
Structural Engineering and Mechanics, Vol. 63, No. 6 (2017) 809-824 

DOI: https://doi.org/10.12989/sem.2017.63.6.809                                                                 809 

Copyright ©  2017 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction 
 

Recently, a considerable number of large-scale landmark 

bridges have been built in China. As the bridge span 

increases, the sensitivity of long-span bridges to random 

wind excitations will be significant (Ge and Xiang 2008, Li 

et al. 2008, Cheng and Li 2009, Cai et al. 2015). In 1940, 

the Tacoma Narrows Bridge was destroyed by the wind-

induced flutter and this accident made the government and 

researchers aware of the wind effects on bridges. Thus, the 

acquaintance of the structural behaviors of bridges in the 

extreme environments should be of prime importance in the 

stages of structural design and condition assessment, 

especially for the long-span bridges located in the areas 

influenced by typhoons. Up to now, some studies were 

carried out to evaluate the wind- induced fatigue damage of 

bridges considering the typhoon effect (Gu et al. 1999, Xu 

et al. 2009). There is no doubt that field measurement/ 

monitoring of wind characteristics around the bridge can 
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provide the most realistic and effective information for 

 

accurate evaluation of the wind-induced structural 

responses under the extreme environment (Li et al. 2002). 

However, because of the insufficiency of reliable in-situ 

wind data, most previous investigations still employ the 

wind data measured by the meteorological observatory 

away from the bridge site. 

In the past three decades, the structural health 

monitoring (SHM) technology has gained increasingly 

attentions from the civil engineering community. Many 

SHM systems have been designed and implemented on 

large-scale bridges to continuously monitor the real-time 

environmental and traffic excitations as well as the 

structural responses (Ni et al. 2010, Lei et al. 2012, Ni et al. 

2012, Ye et al. 2012, Ye et al. 2013, Ye et al. 2014, Lei et 

al. 2015, Ye et al. 2015, Ding et al. 2016, Ye et al. 2016a, b, 

c, d, Ding et al. 2017). Since the wind characteristics are 

closely associated with the local geography and climate, the 

field wind monitoring data obtained from the SHM system 

instrumented on the bridge are capable of offering crucial 

information for the examination of the wind-induced 

structural vibration and safety status. In recent years, many 

investigators have conducted the research of data-driven 

structural integrity, durability and reliability analysis using 

the long-term monitoring data of wind loads and wind 

effects (Xu et al. 2000). For instance, Bietry et al. (1995) 
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induced acceleration of the Saint-Nazaire cable-stayed 

bridge. Comanducci et al. (2015) addressed the use of 

natural frequency tracking and tools of multivariate 

statistical analysis for monitoring the structural condition of 

a suspension bridge under changing wind speed. In 

addition, some researchers investigated the nonstationary 

characteristics of wind records during typhoon events (Xu 

and Chen 2004). 

It has been a hot research issue to predict the 

aerodynamic characteristics of the bridge under the action 

of wind loading, and the prerequisite for fulfilling this task 

is to accurately represent the stochastic wind characteristics, 

i.e., wind speed and wind direction, at the bridge site. It is 

not easy to solve because the wind speeds at different 

directions are varying and the wind speed is mutually 

related with the wind direction. As a consequence, it is 

favorable to characterize the wind characteristics from a 

probabilistic perspective (Li et al. 2013, Yan et al. 2013). 

Research efforts have been devoted to modeling of wind 

characteristics using the probability density function (PDF) 

of the wind speed and wind direction (Qu and Shi 2010, 

Alduse et al. 2015). A pioneering work is carried out by 

Johnson and Wehrly (1978), who proposed a method to 

produce the angular-linear distributions with each marginal 

distribution of the wind speed and wind direction. Carta et 

al. (2008a) presented a joint PDF by using angular-linear 

approach for wind energy analysis. Coles and Walshaw 

(1994) taken account of the directional behavior of the wind 

and constructed the joint probability distribution model of 

extreme wind speed and direction which includes the 

correlation of speed and direction. Ge and Xiang (2002) 

built the probability distribution model of extreme values 

and statistically analyzed the joint distribution of wind 

speed and corresponding direction. Qu and Shi (2010) 

adopted the Farlie-Gumbel-Morgenstern approach to 

construct the joint distribution function based on the 

univariate cumulative distribution function (CDF). Erdem 

and Shi (2011) presented a study of three bivariate 

distribution construction approaches and compare them by 

using the adjusted R
2
 and root mean square error (RMSE). 

