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1. Introduction 
 

As one of major parts of structural health monitoring, 

structural damage detection (SDD) methodologies have been 

developed to monitoring the possible damages emerging in 

structures. Both static and dynamic responses of structures 

are basic data of assessment of structural safety. The losses 

of structural stiffness is a commonly used index to quantify 

damage extent of structures. In the last two decades, SDD 

have been widely investigated and achieved great successes. 

The basic idea of SDD is to find the changed structural 

properties from measured responses before and after severe 

events such as hurricane, earthquake, deterioration due to 

aging and so on (Farrar and Worden 2007, Li and Chen 

2013). For a better description of structural damage, a class 

of models are generally defined based on assumed 

relationships between input and output variables of 

structural system (Teughels and De Roeck 2005). Such 

model-based techniques, named model updating, realize 

SDD process by transferring it into minimizing difference 

between measured and theoretical output data of structures. 

Generally, there are two major kind of output data, time 

domain data and frequency domain data (Yu and Lin 2015). 

Time domain data include displacement, acceleration, strain 
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and so on. Damage indices are defined in time domain 

method and most of them are based on statistical moments 

(Chen and Xu 2007, Yu and Zhu 2015) of structural 

responses. As precise knowledge of input excitation is 

required (Simoen et al. 2015), time domain data are rarely 

used directly for modal updating. On the contrary, 

frequency domain parameters are natural characters of 

structures and they are invariant in spite of what kind of 

excitation (i.e., impulse excitation, random excitation or 

vehicle load) are applied; therefore, the frequency domain 

data are more are employed popularly in the field of model 

updating. Frequency domain data contain frequency, mode 

shape, modal flexibility (Pandey and Biswas 1994), modal 

curvature (Pandey et al. 1991), and modal strain energy 

(Shi et al. 2000) . They are all sensitive damage index. In 

this study, in order to detect damage in multiple locations a 

new SDD method is proposed via defining a multi-sample 

objective function with frequencies and mode shapes and a 

hybrid particle swarm optimization (PSO) algorithm is applied 

to solve the SDD problem of a 2 storey frame and ASCE 4-

storey benchmark frame structure.  

SDD is a typical inverse problem (Friswell 2008). 

Decomposition method such as singular value 

decomposition (SVD), QR factorization or Cholesky 

factorization, and regularization techniques have been 

developed to solve the SDD problem. The disadvantages of 

them are that they include inverse computation, which 

calculate model properties such as mass and stiffness from 

measurement data on frequencies or mode shapes (Simoen 
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Abstract.  Significant improvements to methodologies on structural damage detection (SDD) have emerged in recent years. 
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of the proposed method, the ASCE 4-storey benchmark frame structure subjected to single and multiple damage cases is 

employed. Different kinds of modal identification methods are utilized to extract structural modal data from noise-contaminating 

acceleration responses. The illustrated results show that the proposed method is efficient to exact locations and extents of 
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et al. 2015). Then being ill-posed or ill-conditioning 

emerge, leading to an unstable solutions with respect to 

small changes in the measured data. With the rapidly 

development of computation technologies, massive of 

intelligent algorithms, such as genetic algorithm (GA) (Yan 

et al. 2007), ant colony optimization (ACO) (Yu and Xu 

2011), artificial fish swarm algorithm (AFSA) (Yu and Li 

2014) , firefly algorithm (FA) (Pan et al. 2016), Artificial 

Bee Colony algorithm (ABC) (Xu et al. 2015) and PSO 

(Baghmisheh et al. 2012, Seyedpoor 2012), become 

innovative techniques dealing SDD issues. The current 

status of structures can be estimated by minimizing fitness 

value of objective function (or cost function, fitness 

function). The objective function is defined as difference 

between measured and theoretical output data. Among these 

techniques, the PSO based algorithm has been confirmed 

effective due to its good performance in global searching. 

PSO is simple in concept and does not involve inverse 

analysis. However, the accuracy of optimization algorithm 

is affected by its randomness which is the theoretical basis 

of the algorithm. The randomness of PSO, such as particle 

initial distribution and random numbers containing in the 

manipulating equation, ensures the algorithm to search 

whole feasible space but sometimes makes it fall into wrong 

solution, which are generally called local optimum. 

