is parallel to 

the ground. This original position is defined as global 

coordinates. When using the smartphone to measure a 

person‟s movement, the orientation of the smartphone‟s 

local coordinates changes all the time. Therefore, 

coordinate transformation is necessary to convert 

smartphone‟s measurements from local coordinates to 

global coordinates. For transformation purpose, let‟s define 

the three-dimension angular velocities from gyroscope 

sensor as ϑx, ϑy, ϑz (unit rad/s), the acceleration measured by 

smartphone at time instant t is expressed as [a1(t), a2(t), 

a3(t)] in local coordinates whose counterparts in global 

coordinate is [ax, ay, az].  

Based on the above definitions, the accumulated rotation 

angles about the three axes from time instant zero to t are as 

below 

1

n

t x t                    (1) 
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   Fig. 3 Resolve the smartphone‟s motion condition in the 

order of zxy
  

 

1

n

t y t                    (2) 

1

n

t x t  
                

 (3) 

where, n is the number of sampling points up to time instant 

t. The coordinate transformation can be expressed as 

 1 2 3, , , ,
T

x y za a a R a a a               (4) 

where, R stands for the transformation matrix.  

The transformation matrix can be derived based on the 

concept of Eulerain Angle through the procedure 

demonstrated in Fig. 3. Suppose the accumulated rotational 

angle at t is (φ, θ, ψ), we rotate the local coordinates in turn 

with the coordinate transformation matrix can be deduced 

as follow, where R,Z,N,Z′, as shown in Eqs. (5), (6), (7) and 

(8), stand for operators which are used for the 

transformation between original coordinates and arbitrary 

coordinates. 

 

(5) 

 

(6) 

 
(7) 

 

 

(8) 

 

 

3. Application for periodic signal measurement 
 

The human activities like walking, jumping and 

bouncing are typically treated as periodic process. We thus 

adopted shaking table test to verify the measurement  

 

 

Fig. 4 Smartphones fixed on the shaking table (horizontal 

(above) and 45 degree (below)) 

 

 

 
(a) Arrangement 1 and 1.6 Hz sine wave input (above: 

time history, below: spectrum) 

 

 
(b) Arrangement 2 and 3.4 Hz sine wave input (above: time 

history, below: spectrum) 

Fig. 5 Comparison of smartphone‟s measurement and 

shaking table‟s real input 

 

 

accuracy of smartphones for periodic signals. The 

experimental preparation is shown in Fig. 4. All the test 

phones were glued onto a plastic glass which was in turn 

fastened on the shaking table. Two arrangements of 
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smartphones were considered: (1) y-axis of the phone was 

the same as and, (2) 45 degree to the shaking table‟s 

vibrating direction (Fig. 4). Sine waves and frequency 

sweeping waves were taken as input to the shake table. The 

accelerations measured by the smartphones were compared 

with that recorded by an embedded accelerometer in the 

shaking table. 

There are in total seven sine waves were tested in the 

experiment whose frequencies are 1.2 Hz, 1.6 Hz, 2.0 Hz, 

2.4 Hz, 2.8 Hz, 3.2 Hz and 3.4 Hz, covering the main 

frequency range of pedestrian-induced loads. Fig. 5(a) 

compares the smartphone‟s measurements with the real 

input for frequency 1.6 Hz and arrangement 1, the results 

for 3.4 Hz and arrangement 2 are shown in Fig. 5(b). 

Note that for the above two cases the smartphone‟s 

measurements are close to that of the shaking table. The 

relative difference of peaks in time history is 3.1% and in 

amplitude spectrum is 3.0%. The main frequency of the 

smartphone‟s measurement is almost the same as the input 

sine wave. The dominant frequency and peak in amplitude 

spectrum are important for human-induced load. The above 

observations, together with that in previous study (Chen et 

al. 2016), demonstrate that the selected smartphones in this 

study is suitable to measure the low-frequency periodic 

acceleration with acceptable accuracy. 

 

 

4. Application for individual load measurement 
 

In this section, we apply the smartphone for individual 

load measurement. The methodology is that first we use the 

smartphone to measure acceleration of a person‟s body 

while he/she is walking, jumping or bouncing. The walking 

(or jumping/bouncing) load is then calculated using the 

acceleration measurements through a simple rigid model for 

walking. Investigation focusing here are placed on 

measurement accuracy, effect of smartphone‟s location and 

force conversion factors.  

