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1. Introduction  
 

The modal identification for civil engineering has 

attracted many researchers, which can be used for 

evaluation of structural safety (Lei et al. 2014), sensor 

optimal placement (Yi et al. 2011, Yi et al. 2012), structural 

response estimation and model updating. Li et al. (2016) 

proposed a new method for bilinear structural response 

estimation by bilinear modal shapes. Chen and Maung 

(2014) presented an iterative solution procedure for model 

updating based on dynamic perturbation method, which 

didn’t need an optimization method and was improved to 

obtain stable solutions based on Tikhonov solution. Au and 

Zhang proposed a two-stage approach to identify the most 

probable values of the modal parameters and update the 

model parameters according to ambient vibration data based 

on Bayesian theory (Au and Zhang 2016, Zhang and Au 

2016). For the above application of modal identification, 

most of these methods are based on the assumptions that the 

ambient excitation is white, such as stochastic subspace 

identification method (SSI) (Van Overschee and De Moor 

2012). Eigensystem realization algorithm (ERA) (Juang and 
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Pappa 1985) is performed by the pulse free responses, 

which can be achieved through the natural excitation 

technique (NExT) (James et al. 1995) or the random 

decrement method (RDT) (Ibraham 2001) from ambient 

excitation with white property. Due to the complicate 

environment of practical engineering, the assumptions are 

usually conflicted, which causes that the measurement is 

not compatible with the response formula in the 

identification method. The difference can be recognized as 

noises. And the practical noises do exist in measurement. 

The noises can introduce the spurious modes, which would 

lead to the inaccuracy of structural modes to SHM, 

structural safety evaluation and so on. Therefore, the 

spurious modes introduced by noises in the structural 

responses should be investigated and distinguished. 

In the Hankel matrix based identification method, the 

noises in the measurement would be added into Hankel 

matrix. Then Hankel matrix with the additive noise matrix 

would be decomposed by the singular value decomposition 

(SVD) technique. The singular values of noises are not 

small enough, which are usually closed to some real 

singular values of the Hankel matrix. Therefore, the order 

of singular value matrix or the Hankel matrix is hard to be 

determined or truncated, which causes the spurious mode in 

the following eigenvalue calculation from the identified 

state matrix. It is obvious that the truncated order is the root 

cause. Up to now, the methods to determine the truncated 

order are almost classified into three aspects: the 

stabilization diagram (Peeters and Roeck 2001), the 

treatment of singular values and eigenvalues or 

 
 
 

Spurious mode distinguish by eigensystem realization algorithm 
with improved stabilization diagram 

 

Chun-Xu Qu1,2a, Ting-Hua Yi
1, Xiao-Mei Yang1b and Hong-Nan Li1c 

 
1School of Civil Engineering, Dalian University of Technology, Dalian, 116024, China 

2State Key Laboratory of Building Safety and Built Environment, Beijing, 100013, China 

 
(Received November 16, 2016, Revised April 13, 2017, Accepted May 1, 2017) 

 
Abstract.  Modal parameter identification plays a key role in the structural health monitoring (SHM) for civil engineering. 

Eigensystem realization algorithm (ERA) is one of the most popular identification methods. However, the complex environment 

around civil structures can introduce the noises into the measurement from SHM system. The spurious modes would be 

generated due to the noises during ERA process, which are usually ignored and be recognized as physical modes. This paper 

proposes an improved stabilization diagram method in ERA to distinguish the spurious modes. First, it is proved that the ERA 

can be performed by any two Hankel matrices with one time step shift. The effect of noises on the eigenvalues of structure is 

illustrated when the choice of two Hankel matrices with one time step shift is different. Then, a moving data diagram is proposed 

to combine the traditional stabilization diagram to form the improved stabilization diagram method. The moving data diagram 

shows the mode variation along the different choice of Hankel matrices, which indicates whether the mode is spurious or not. 

The traditional stabilization diagram helps to determine the concerned truncated order before moving data diagram is 

implemented. Finally, the proposed method is proved through a numerical example. The results show that the proposed method 

can distinguish the spurious modes. 
 