However, some improved strategies have been investigated 

to deal with such weakness. Baghmisheh et al. (2012) 

adopted a hybrid PSO-NM algorithm for damage 

assessment based on PSO and Nelder-Mead simplex 

algorithm (NM). Seyedpoor et al. (2012) proposed a two-

step algorithm which reduces the dimension of optimal 

parameters for a more accurate results. Gerist and Maheri 

(2016) presented a BP-PSO-MS algorithm to improve the 

accuracy of detecting multiple damage cases.  

Another factor affects the accuracy of PSO is 

uncertainty of model and response data. Due to complex 

and indeterminate environment around the structure, the 

output data tends to show significant variation from one test 

to another. The disturbance of environment is described as 

noise. Therefore, idealized numerical prediction models are 

unable to perfectly represent behaviors of the structure. 

Probabilistic analysis is a common used method for 

uncertainty quantification (Simoen et al. 2015). Probability 

density functions (PDFs) are always pointed to the 

uncertain variables and Bayesian method is a classical 

model for probability analysis. Beck (Beck et al. 1999, 

Ching and Beck 2004, Cheung and Beck 2009) and Yuen 

(Yuen and Kuok 2001, Yuen et al. 2004) have made great 

contribution to establish a Bayesian statistical framework 

for SHM. Beck et al. (2002) firstly presented a Bayesian 

statistical framework for system identification and applied 

the theory to continual on-line SHM using vibration data 

from structures. However, the appearance of different 

Bayesian approach such as Bayesian spectral density 

approach (Katafygiotis and Yuen 2001), Bayesian spectral 

density approach time domain method (Yuen and 

Katafygiotis 2001) and Bayesian FFT approach (Yuen and 

Katafygiotis 2003) have made great developments of 

Bayesian inference in SHM. Au and Zhang (2012) and 

Zhang et al. (2015) have demonstrated a Fast Bayesian 

approach for modal identification both suitable for using 

ambient vibration data and free vibration data, and the 

methods are also successfully applied to SHM of Shanghai 

Tower (Zhang et al. 2016). Recently, Au and Zhang (2016, 

2016) developed a fundamental two-stage formulation for 

Bayesian system identification and Jensen et al. (2017) 

have also achieved good implementation of an adaptive 

meta-model for Bayesian finite element model updating in 

time domain. 

From the previous work, it is seen that most of 

intelligent algorithms focus on solving a single or multiple 

objective function based on single data sample, which 

sometimes leads to an unstable solution. And few 

researches have tried to maximize the likelihood function in 

Bayesian inference utilizing intelligent algorithms. To make 

a combination of Bayesian inference and intelligent 

algorithm for gaining a more stable solution, a multi-sample 

objective function is defined based on Bayesian inference 

and then optimized by a hybrid PSO algorithm in this paper. 

Numerical simulations on a 2-storey rigid frame structure 

using frequency and mode shape information show that the 

proposed method is effective for accurately identifying the 

location and extent of multiple structural damages. Further, 

the ASCE 4-storey benchmark frame structure is adapted to 

assess the performance of the proposed method based on 

the acceleration responses of structures. Complex pursuit 

(CP) algorithm and covariance-driven stochastic subspace 

identification (SSI-COV) are both used to extract modal 

data for SDD under different damage cases. The illustrated 

results show that the proposed method is also a reliable 

SDD tool for the ASCE benchmark frame structure.  

 

 

2. Theoretical background 
 

2.1 SDD formulation 
 

SDD problem has been deeply investigated in the field 

of SHM. When a finite element model is available, the 

damage is considered as reduction of stiffness and mass of 

structures. Assuming the change in mass can be ignored 

comparing with the stiffness (Begambre and Laier 2009). 

Then, the linear relationship between structural stiffness 

matrix and element stiffness matrix can be adopted as 

follows 

   
1

1
eN

i i

i




 K θ K  (1) 

in which θ is a vector of damage factor with same length of 

Ne element numbers and ranges from 0 to 1. θi=0 means 

undamaged state. K and Ki represent structural global 

stiffness matrix and i-th element stiffness matrix 

respectively. The dynamic behavior of structural finite 

element model (FEM) under excitation force F(t) can be 

written as 

     + = tMu C θ u K θ u F  (2) 

where M , C(θ) are structural mass and damping matrix, 

respectively. , ,  u u u  are corresponding acceleration, 
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velocity and displacement vector respectively. The m-th 

undamped frequency ωm and mode shape φm are extracted 

from the characteristic Eq. (3) derived from Eq. (2) 

 2 =m m  M K θ φ 0  (3) 

 

2.2 PSO-INM algorithm 
 

PSO is a population-based, self-adaptive search 

technique. The possible solution of the optimization 

problem is considered as a point, called “particle”, locating 

in the multi-dimension space. The PSO starts with a random 

population of particles (feasible solution) among the search 

space and then determines the global best solutions by 

adjusting the trajectory of each particle towards its own best 

location and the best particle of the entire swarm. The PSO 

method is a simple, efficient and fast convergence 

algorithm; therefore, it is popular in solving optimization 

problem. However, more detail of how PSO implements in 

optimization can be found in (Chen and Yu 2015). 