 

4.1 Measurement of a person’s body movement by 
smartphone 
 

To measure the movement of a walking person, we 

placed a smartphone on his/her waist by a belt (Fig. 6) 

 

 

 

 
(a) Smartphone on the waist (b) Orientation device 

Fig. 6 The fixed method 
 

 
(a) 1s RMS 

 
(b) 10s RMS 

Fig. 7 Comparison of smartphone‟s records (with and 

without coordination transformation) with marker 

(bouncing, 2.0 Hz) 

 

 

because the movement of this part could represent the 

whole body‟s movement. To learn the measurement 

accuracy of smartphone, we adopted three-dimensional 

motion capture technology (MCT) in the experiment. The 

MCT uses several infrared cameras to record three-

dimensional special trajectories of a reflective point (termed 

as marker) attached to a moving subject. The system 

adopted in this study is the Vicon Motion Capture System 

which contains 12 cameras and four fixed force plates 

(AMTI Co.). More details about the experimental setup can 

be found in Pent et al. (2015). In the experiment, a marker 

was attached to the smartphone (Fig. 6(a)). The orientation 

of the smartphone‟s local coordinates was aligned with that 

of MCT through a specially-designed orientation device 

(Fig. 6(b)). 

In the experiment, three test subjects walked, jumped or 

bounced to certain frequencies (guided by a metronome). 

The coordinates transformation was first applied to the 

smartphone‟s records using the methodology described in 

section 2.2. The resulting accelerations are then compared 

with that of markers. Taking 2.0 Hz bouncing test case as 

an example, Fig. 7(a) compares 1s running root-mean-

square (1s RMS) curve of the marker‟s record (red solid 

line) with that of smartphone‟s original record (black dash 

line) and record after orientation transformation (blue dash-

dot line), the comparison for 10s RMS of the three records 

is shown in Fig. 7(b). Note that after orientation 

transformation, the smartphone‟s measurements are very 

close to that of the marker. The same conclusion can be 

obtained for jumping and walking tests. Results for jumping 

test at 2.0 Hz are shown in Fig. 8. 

 

4.2 The Influence of the Smartphone’s position 
 

In order to figure out whether the position of the 

smartphone could influence the measurement result or not, 

here three basic carrying methods were considered: putting 

it in the backpack causally, putting it in the front-pocket of 
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(a) Test subject 1 

 
(b) Test subject 2 

Fig. 8 Comparison of smartphone‟s records with marker 

(jumping, 2.0 Hz) 
 

  
(a) Reference markers (b) backpack 

  
(c) Front-pocket (d) Waist 

Fig. 9 Three different method to fix the smartphone 

 

 

the skinny jeans, and fixing it on the waist by a belt. The 3D 

MCT were also adopted in the test. In particular, four 

markers are fixed on the test subject‟s head (Fig. 9(a)) to 

monitor the subject‟s movement. Moreover, for each 

carrying method additional markers was placed on the 

backpack (Fig. 9(b)) or on the smartphone (Fig. 9(c) and 

9(d)), whose records are taken as reference for comparison. 

Fig. 10 compares the marker‟s record with that of phone 

when the phone was in the pocket, while the comparison for 

phone on waist is shown in Fig. 8. Note that the 

smartphone‟s acceleration data in Fig. 8 are much closer to 

the marker‟s measurement than the results in Fig. 10. It can 

be inferred that the smartphone‟s fixed position decides the 

precision of the acceleration data and the waist-fixed 

method is better. When the phone was put in the backpack, 

however, the phone‟s records are different from that of the 

marker. Nevertheless, the dominant frequency and its 

amplitude of the phone‟s records are very close to that of 

the marker‟s, as demonstrated in Fig. 11 for free walking 

test. It can be inferred that the waist-fixed position is the 

most suitable location when recording the real human 

 

 

Fig. 10 The comparison of bouncing acceleration between 

smartphone sensor (front-pocket of the skinny jeans) and 

Marker (2.0 Hz bouncing (above) and 2.6 Hz bouncing 

(below)) 
 

 

Fig. 11 The basic frequency of free walking load 
 

 

activities in time domain. However, if only the frequency is 

needed, just putting the smartphone into the backpack 

casually can meet this requirement. 

 

4.3 Conversion of Load from Acceleration 
 

Eq. (9) is used to calculate the load induced by a 

person‟s activity using the smartphone‟s acceleration 

measurement. The equation assumes a single rigid-body 

model for a person. 