Keywords:  eigensystem realization algorithm (ERA); spurious mode; stabilization diagram; Hankel matrix; singular 

value decomposition (SVD) 

 



 

Chun-Xu Qu, Ting-Hua Yi, Xiao-Mei Yang and Hong-Nan Li 

 

eigenvectors. Magalhaes et al. (2009) mentioned that 

stabilization diagram is the most popular approach to 

separate the physical and spurious modes by checking the 

stable points in consistent frequency. Verboven et al. (2002) 

presented a criteria about the complexity of modal vectors 

to distinguish the spurious modes. Bazan (2004) analyzed 

the sensitivity of poles and provided estimates for the pole 

error in the ERA. Cara et al. (2012) presented expectation 

maximization algorithm to identify modes with the 

parameters estimated by SSI, which is useful to discard the 

spurious modes. Marchesiello et al. (2016) investigated on 

the effect of spurious poles on nonlinear dynamics. 

However, there are still some problems for stabilization 

diagram and the singular value treatment. Due to the noises, 

it is hard to decide which consistent frequency contains 

most stable points in the stabilization diagram. On the other 

hand, the noises can generate large singular values into real 

singular value, which is difficult to be distinguished.  

To distinguish the spurious modes clearly, this paper 

presents an improved stabilization diagram method in the 

ERA, which adds a moving data diagram process after 

stabilization diagram to determine which mode is spurious. 

This paper is organized as follows. Section 2 reviews the 

ERA and stabilization diagram method. Section 3 proved 

that the ERA can be performed by any choice of two 

Hankel matrices with one time step shift. Then the proposed 

moving data diagram is presented, where the noise effect on 

eigenvalues is analyzed. Finally, the proposed method is 

proved by a numerical example. 

 

 

2. Eigensystem realization algorithm and 
stabilization diagram 
 

2.1 Eigensystem realization algorithm 
 

In order to present clearly the spurious mode 

identification problem, first the ERA (Juang and Pappa 

1985) and the stabilization diagram (Peeters and Roeck 

2001) are reviewed briefly, which would be used in the next 

section discussion. The ERA is performed under the 

condition of impulse input. The formulation of the free 

pulse response is utilized to deduce the state matrix. 

Considering an n degree-of-freedom (DOF) system, the 

dynamics in discrete time domain is 

1k k k  x Ax Bu  (1) 

k k k y Cx Du  (2) 

where k means k-th time step; A, B, C, D are state matrix, 

input matrix, output matrix and feed-through matrix in 

discrete time domain, respectively; xk, yk, uk are state 

vector, output measurement vector and input vector, 

respectively. 

For the impulse input, which means u0=1
 

and uk=0, 

(k≠0), the response (Markov parameters) can be expressed 

as 

 1 , 1k

k k y CA B  (3) 

The above Markov parameters can form the Hankel 

matrix as follows 

   1 1 1

1

1 k k q k

p q

p

k    



 
 
   
 
 
 

C

CA
H A B AB A B O A C

CA

 
(4) 

where Op,Cq are the observability and controllability 

matrices, respectively.  

The ERA always using the Hankel matrices H(0) and 

H(1) (Juang and Pappa 1985). H(0) can be decomposed by 

singular value decomposition (SVD) as follows: 

The ERA always using the Hankel matrices H(0) and 

H(1) (Juang and Pappa 1985). H(0) can be decomposed by 

singular value decomposition (SVD) as follows 

  2 T0 p q H O C UΓ V  (5) 

H(1) has the state matrix A  more than H(0), so the 

state matrix A  can be calculated by pO  and qC . After 

setting P UΓ  and TQ ΓV , H(1) can be also 

expressed as follows 

  ˆ1 p q H O AC PAQ  (6) 

It can be proved that both A  and Â  are minimal 

realization, which means that they have the same 

eigenvalues (Jeffrey 1998). Therefore, Â  can be solved 

simply. 

 1 1ˆ 1T A Γ U H VΓ  (7) 

Then, the eigenvectors ψ  and eigenvalues d
z  for the 

state matrix Â  can be obtained. The eigenvalue for j -th 

mode in continuous time domain is 

, ,ln /d

j j re j im js z t s s i     (8) 

where Δt is the sampling time. 