The PSO-INM is a method for solving the model 

updating problem described above. It is hybrid algorithm 

combining PSO and improved Nelder-Mead method (INM). 

The basic idea of PSO-INM is to search the local area 

around optimum solution θ
*
 found by PSO using INM. The 

INM’s perfect local searching ability helps to increase the 

θ
*
’s precision. More details of PSO-INM algorithm is 

referred in (Chen and Yu 2015).  

Traditional objective function is usually based on modal 

data, i.e., the relative percentage errors (RPE) of 

frequencies and modal assurance criterion (MAC) of the 

mode shapes in the following form 

 

   

*

1

1: = arg min

arg min 1 , ,
mN

c a c a

m m m m

m

Obj F

MAC RPE  




  
 

θ

θ

θ θ

φ φ

 (4) 

where 

   

2

, , 1,2, ,

cT a

m mc a

m m mcT c aT a

m m m m

MAC m N 
φ φ

φ φ
φ φ φ φ

 

represents MAC between the m-th calculated mode shape 

φm
c
 and the m-th actual mode shape φm

a
 within the first Nm 

modal data.  , 100%
a c

c a m m
m m a

m

RPE
 

 



   is the 

RPE between the m-th calculated frequency ωm
c
 and the 

actual frequency ωm
a
. When the calculated modal data are 

equal to the actual ones, the objective function gets its 

minimum value of zero. The corresponding solution θ
*
 is 

regarded as the structural state.  

For real structures, measured data are contaminated by 

noise, which is considered as a zero-mean stationary 

Gaussian white-noise process in numerical simulation. The 

formulation of noise-adding can be described as follows 

noise  D D R  (5) 

where Dnoise, D are measured data with and without noise, 

respectively. ε is noise level ranging from 0 to 1 and R  is 

a vector with random values obeying the distribution N(0, 

1). ψ is value of frequency for frequency data or it is 

calculated by Eq. (6) when mode shapes with Nn nodes 

are considered.  

2

1 1

1 n mN N

nm

n mn mN N
 

 

   (6) 

 

2.3 Bayesian theory 
 

To remove the noise negative effect from the optimal 

process, the idea of Bayesian theory is referred to form a 

more effective objective function and help to distinguish 

spurious damaged elements out of the solution. 

The probabilistic SHM framework based on Bayesian 

theory was firstly presented by Beck et al. (2002) and 

applied for a simulating on-line monitoring. The significant 

basis of Bayesian theory is the conditional probability, 

which assumed the prior knowledge attributed to a certain 

events or hypothesis. The Bayesian interpretation provide a 

rigorous process for uncertainty quantification. Bayesian 

theory used in the SHM field to express the updated 

probabilities of model parameter θ has the mathematical 

form as 

     p cp pθ D Dθ θ  (7) 

where p(θ|D) is probability density function (PDF) of 

model parameters given the modal data D and the assumed 

FEM, and p(D|θ) is PDF of modal data given the model 

parameter θ, which is more widely known as likelihood 

function. p(θ) is prior PDF of model parameters θ based on 

engineering and modeling judgments. c is a constant which 

ensures the integral of p(θ|D) to be one. Taking D=[D1, 

D2,…, DNs ] as observing modal data with Ns samples, Ds=[ 

ω1,s, ω2,s, …,ωm,s, φ1,s, φ2,s,…, φm,s] represents the s-th 

sample of frequencies and mode shapes. Then the 

likelihood function becomes 

       , ,

1 1 1

=
s s mN N N

s m s m s

s s m

p p p p
  

 
  

 
  D θ D θ θ φ θ  (8) 

It is assumed that test and modal data are independent. 