              (9) 

where, G(t) is the load, m stands for body mass; g is 

gravitational acceleration (m/s
2
); R stands for vibration 

participation coefficient of body mass, ( )a t is the 

acceleration measured by the smartphone. Due to the 

difference in different activity, the value of R is different for 

bouncing, jumping and walking. The best R can be 

determined by comparing the load calculated from Eq. 9 

with the force plate data in able to make the mean error of 

the peak minimum by least square method. The best R value 

is influenced by many factors, like volunteer‟s exercise 

habit, limbs proportion, rhythm sensation, height, mass, 

ages or other factors which can influence the human 

activity. Some relative researches have shown that the BMI 

(Body Mass Index) can influence human‟s plantar pressure. 

We then design experiments to find the relationship 

between the best R and BMI. For bouncing activity, some of  
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Table 1 The best R for bouncing activity at different 

frequency (1.5 Hz) 

Test subject‟s 

mass (kg) 

Height 

(m) 
Best R 

Mean error of 

Peak 

57.843 

1.70 

0.936 3.00% 

58.778 1 4.44% 

59.778 0.976 3.84% 

61.450 0.890 4.76% 

77.452 

1.79 

0.857 4.42% 

78.309 0.728 8.24% 

79.049 0.933 7.30% 

80.098 0.870 7.82% 

81.637 0.819 6.52% 

 

Table 2 The best R for bouncing activity at different 

frequency (2.0 Hz) 

Test subject‟s 

mass (kg) 
Height (m) Best R Mean error of Peak 

56.932 

1.70 

0.797 5.57% 

57.870 0.898 3.63% 

58.755 0.868 3.49% 

59.686 1 3.49% 

60.573 0.841 2.99% 

78.228 

1.79 

0.780 9.11% 

79.036 0.781 6.91% 

79.919 0.815 6.77% 

80.938 0.847 5.15% 

81.832 0.807 5.18% 

 

Table 3 The best R for bouncing activity at different 

frequency (2.5 Hz) 

Test subject‟s 

mass (kg) 
Height (m) Best R Mean error of Peak 

56.949 

1.70 

0.855 4.48% 

57.742 0.937 3.21% 

58.808 0.936 3.899% 

59.592 0.911 5.51% 

60.576 0.855 4.75% 

61.539 0.820 4.53% 

77.394 

1.79 

0.862 5.65% 

78.045 0.757 9.56% 

79.157 0.821 9.74% 

79.795 0.784 9.95% 

80.679 0.77 8.71% 

81.718 0.76 7.49% 

 

 

the best R value we found for test cases with three 

frequencies (1.5, 2.0 and 2.5 Hz) are given in Table 1 to 

Table 3.  

The associated peak error for these calculated R values 

varies in the range 3%-9.9%. A similar estimation error 

range was recently reported by Bocian et al. (2016). In their 

study, they utilized a wireless attitude and heading 

reference system which comprises a tri-axial accelerometers 

and gyroscopes, the same as a smartphone. The same 

procedure was applied to jumping test data to determine the  

 

Fig. 13 Crowd-load experiment 

 

 

 

Fig. 14 Acceleration time domain and the comparison of the 

ground reaction force between the phone and the marker 

(1.5 Hz bouncing) 
 

 

best R value. Again, it was found the R value was 

individual-depended and it varied in a range of 0.88-1.0. 

For walking test cases, however, it was difficult to obtain 

such R values because only single footfall forces (but not 

continuous force time history as jumping and bouncing) 

were recorded in the experiments. 

The relation between the best R and BMI in bounce case 

can be represented below by binomial fitting (Eq. (10)). 

  (10) 

After statistical analysis on all the experimental data, we 

suggest using R=1.0 in Eq. (9) for calculating jumping 

force. As for bouncing activity, using Eq. (10) to calculate 

the best R and then apply the best R to Eq. (9).  

Fig. 12 compares the time histories of calculated force 

with that of the force plates for bouncing activity at 1.5 Hz 

and jumping activity at 2.0 Hz. The mean error of the peak 

are 5.05% (1.5 Hz) and the 4.38% (2.0 Hz). 

 

 

5. Application for crowd-load measurement 
 

Using smartphone to measure the crowd load is perhaps  
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Fig. 15 Acceleration time domain and the comparison of the 

ground reaction force between the phone and the marker 

(2.0 Hz jumping) 
 

 

the most attractive application of the device. As shown 

below (Fig. 13), we conducted a preliminary crowd-load 

experiment by employing 48 volunteers. Each of them 

carried an iPhone 6/6s on his/her waist by a belt. We also 

used 3D MCT in the experiment which consists of 18 

cameras. Each test subject had three markers whose 

trajectories were monitored by 3D MCT. Test subjects were 

asked to bounce and jump to different frequencies in the 

experiment. 