The natural frequency fj is the absolute value of the 

eigenvalue in Eq.(8). The damping ratio ζ j 
is the real part 

divided by the absolute value in Eq.(8). The mode shapes is 

described as (Juang and Pappa 1985) 

T

pΦ E PΓψ  (9) 

 , ,p E I 0 0  (10) 

 

2.2 Stabilization diagram 
 

The stabilization diagram has two axes, the frequency 

axis and order axis, which illustrates the stability of 

frequency with the different order (Peeters and Roeck 

2001). In the ERA, the order axis describes the changing 

order (rank) of Γ
2
 for SVD of Hankel matrix or the 

changing order (rank) of Hankel matrix in Eq. (5).  

Due to the noises in the measurement, the singular 

values Γ
2
 have large rank which contains the noise singular 

value. The noise singular value can introduce the spurious 

modes which are hardly distinguished. The stabilization 

diagram surveys the stability of the identified frequencies 
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by changing different order of Γ
2
 which can be achieved by 

truncation. If the frequency is not changed for different 

order of Γ
2
, it means that the frequency is stable. However, 

the noises can generate the stable frequency, whose 

corresponding damping ratio and mode are instable. So the 

stable points in stabilization diagram can be decided by the 

stability of identified frequencies, damping ratios and 

modes. 

To plot the stabilization diagram for the ERA, three kind 

of parameters, the frequencies sj in Eq. (8), the damping 

ratio ζj and mode shapes in Eq. (9), should be calculated 

first. The errors between two different truncated order nt1 

and nt2 for the three kind of parameters are denoted as 

 
2 1 1, , ,/

t t ts j n j n j ne s s s   (11) 

 
2 1 1, , ,/

t t tj n j n j ne      (12) 

1 2 1 1 2 2

* * *

, , , , , ,MAC /
t t t t t tj n j n j n j n j n j n φ φ φ φ φ φ  (13) 

DMAC 1 MAC   (14) 

where | | is the absolute value; * is the transpose complex 

conjugate; φj 
is j-th mode and the j-th vector of Ф in Eq. 

(9); MAC represents the meaning of modal assurance 

criterion; DMAC means deducted modal assurance 

criterion.  

If the following equations are satisfied, the points are 

stable and can be plotted in the stabilization diagram.  

,lims se e  (15) 

,lims se e  (16) 

DMAC,limDMAC e  (17) 

where es,lim, eζ,lim 
and eDMAC,lim are the error limit values for 

frequency, damping ratio and mode shape, respectively. 

After the stable points are plotted in the stabilization 

diagram, the system final stable frequencies can be chosen 

as the frequency which has more stable points. Then, the 

damping ratios and mode shapes can be calculated by the 

chosen frequencies. 

During the process of Eq. (15), many spurious modes 

can be distinguished. However, there are still some spurious 

modes displayed as spurious stable points in stabilization 

diagram. Sometimes, there are many spurious stable points 

such that the stable frequencies cannot be picked out. 

Therefore, the stabilization diagram still cannot distinguish 

the spurious modes effectively. 

 

 

3. Improved stabilization diagram 
 

In this section, the stabilization diagram is improved by 

adding additional process, which fixes the order of singular 

value matrix for Hankel matrix and varies the choice of two 

Hankel matrix with one time step shift to replace Hpq(0) and 

Hpq(1) in Eqs. (5) and (6). The effectiveness of this process 

to distinguish spurious modes would be studied and 

illustrated in the following. 

As described in section 2.1, the choice of two Hankel 

matrices are defined as 

  11 kk  H PA Q  (18) 

  kk H PA Q  (19) 

The SVD for Eq. (18) is expressed as 

  1 1 1 2 T1 kk     H PTT A R RQ UΓ V  (20) 

where 

U PT  (21) 

T TV Q R  (22) 

2 1 1 1k  Γ T A R  (23) 

 
TT T T 1  U U PT PT T P PT  (24) 

 
TT T T 1  V V RQ RQ RQQ R  (25) 

As Eq. (7) process, H(k) is left-multiplied by U
T

 and 

right-multiplied by V. 

 T T T T -1 -1 T Tk kk  U H V U PA QV T P PTT A R RQQ R  (26) 

Due to Eqs. (21)-(25), both sides of Eq. (26) multiplying 

Γ
-1

 can obtain 

 1 T 1 1 -1 1 -1 -1 1

-1 1 ˆ

kk    





 

Γ U H VΓ Γ T A R RAR Γ

ΓRAR Γ A

 (27) 

where Â  is also minimization realization state matrix 

which has the same eigenvalue of A.  