The principle of maximum entropy is used as a justification 

to choose a Gaussian distribution for ωm,s, and φm,s . Then 

the resulting PDFs of ωm,s and φm,s are calculated as follow 

respectively 

 
 

2

,

, 1 2
exp

2

a

m s m

m s

m

p c
 




 
  
 
 

θ
       (9) 

 
   , ,

, 2 2
exp

2

T
a a

m s m m s m

m s

m

p c


  
  
 
 

φ φ φ φ
φ θ   (10) 

where, εm
2
 and m

2
 are the variance of the m-th frequency 

and the diagonal element of covariance matrix Cm, 

respectively. The covariance matrix Cm of the m-th mode 

shape is simplified as Cm=m
2
INm×Nm. The sample variances 

are used to approximate the variances of Gaussian  
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Fig. 1 Flowchart of proposed method 

 

 

distribution εm
2
 and m

2
 which can be calculated as follows 

 
22

,

1

22

,

1

1
,

1

1

1

s

s

N

m m s m

ss

N

m m s m

ss

N

N

  







 


 




 φ φ

 
(11) 

The prior distribution of model parameters θ is assumed 

to be uniform distribution, which means that its PDF has the 

form: 

  3p cθ  (12) 

where c3 is a constant. 

Substituting Eqs. (9) and (10) into Eq. (8), then 

combining Eqs. (8) and (12) yields the final form of 

p(θ|D) as shown in Eq. (13) 

 
 

   

2

,

2
1 1

, ,

2

exp
2

                      +
2

s m
aN N

m s m

s m m

T
a a

m s m m s m

m

p c
 





 

  
  
 
 

 




θ D

φ φ φ φ

     (13) 

The goal of Bayesian-based probabilistic analysis is to 

maximize the probability of p(θ|D) based on the known test 

data and then ascertain the most likely damaged elements.  

Based on the Bayesian analysis process, a multi-sample 

objective function is proposed to maximize the likelihood 

probability function p(θ|D), which can be converted into a 

minimization optimization problem written as Eq. (14). 

The aim of the multi-sample objective function is to make 

full use of the data sets but not use the average value only. 

The advantages of multi-sample objective function will be 

explored in the next section. The flow chart of the proposed 

method is shown as Fig. 1. 

 
     

2

, , ,*

2 2
1 1

2 : = arg min arg min +
2 2

s m

T
a a aN N

m s m m s m m s m

s m m m

Obj J
 

  

        
    


θ θ

φ φ φ φ
θ θ

 

 
     

2

, , ,*

2 2
1 1

2 : = arg min arg min +
2 2

s m

T
a a aN N

m s m m s m m s m

s m m m

Obj J
 

  

        
    


θ θ

φ φ φ φ
θ θ

 
(14) 
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Fig. 2 Finite element model of two-storey rigid frame 

structure 
 

Table 1 Damage cases 

Cases Description 

1 05%@17 

2 10%@17 

3 20%@17 

4 40%@17 

5 20%@8, 20%@17 

6 10%@8, 20%@17 

7 15%@5, 20%@8, 30%@17 

8 25%@5, 25%@8, 25%@11, 25%@17 

 

 

3. Numerical simulations 
 

3.1 Two-storey rigid frame structure 
 

A two-storey rigid frame structure is adopted to assess 

the performance of the proposed method. The diagram of 

structure, physical dimensions and material properties are 

shown in Fig. 2. The elastic modules of both beam and 

column are equal to 2.1×10
11

 N/m
3
. The numbers in the box 

represent finite element number, while others denote 

measured node number.  

The frame structure is modeled by 18 two-dimension 

beam elements with equal length. Several damage scenarios 

are simulated by setting different value in the damage 

coefficient vector θ. Single damage is introduced in the 17
th

 

element ranging from 5% to 40%. Different combination of 

elements with different damage extents are simulated to 

identify the multi-damage cases. The damage element 

location and extent are listed in Table 1. The symbol 

5%@17 in Table 1 indicates that the stiffness of the 17
th

 

element is decreased by 5%, similar meaning for other 

cases. 

The first five modal frequencies and mode shapes are 

adopted, meaning Nm=5. The number of modal parameters 

is determined based on reference (Yu and Li 2014).The 

mode shape is measured along the vertical direction of 

components; accordingly, the vertical direction of beam and 

the horizontal direction of column are available. Noises are 

contaminated in frequencies and mode shapes based on Eq. 