Fig. 14 and 15 compares the forces computed by 

marker‟s record and smartphone‟s record for bouncing and 

jumping test, respectively. The error in peak load value is 

8.74% and 4.58% for bouncing and jumping. The results 

demonstrate the ability of smartphone for the crowd load 

measurements. 

 

 

6. Conclusions 
 

In order to verify the application of the smartphone 

measurement for pedestrian-induced loads, this paper 

carried out shaking table experiment, individual and crowd-

load measurement. In the shaking table experiment, the 

smartphone can record the sine wave acceleration 

accurately in time domain and frequency domain. The time 

domain features of the sweep wave acceleration can also be 

obtained precisely. With the help of 3D MCT, it is found 

that the smartphone can measure an individual‟s movement 

which is in turn converted to human-induced load by a rigid 

body model. Preliminary experiments show that this 

methodology can be directly used in crowd load 

measurement. The accuracy of the load measurement 

depends on the installation manner, location of the 

smartphone and also the mass participation coefficient in 

the biomechanical model. Results in this study show that 

the load measurement errors in peak values for bouncing 

and jumping are within 10% for the suggested rigid model 

and suggested coefficient. More experimental data are 

necessary for determining a proper partition coefficient for 

walking activity.  

Acknowledgements 
 

Financial supports from the National Natural Science 

Foundation (51478346) and State Key Laboratory for 

Disaster Reduction of Civil Engineering (SLDRCE14-B-

16) to this research are highly appreciated.  

 

 

Reference  
 
Belli, A., Bui, P., Berger, A., Geyssant, A. and Lacour, J.R. 

(2001), “A treadmill ergometer for three-dimensional ground 

reaction forces measurement during walking”, J. Biomech., 

34(1), 105-112. 

Bocian, M., Brownjohn, J.M.W., Racic, V., Hester, D., Quattrone, 

A. and Monnickendam, R. (2016), “A framework for 

experimental determination of localized vertical pedestrian 

forces on full-scale structures using wireless attitude and 

heading reference systems”, J. Sound Vib., 376, 217-243 

Chen, J., Tan, H. and Pan, Z. (2016), “Experimental validation of 

smartphones for measuring human-induced loads”, Smart 

Struct. Syst., 18(3), 625-642. 

InvenSense®  on-line website, 

https://www.invensense.com/solutions/mobile/. 

Jones, C.A., Reynolds, P. and Pavic, A. (2011), “Vibration 

serviceability of stadia structures subjected to dynamic crowd 

loads: a literature review”, J. Sound Vib., 330(8), 1531-1566. 

Khan, A.M., Lee, Y.K., Lee, S.Y. and Kim, T.S. (2010), “Human 

activity recognition via an accelerometer-lnabled-smartphone 

using kernel discriminant analysis”, 2010 5th International 

Conference on Future Information Technology, Busan, Korea, 

June. 

Orai, N., Ichii, K. and Ishii, S. (2015), “A trial of simple and easy 

health monitoring for power poles by using 'ipod'”, Sci. China 

Technol. Sci., 58(4), 712-719. 

Reilly, J., Dashti, S. and Ervasti, M. (2013), “Mobile phones as 

seismologic sensors: automating data extraction for the iShake 

system”, IEEE Tran. Autom. Sci. Eng., 10(2), 242-251. 

Yu, Y., Han, R., Zhao, X., Mao, X., Hu, W., Jiao, D., ... and Ou, J. 

(2015), “Initial validation of mobile-structural health 

monitoring method using smartphones”, International Journal 

of Distributed Sensor Networks, February. 

Zivanovic, S., Pavic, A. and Reynolds, P. (2005), “Vibration 

serviceability of footbridges under human-induced excitation: a 

literature review”, J. Sound Vib., 279(1), 1-74. 

 

1 2 3 4 5 6

0

20

40

60

Time(s)

A
cc

el
er

at
io

n
(m

/s
2
)

 

 

phone marker

0 5 10 15 20
0

500

1000

1500

2000

Time(s)

G
ro

u
n

d
 R

ea
ct

io
n

 F
o

rc
e(

N
)

 

 

phone marker

777