Therefore, it is obvious that the SVD of H(k−1) can be 

used into H(k) to get the minimization realization state 

matrix. 

When there exists noise in the measurement, Eqs. (18) 

and (19) is changed to 

  1 1

1 1 1 11 k k

k k k kk  

      H PA Q Δ P A Q  (28) 

  k k

k k k kk   H PA Q Δ P A Q  (29) 

where P, A, Q are real matrix without the effect of noises; 

Pk-1 (or Pk-1) and Pk-1 (or Pk) are the matrix polluted by noise 

Δk-1 
(or Δk).  

Then Eqs. (20) and (27) are changed to 

  1 1 1

1 1 1 1 1 1 1

2 T

1 1 1

1 k

k k k k k k k

k k k

k   

      

  

 



H P T T A R R Q

U Γ V
 (30) 

   

   

1 T 1 1 T T

1 1 1 1 1 1 1 1

1 1 1 1 T T 1

1 1 1 1 1 1 1 1

k k k k k k k k k

k

k k k k k k k k k k k

k  

       

    

       





Γ U H V Γ Γ T P P T

T A R R A R R Q Q R Γ
 (31) 

where the matrix with the subscript k-1 is from the Hankel 

matrix H(k−1); so is the matrix with subscript k. The parts 
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in the brackets in Eq. (31) are assumed as 

T T T T

1 1 1 1 1 1 1k k k k k k k k       T P P T T P P T I  (32) 

T T T T

1 1 1 1 1 1 1k k k k k k k k       R Q Q R R Q Q R I  (33) 

1 1 1 1 1 1 2

1 1 1 1 1 1

k k

k k k k k k k

     

      T A R T A R Γ  (34) 

where the letter  “I “  represents the identity matrix. Then 

Eq .(31) is equal to 

 1 T 1 1 1

1 1 1 1 1 1 1 1
ˆ

k k k k k k k k k kk   

        Γ U H V Γ Γ R A R Γ A  (35) 

It means that the SVD of H(k−1) with noise Δk-1 can be 

used into H(k) with noise Δk to get the similar state matrix 

with the assumption Eqs. (32)-(34). 

From Eqs. (28) and (29), the noise matrix Δk-1 is split 

into the real matrix P, A
k-1

, Q to form Pk-1, 
1

1

k

k



A , Qk-1. Δk is 

split into P, A
k
, Q to form Pk, 

k

kA , Qk. The differences of 

the real matrices from H(k−1) and H(k) are 
1

1

k

k



A  and 
k

kA . 

Therefore, it is reasonable that Pk and Qk are equal to Pk-1 

and Qk-1, respectively, which can be convenient for the 

following investigation. So Eqs.(32) and (33) can be 

satisfied.  

The noise matrices Δk-1 and Δk can be recognized as the 

same matrix. When Pk=Pk-1 and Qk=Qk-1, the power of 

matrix A in H(k−1) and H(k) are k-1 and k, which makes 

that the noise matrix split into A are different and can be 

expressed as 

11 kk   
A

A A δ  (36) 

kk  
A

A A δ  (37) 

When k is large, according to 
1

1

k

k



A  or 
k

kA , Δk-1 or Δk 

would be square root (or split) many times, which causes 

kA
δ  is equal to 

1kA
δ . Then, Ak is equal to Ak-1, which 

means that Eq. (34) is satisfied. So, along with raising value 

of k, all the obtained ˆ
kA  are similar matrices and have 

same eigenvalues. However, in the other way, when k is not 

large enough, ˆ
kA  with different k are not similar matrices 

and do not have same eigenvalues. Simply, the above 

discussion can be described as 

1

1

ˆ ˆ~ ,

ˆ ˆ ,

k k

k k

k is large enough

k is small










A A

A A
 (38) 

where the symbol “~” means that two matrices are similar; 

the symbol “  ” is not similar; 
1

ˆ
kA  is obtained as the 

procedure in Eqs. (30) and (35) using H(k−2) and H(k−1). 