(5), and the noise level are 3% and 5% respectively. 
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(a) for traditional objective function 

 
(b) for multi-sample objective function 

Fig. 3 Comparison on results due to objective functions 

 
 

3.2 Comparison on different objective functions 
 

Case 3 is used to investigate effects of noise on 

objective functions. Assuming the damage location is 

determinate, the objective function becomes a single 

variable function with respect to damage extent at 17
th

 

element. Noises are added up to the original modal data in 

Case 3 to generate 100 samples. Dividing these data into 10 

groups with equal sample size of 10. The fitness value of 

objective functions, based on Eqs. (4) and (14), are 

calculated using different group of data. The average values 

of each group data are adopted for traditional objective 

functions. Fig. 3(a) is the result due to traditional objective 

function while Fig. 3(b) is that due to the proposed one. The 

left plot of each figure describes the pattern of objective 

function with respect to damage extent at 17
th

 element and 

the right one demonstrates the optimal damage extent 

corresponding to the minimal objective function value for 

every group. By comparison, the optimal damage extent of 

multi-sample objective function in Fig. 3(b), which varied 

within a small range of real damage extent 20%, is more 

stable than the traditional one in Fig. 3(a). Under the effect 

of noise, the optimal solution of traditional objective 

function deviated from the actual one, leading to an error 

identification even if the algorithm has a great optimal 

ability. On the contrary, the optimal solution of multi-

sample objective function is stable for different group of  

 

Fig. 4 Optimal damage extent with respect to sample size 

 

 

data. The advantages of multi-sample objective function 

make it more suitable for optimal algorithm and help to 

improve the accuracy of SDD results.  

 

3.3 Sample size for objective functions 
 

Because multiple samples are necessary for the 

proposed objective function, the sample size is an important 

parameter to be assessed. A small sample size cannot 

guarantee the stability of objective functions while the large 

one would waste the computing resource. The sample size 

is assessed by single damage cases for convenience. The 

optimal damage extent in Cases 2 to 4 with respect to 

sample size are shown in Fig. 4. It can be found from Fig. 4 

that the optimal damage extents become gradually stable 

with increasing sample size. When the sample size is higher 

than 10, the optimal damage extents of all the single cases 

remain around the real one. Therefore, the sample size is set 

to be 10 and extended for other multi-damage cases. 

 
3.4 SDD results 
 

As shown in Table 1, there are 4 single damage cases 

with damage at 17
th

 element. All the SDD results using the 

PSO-INM are shown in Fig. 5. Optimal solutions were 

obtained from fifty independent distributed runs for each 

case. The sample size is 10 and the average values are 

adopted for traditional objective function. The symbol 

“Obj2” and “Obj1” in Fig. 5(a) are corresponded to results 

of the multi-sample objective function and the traditional 

objective function respectively. 

Fig. 5 shows that the damage factor at 17
th

 element is 

obviously greater than that at other elements. It means that 

the damage location can be assessed well. Some error 

identified elements also exist mostly around the 17
th

 

element, such as 16
th

 and 18
th

 elements. The identified 

result for Case 2 is the worst one where elements around the 

3
rd

 element keep a quite high value of damage factor. The 

identified damage at 18
th

 element in Case 1, as shown in 

Fig. 5(a), is smaller than that in Obj1, which means that the 

proposed objective function outperform the traditional one 

in the case of small damage, i.e., 5% stiffness reduced in 

element. After the damage gradually increases, both 

objective functions show their advantage in assessing the 

damage location and extent because effects of stiffness 

change in modal data predominate the noise.  

All the SDD results for multi-damage cases, i.e., Cases 

5 to 8 as listed in Table 1, are shown in Fig. 6. For all the 

multi-damage cases, the multi-sample objective function  
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shows its greater capability of assessing damage than the 

traditional one. The conclusion can be confirmed strongly 

from Case 6, which includes two damages in 8
th

 and 17
th
 

elements respectively. As shown in Fig. 6(b), two evident 

high bars of Obj2 can be recognized at 8
th

 and 17
th

 

elements, which helps to locate damage and their extent. On 

the contrary, there are at least four stable bars in case 6 due 

to Obj1 as in Fig. 6(b), which means two health elements 

are misjudged as damaged elements using traditional 

objective function. However, the results for Case 8 in Fig. 

6(d) provide further evidence that the multi -sample 

objective function is more accurate in quantifying the 

damage extent than that due to the traditional objective 

function. There are four damaged elements with equal 

 

 

 

stiffness reduction in Case 8. The results of Obj2 in Fig. 