This study presents the analysis and probabilistic 

modeling of wind characteristics during typhoons by use of 

the long-term wind monitoring data acquired by the 

anemometers installed on the arch Jiubao Bridge located in 

Hangzhou, China. This bridge has been instrumented with a 

long-term SHM system including three anemometers for 

wind loading monitoring. In this study, the monitoring data 

of three typhoons in 2015, i.e., Typhoon Chan-hom, 

Typhoon Soudelor and Typhoon Goni are employed to 

analyze the wind characteristics including the average wind 

speed and direction, wind rose diagram, wind turbulence 

intensity, gust factor, turbulence integral scale, and power 

density spectra of fluctuating wind speed. Moreover, in 

order to precisely describe the distribution characteristics of 

typhoon wind field, the angular-linear approach is applied 

to formulate the joint distribution of wind speed and 

direction with specified marginal distributions. For the 

marginal distribution of wind direction, the mixture of von 

Mises distribution is used to characterize the marginal 

distribution of wind direction due to its multimodal feature, 

and the mixture of Weibull distribution is used to represent 

the marginal distribution of wind speed. Furthermore, the 

model parameters are estimated by use of the expectation 

maximization (EM) algorithm and the choice of the optimal 

distribution model is judged by the values of R
2
 statistic and 

Akaike’s information criterion (AIC). 

 

 

2. Long-term SHM system and wind monitoring data 
during typhoons 
 

2.1 Description of Jiubao Bridge 
 

The Jiubao Bridge, as illustrated in Fig. 1, is a long-span 

continuous steel-concrete composite arch bridge located in 

Hangzhou, China. Its total length is 1,855 m with a main 

span of 630 m (3×210 m). The girder and arch combination 

structure is employed in the main span of the bridge which 

contains three spans of the steel arch composite structure. 

The south approach spans (90 m+9×58 m+55 m) and the 

north approach spans (55 m+2×58 m+90 m) are made up of 

continuous constant cross-sectional reinforced concrete box 

girders. Fig. 2 shows the geographic location of the Jiubao 

Bridge (Google Maps 2016). It can be seen from Fig. 2 that 

the bridge serves as an important transportation hub 

crossing the Qiantang River and connects Xiaoshan and 

Jianggan districts of Hangzhou city from south to north. 

The bridge was opened to traffic in July 2012 and the 

design velocity of the vehicle is set to be 80 km/h. 

According to the meteorological survey, the climate of 

the bridge site belongs to a humid subtropical climate with 

four distinctive seasons. More specifically, it experiences a 

long, very hot and humid summer and a chilly, cloudy and 

drier winter. In the summer, the bridge is usually suffered  

 

 

 

Fig. 1 Jiubao Bridge 

 

 

Fig. 2 Location of Jiubao Bridge (Google Maps 2016) 
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from several typhoon storms, while these typhoons seldom 

attack the bridge site directly. In general, they make landfall 

along the southern coast of Zhejiang Province and affect the 

bridge site with strong wind and heavy rainfall. For the sake 

of recognizing the dynamic behaviors and performances of 

the bridge in a strong wind environment, it is necessary to 

comprehensively examine the wind characteristics during 

typhoons to facilitate the analysis and computation of wind-

resistant stability of the bridge. 

 

2.2 SHM system and layout of anemometers 
 

In order to assure the safety of the Jiubao Bridge, an 

SHM system has been installed on the bridge to monitor the 

integrity, durability and reliability of the bridge during the 

operation period. The system includes a total of 331 sensors 

divided into nine groups, namely anemometers, 

environmental temperature sensors, weigh-in-motion 

(WIM) sensors, vibration sensors, structural temperature 

sensors, strain gauges, level sensors, displacement sensors 

and cable tension sensors. These sensors are permanently 

deployed on the bridge and continuously collect the 

monitoring data reflecting the bridge health and safety 

condition. 

The wind speed and wind direction data were 

simultaneously and continuously collected by two kinds of 

anemometers installed on the Jiubao Bridge. These 

anemometers include two mechanical anemometers and one 

ultrasonic anemometer. As illustrated in Fig. 3, two 

mechanical anemometers, named ANE_L4 and ANE_L35, 

were installed on the north side and south side of the main 

span deck respectively, and an ultrasonic anemometer, 

named UAN_L6, was installed on the north side of the 

br idge.  All  of these anemometers are deployed 

approximately 6 m high above the level of the bridge deck. 

The sampling frequency of the ultrasonic anemometer is set 

as 4 Hz and the sampling frequency of the mechanical 

anemometer is set as 0.1 Hz. The ultrasonic anemometer is 

able to detect the wind speed ranging from 0 to 60 m/s with 

an error within 0.01 m/s and the wind direction ranging 

from 0 to 360º with an error within 0.1º; while the 

mechanical anemometer can measure the wind speed 

 

 

ranging from 0 to 45 m/s with an error within 0.1 m/s and 

the wind direction ranging from 0 to 360º with an error 

within 0.1º. The wind direction angle 0º denotes north and 

90º denotes east, rotating in a clockwise direction. 