It is obvious that the property of eigenvalue changing with 

different k can be utilized to distinguish whether the 

eigenvalue is affected by noise or not. If the eigenvalue is 

not changed a lot along k rising, it means that the noise does 

not affect the eigenvalue too much. While the eigenvalue is 

varying obviously, it means that the noise affects the 

eigenvalue a lot. Then k is still rising, and the eigenvalue 

should be stable, which means that the eigenvalue has been 

all polluted by noise. 

Another important topic is the choice of the truncated 

order of the singular matrix Γk. Γk can be rewritten as 

 

 

1 2 2 2 1

0,1 1 0,2 2 0,2 2 2 1

, ,

, ,

t

t

k n n n H

n n n n H

diag l l l l l l

diag l l l     







   

Γ
 (39) 

where li (i=1…H) is the i-th order singular value of Γk; 2n is 

the real singular order; nt is the truncated order; H  is the 

minimization of the row and column number of H(k); l0,i 

(i=1…2n) is the i-th order real singular value of Γ, which 

satisfies 0, 0, 1i il l  ;  1i i H   is the noise effect on 

each singular value. From Eq. (39), it should be known that 

when i>2n, the singular value of Γk is caused by noise, and 

the real singular value is 0. 

Due to 0, 0, 1i il l  , when i is very small, l0,i is much 

larger than δi. Then from Eq. (35), the i-th eigenvalue of 

ˆ
kA  will not change a lot by noise. While i is closed to 2n, 

l0,j is hardly distinguished with δi. So when i is near 2n, l0,i 

will be polluted more and more with rising k. According to 

Eq. (35), the i-th eigenvalue would vary a lot along rising k. 

For the case i>2n, all the singular value li is caused by 

noise. The eigenvalue of ˆ
kA  will also not changed a lot. 

Therefore, the choice of the truncated order ni of 
2

1k Γ  

in Eq. (30) is a big issue. When the order ni is too high, the 

noise singular values in 
2

1k Γ  will be introduced. It would 

bring out a consequence that the higher order eigenvalue of 

ˆ
kA  is also not changed too much. Therefore, the 

stabilization diagram mentioned in section 2.2 should be 

used first to decide the concerned order of singular values. 

If the concerned order is chosen as ni, then U, Γ, V in Eq. 

(20) are truncated as Eqs. (40)-(42). 

 1 :,1:
tn k tnU U  (40) 

 1 :,1:
tn k tnV V  (41) 

 1 1: ,1:
tn k t tn nΓ Γ  (42) 

Then the order ni is fixed and the power k is changed, 

which is used to check whether the eigenvalue of ˆ
kA  is 

stable or not. The procedure can be summarized as shown 

in Fig. 1. 

 

 

4. Numerical example 
 

In order to prove the propose method, a numerical 

example is investigated. To illustrate the spurious mode 

problem clearly, the example is revised from the reference 

(Qu et al. 2017) simulation example to be 8 DOF in-plane 

lumped-mass model. The mass and stiffness for each floor 

are list in Table 1. It should be noted that the structural 

damping employs the Rayleigh damping, which utilizes first 

two damping ratios to construct the damping matrix. 

The example structure is excited by an impulse at the  
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beginning time. The sensors are supposed to collect the 

relative displacements for all the floors. The measurement 

noises are assumed to be 20% of the variance for the 

structural free pulse response. First, k is set to be 1. es,lim, 

eζ,lim 
and eDMAC,lim in Eq. (15) are set to be 0.01, 0.05 and 

0.02, respectively. According to the flowchart in Fig. 1, the 

traditional stabilization diagram can be drawn as shown in 

Fig. 2. 

In Fig. 2, the symbol “× “ means that the points with the 

corresponding frequency sj, damping ζj and DMAC are 

satisfied Eq. (15). It is obvious that there are almost 8 stable 

modes, where mode 7 and mode 8 may not be physical 

modes. To verify it, moving data diagram is implemented 

 

Table 1 Model parameters 

Floor No. 1 2~5 6~8 

Mass (×106

 kg) 1.126 1.100 1.100 

Stiffness (×106N/m) 862.07 862.07 554.17 

Damping 
Rayleigh damping with first two 

damping ratios are 5% 

 

 

Fig. 3 Moving data diagram for nt=16 

 

 

after determining the truncated order nt. From Fig. 2, there 

are 8 modes concerned. So nt is set to 16, and the moving 

data diagram is executed as shown in Fig. 3 following 

flowchart Fig. 1.  