6(d) show the characteristic of equal damage extent in 5
th

, 

8
th

, 11
th 

and 17
th

 elements evidently, while that of Obj1 

show damage factors at 5
th

 and 11
th

 elements are obviously 

lower than that at 8
th

 and 17
th

 elements.  

The illustrated SDD results for both single and multiple 

damage cases indicate that the proposed method, using 

multi-sample objective function for optimization, can not 

only locate structural damage effectively but also quantify 

damage extent with an improved higher accuracy. 

For a more specific understanding of the identified 

results, average value and it plus and minus standard 

deviation are plotted in Fig. 7. That short lines upon and 

below bars represent average value plus and minus standard  

  
(a) for Case 1 (b) for Case 2 

  
(c) for Case 3 (d) for Case 4 

Fig. 5 SDD results for all single cases 

  
(a) for Case 5 (b) for Case 6 

  
(c) for Case 7 (d) for Case 8 

Fig. 6 SDD results for multi-damage cases 
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Fig. 7 Average value and average plus and minus standard 

deviation of each cases 

 

 

deviation respectively. Base on average values, same 

conclusions can be also drawn that the multi-sample 

objective function outperform the traditional objective 

function in both locating multi-damage and quantifying 

damage extent. The proposed method can give a more 

reliable identification results than traditional ones. 

 

 

4. Benchmark model verification 
 

In this part, a Benchmark model of four-storey, two-bay 

 

Fig. 8 12-DOF model 

 

 

Fig. 9 120-DOF model 

 

 

by two-bay steel-frame quarter-scale structure proposed by 

IASC-ASCE Structural Health Monitoring Task Groups is 

further utilized to verify the proposed method. The 

Benchmark model was created for side-by-side comparison 

among different monitoring methods numerically and 

experimentally. The properties of structural members can be 

found in detail in paper (Johnson et al. 2004). There are 45 

nodes of the structure model and 9 of them are totally 

constrained on the basement. The columns and floor beams 

are simulated as Euler-Bernoulli beams. Two kinds of 

reduced finite element models are developed to simplify the 

model calculation. The first one is a 12 degree of freedom 

(DOF) model (as seen in Fig. 8 ) which considers each floor 

as a lump mass with 3 DOF, two horizontal translation and 

one rotation. The Second one is a 120-DOF model (as seen 

in Fig. 9 ), assuming nodes at the same floor have the same 

horizontal translation and in-plane rotation, is simulated by 

Euler-Bernoulli beams with 6 DOF at each nodes.  

The symmetric 12-DOF model is applied for verification 

in this paper. Four damage cases and the intact state are 

studied. The damage cases are defined as: 1) remove all 

braces in the first storey; 2) remove all braces in the first 

and the third stories; 3) remove only one brace in the first 

storey which located in the plane y=0 with x coordinate 

ranging from 1.25 to 2.5; 4) remove one brace respectively 

in the first storey and in the third floor, which located in the 

plane y=0 with x coordinate ranging from 1.25 to 2.5. The 

SDD is processed by detecting the stiffness loss of y-

direction. 
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y

 
Fig. 10 Loading and measured diagram (point “●” means 

acceleration measured point and arrow means excitation 

applied point) 

 

 

Fig. 11 PSD of signals at different floor along x and y 

direction 

 

 

The acceleration signals are measured at the node as 

points shown in Fig. 10 and the measured freedoms are all 

along the coordinate direction. Excitations applied at 

different nodes are the independent Gaussian white noise 

with 150N intense. The sample frequency is 200Hz and a 

20s time history signal is recorded. The loading and 

measured diagram are shown detail in Fig. 10. An 

integration method termed fast Nigham-Jennings is used to 

calculate the time history of acceleration responses. 

Damping ratio is assumed as 0.01 in each mode. Noise 

contaminated in the acceleration signals is considered as 

10%.  

As the structure is symmetric and excitations are loaded 

at the symmetry axis, responses of nodes at x=0 and x=2.5 

m at the same floor are identical. The y-direction excitation 

loading at the symmetry axis will only activate responses 

and mode shape along y-direction, which are coincident 

with the PSD results as shown in Fig. 11. Only four peaks 

are observable for the measured calculation responses along 

y-direction, which means that the first four vibration modes 

along y-direction are activated under excitation adapted in 

this paper.  

 

4.1 Modal parameters extraction 

Table 2 Modal data extraction in undamaged case using CP 

Mode 
Frequency/Hz MAC 

True Estimate Error 1 2 3 4 

1 9.29 9.38 0.91% 0.9983 0.0587 0.0130 0.0159 

2 25.27 25.39 0.47% 0.0174 0.9948 0.0598 0.0033 

3 38.26 38.67 1.07% 0.0075 0.0445 0.9984 0.0186 

4 47.75 47.85 0.21% 0.0123 0.0042 0.0185 0.9995 

 

Table 3 Modal data extraction in undamaged case using SSI 

Mode 
Frequency/Hz MAC 

True Estimate Error 1 2 3 4 

1 9.29 9.42 1.38% 0.9983 0.0200 0.0067 0.0125 

2 25.27 25.51 0.93% 0.0265 0.9963 0.0445 0.0034 

3 38.26 38.68 1.11% 0.0103 0.0267 0.9989 0.0178 

4 47.75 48.09 0.70% 0.0056 0.0028 0.0233 0.9998 

 

 

Once the accelerations are measured among different 

nodes, methods should be used to extract modal parameters 

such as natural frequencies and mode shapes. A traditional 

modal extraction method termed covariance-driven 

stochastic subspace identification (SSI-COV) and a novel 

unsupervised learning algorithm Complexity Pursuit (CP) 

algorithm is applied to gather modal data in this study.  

Here, the SSI-COV is an output-only modal analysis 

technique which is widely used to extract modal data from 

ambient vibration responses (Peeters and Roeck 2001). The 

main procedure of SSI-COV contains constructing the 

Toeplitz matrix T1|i and T2|i+1 based on output covariance Ri, 

decomposing T1|i and T2|i+1 based on singular value 

decomposition (SVD) technique and evaluating state 

transition matrix A and output matrix C. Frequencies and 

mode shapes can be recovered from A and C.  

While the CP algorithm was first proposed by Stone 

(2001) to solve blind source separation (BSS) problems and 

was applied to modal identification recently (Yang and 

Nagarajaiah 2013, Yang et al. 2015). The method assumes 

that temporal predictability of a mixed signal is less than 

any component signals contributing to it. Consequently, the 

decoupled modal responses can be recovered from 

structural responses for obtaining modal parameters. 

Both SSI-COV and CP are applied because they 

represent two different ways to extract modal parameters: 

one is covariance-driven technique, the other is BSS-based. 

Modal data extracted from both techniques are imported to 

SDD process to verify availability of the proposed method.  

 

4.2 Undamaged case study  
 

A comparison on true modal data and estimated ones are 

listed in Tables 2 and 3. It can be seen from Tables 2 and 3 

that the highest error of both method is smaller than 1.5% 

from which we can see them the same. 

The MAC between true and estimated mode shapes are 

closed to one at all the diagonal elements but approach to 

zero at all the non-diagonal elements. They indicate that 

both SSI-COV and CP are available to provide accurate 

modal data for SDD. 
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Table 4 Frequencies (Hz) in different cases 

Mode 
Case 1 Case 2 Case 3 Case 4 

CP SSI CP SSI CP SSI CP SSI 

1 6.250 6.2486 5.859 5.8393 8.887 8.8615 8.887 8.8650 

2 21.480 21.5440 14.840 14.8761 24.510 24.5651 24.510 24.5587 

3 37.400 37.4776 36.130 36.1185 38.090 38.2299 38.090 38.2253 

4 47.850 47.8961 41.410 41.3033 47.850 48.0391 47.850 48.0375 

 

 

4.3 Identification of damaged storey stiffness along y-
direction 

 

Originally, more than one modal data sample is required 

for the proposed method in this paper. It is assumed that the 

modal frequencies vary within ±3% of its real value and 

mode shapes vary within ±3% of its entries.  

Natural frequencies estimated by different modal 

identification techniques are shown in Table 4. It can be 

found that frequencies in Cases 3 and 4 are identical. The 

reason is that the brace removed from the structure is along 

x-direction both for Cases 3 and 4, resulting few stiffness 

loss of y-direction. So, in the following discussion, results 

of Case 4 are not involved. 