From Fig. 3, it is founded that mode 7 is affected when k 

is larger, while mode 8 is almost polluted at the beginning. 

Along k is rising, the points are not stable, which means that  

 

Fig. 1 Flow chart of the improved stabilization diagram 

 

Fig. 2 Traditional stabilization diagram for k=1 
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Fig. 5 Traditional stabilization diagram for k=5 

 

 

the noises introduce spurious modes. To display the 

spurious modes, the mode comparisons are shown in Fig. 4. 

In Fig. 4, all the modes are identified with the truncated 

order nt, which is concerned order determined by tradition 

stabilization diagram in Fig. 2. Figs. 4(a)-(h) represent the 

1
st
 mode to 8

th
 mode. In Fig. 4(i), the legend “MD1” means 

“Moving Data” diagram for k=1. So “MD5”, “MD10” and 

“MD15” are for k=5, k=10 and k=15. The red color modes 

are the physical modes. It is obvious that Figs. 4(a)~(e) (1
st 

to 5
th

 modes) are almost not affected by noises. From Figs. 

4(f)-(h), it is found that the green modes, purple modes and 

blue modes have more difference than the yellow and red 

ones. It means that along rising power k, the modes can be 

polluted more easily. The yellow modes are a little different 

with the red ones, which means that even for k=1, the 

 

 

modes can be affected a little. From Fig. 4(f), the difference 

of different color modes illustrates that the 6
th

 mode is a 

little spurious. For Figs. 4 (g)-(h), especially Fig. 4(h), the 

modes with different colors are so different, which means 

that 7
th

 mode and 8
th

 mode are spurious modes and not 

suggested to be used. 

It should be noted that although the yellow modes are 

closed to physical modes, it is hard to measure the response 

at the beginning time point. If the response from the 5
th

 time 

point is measured, which means k=5, the stabilization 

diagram is plotted in Fig. 5. 

It is obvious that Fig. 5 is similar to Fig. 2, where the 7
th

 

and 8
th

 modes are still not to be sure the physical modes. To 

study the MAC values in Eq. (11), Fig. 6 is drawn. 

From Fig. 6(a)-(d), it is obvious that the 6
th

~7
th

 modes 

are affected by noises, especially for 7
th

 mode and 8
th
 mode. 

From the moving data diagram in Fig. 3, the 6
th

 mode is a 

little not a straight line, which shows that the 6
th

 mode is 

already affected. Therefore, the moving data diagram in Fig. 

3 can distinguish which mode is spurious mode that is not 

suggested to be used.  

It should be noted that the proposed method is only 

available for the free decayed response. If the excitation is 

ambient with white property, the free decayed response 

should be first obtained by some well-known method, such 

as NExT or RDT. 

 

 

5. Conclusions 
 

The noises in measurement can cause the spurious 

modes through modal identification method, which is 

hardly divided. This paper proposes an improved  

    
(a) 1

st
 mode (b) 2

nd
 mode (c) 3

rd
 mode (d) 4

th
 mode 

    
(e) 5

th
 mode (f) 6

th
 mode (g) 7

th
 mode (h) 8

th
 mode 

Fig. 4 Mode comparisons with different k 
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stabilization diagram in the ERA for distinguishing spurious 

modes. With the method investigation and the case study, 

some conclusions are summarized as follows: 

• The improved stabilization diagram in the ERA, which 

combines the proposed moving data diagram and the 

traditional stabilization diagram, is an efficient method 

for distinguishing spurious modes. 

• The flowchart of proposed improved stabilization 

diagram in the ERA is summarized. The traditional 

stabilization diagram is first performed to determine the 

concerned truncated order nt of Hankel matrix H(k−1). 

Then the proposed moving data diagram is implemented 

with the fixed truncated order nt and rising the power k. 

• An eight story numerical structure is used to prove the 

proposed method, and also demonstrate the efficacy of 

distinguishing spurious modes. The results shows that 

the higher modes are polluted more easily than the lower 

modes, and the more modes are polluted (or the more 

spurious modes are generated) with rising the power k. 
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