As shown in Table 5, SDD results, identified by the 

proposed method for each case, are summarized. The term 

“damage” is the average value of fifty independent 

calculation runs. The standard deviation (STD) is also 

estimated to describe the stability of SDD results. The RPE 

values of identified damage extent for Cases 1 and 2 are 

both below 1% while that for Case 3 is a little bit higher. As 

a suitable finite element model (FEM) is always necessary 

to quantify damage extent, biases between the modal data 

estimated by modal identification techniques and by system 

matrix from FEM are unavoidable, but they are quite small 

comparing to the changes of modal data from stiffness loss 

in case of increasing damage extent. The damage extent of 

Case 3 is the smallest; therefore, the identified results for 

Cases 1 and 2 would be more accurate than that for Case 3. 

However, the RPE of Case 3 at 1
st
 floor is close to 10%, 

meaning a reliable precision for engineering program. On 

the other hand, although the damage extent quantification 

for Case 3 is less accurate, damage locations are accurately 

determined. The moderately overestimation of damage 

extent will also help to raise the alarm before serious 

damage emerge. The values of STD as shown in Table 5 

also indicate that SDD results of the proposed method are 

stable under different calculation runs.  

It can be also seen from Table 5 that the identified 

results using modal data extracted by the two methods show 

a little bit difference. As both methods are based on infinite 

time series, impossible for practical engineering project on 

which finite responses time series are available, errors 

emerge when infinite responses time series are replace by 

finite ones. This kind of errors are different from different 

methods and verification can be found in Table 4 that modal 

frequencies are a little bit different. The error described 

above would finally lead to differences in Table 5, but we 

can see them the same as biases between the two methods 

are all below 0.01.  

Table 5 SDD results based on SSI and CP 

Case 
1st floor 2nd floor 3rd floor 4th floor 

Damage STD Damage STD Damage STD Damage STD 

1 

Real 0.7103 - 0 - 0 - 0 - 

SSI 0.7089 
1.57e-

05 
-0.0005 

3.19e-

03 
0.0000 

5.03e-

12 
0.0000 

2.09e-

11 

CP 0.7091 
1.19e-

05 
0.0000 

1.64e-

18 
0.0000 

1.18e-

11 
0.0000 

1.38e-

11 

2 

Real 0.7103 - 0 - 0.7103 - 0 - 

SSI 0.7072 
1.59e-

04 
-0.0002 

8.03e-

04 
0.7122 

2.48e-

04 
0.0000 

1.14e-

04 

CP 0.7036 
4.78e-

04 
0.0001 

4.03e-

04 
0.7152 

2.13e-

04 
0.0000 

2.59e-

11 

3 

Real 0.1776 - 0 - 0 - 0 - 

SSI 0.2006 
1.18e-

05 
0.0000 

5.22e-

26 
0.0000 

1.67e-

11 
0.0000 

7.48e-

12 

CP 0.1957 
2.95e-

03 
0.0077 

9.36e-

03 
0.0004 

1.32e-

03 
0.0059 

7.49e-

03 

 

 

Consequently, SDD results on the ASCE 4-storey 

benchmark frame structure indicates that the proposed 

method is also applicative while modal data are extracted 

from different kinds of modal identification techniques and 

provides a more accuracy solution with great stability. 

 

 

5. Conclusions 
 

This study makes a trail of combining PSO-based 

algorithm with Bayesian inference and proposes a method 

that applies PSO-improved Nelder-Mead method (PSO-

INM) to solve optimal problem on Bayesian multi-sample 

objective function of structural damage detection (SDD). 

Comparative studies between the proposed multi-sample 

objective function and the traditional one have been 

conducted in this paper, which indicate advantages of the 

multi-sample objective function. SDD numerical 

simulations on a two-storey rigid frame structure show that 

the proposed method can not only locate the structural 

damages effectively but also quantify the damage extents 

with an improved higher accuracy. The SDD results on the 

ASCE 4-storey benchmark frame structure further show 

availability of the proposed method for SDD program 

whose modal data are extracted from structural acceleration 

responses. Conclusions can be summarized detail as 

follows: 

1) The proposed SDD method avoid excessively bias of 

minimum point of objective function which provide more 

stable identified results under difference independent runs. 

It helps to improve the accuracy of PSO-based algorithm 

because the optimum of multi-sample objective function is 

closer to the actual damage cases. The adverse effect of 

noise can be greatly reduced if the multi-sample objective 

function is applied. 

2) The proposed method provides a satisfactory 

precision and stable identification for such SDD 

engineering programs whose modal parameters are 

extracted from different kinds of modal identification 

methods, i.e., the covariance-driven stochastic subspace 

identification (SSI-COV) method and the Complexity 
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Pursuit (CP) algorithm respectively.   
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