 

2.3 Monitoring data during three recorded typhoons 
 

In this study, the wind monitoring data during three 

typhoons in 2015, i.e., Typhoon Chan-hom, Typhoon 

Soudelor and Typhoon Goni are extracted from the data 

management center of the instrumented long-term SHM 

system for further analysis. Typhoon Chan-hom is a large 

and long-lived tropical cyclone that affected most countries 

in the western Pacific basin. It was developed on 29 June 

2015 from a westerly wind burst and moved to the 

northwest. Late from 9 July 2015 to 10 July 2015, it passed 

Okinawa and reached its peak wind speed of 165 km/h. It 

became the strongest typhoon to make landfall in Zhejiang 

Province at 16:40 on 11 July 2015 with an estimated wind 

speed of 150 km/h. Finally, it struck the North Korea and 

became an extratropical cyclone shortly thereafter. Fig. 4 

illustrates the track of Typhoon Chan-hom (Japan 

Meteorological Agency 2015) and the location of Jiubao 

Bridge. As a typical wind data sample, Fig. 5 shows the 

measured wind data recorded by the ultrasonic anemometer 

UAN_L6 on 11 July 2015 during Typhoon Chan-hom. 

Typhoon Soudelor is the strongest tropical cyclone of 

the Pacific typhoon season in 2015 and was formed as a 

tropical depression near Pohnpei on 29 July 2015. Then, it 

was further deepened and reached its peak intensity with a 

10-minute maximum sustained wind speed of 215 km/h on 

3 August 2015. On 7 August 2015, it was intensified to 

reach a secondary peak and later that day, it made landfall 

over Xiulin, Hualien in Taiwan at 04:40 on 8 August 2015. 

Around 22:10 on the same day, it made landfall over Putian, 

Fujian in China and the strongest gust was 191 km/h. The 

gale-force winds were extended into Jiangxi and Zhejiang 

provinces and affected wide areas of East China. Fig. 6 

shows the historical route of Typhoon Soudelor (Japan 

Meteorological Agency 2015) and the location of Jiubao 

Bridge. Fig. 7 illustrates the recorded wind data measured 

by the ultrasonic anemometer UAN_L6 on 9 August 2015  
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Fig. 3 Layout of anemometers on Jiubao Bridge 
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Fig. 4 Track of Typhoon Chan-hom (Japan Meteorological 

Agency 2015) 

 

 
(a) Wind speed time histories 

 
(b) Wind direction time histories 

Fig. 5 Measured wind data of Typhoon Chan-hom 

 

 

Fig. 6 Track of Typhoon Soudelor (Japan Meteorological 

Agency 2015) 

 

 

during Typhoon Soudelor. 

Typhoon Goni is a strong tropical cyclone that impacted 

many countries during late August 2015 and was intensified 

into a tropical depression on 13 August 2015. In the night of 

15 August 2015, the Japan Meteorological Agency 

upgraded Goni to a severe tropical storm, and by the next 

day, it was intensified into a typhoon. Early on 17 August 

2015, it was underwent rapid intensification and upgraded 

rapidly to a Category 4 typhoon and reached its first peak 

intensity. It quickly passed through Uki, Kumamoto after 

20:00 and made landfall over Arao, Kumamoto after 21:00 

on 24 August 2015. Then, it moved northeast and was 

transitioned into an extratropical cyclone and later affected 

Northeast China. Fig. 8 shows the historical track of the 

Typhoon Goni (Japan Meteorological Agency 2015) and the 

 
(a) Wind speed time histories 

 
(b) Wind direction time histories 

Fig. 7 Measured wind data of Typhoon Soudelor 

 

 

Fig. 8 Track of Typhoon Goni (Japan Meteorological 

Agency 2015) 

 

 
(a) Wind speed time histories 

 
(b) Wind direction time histories 

Fig. 9 Measured wind data of Typhoon Goni 

 

 

location of Jiubao Bridge. The wind data measured by the 

ultrasonic anemometer UAN_L6 during the period from 

03:00 to 21:00 on 24 August 2015 during Typhoon Goni is 

illustrated in Fig. 9. 

 

 

3. Analysis of wind characteristics during typhoons 
 

3.1 Average wind speed and direction 
 

In this section, the wind monitoring data recorded by the 

two anemometers, i.e., ultrasonic anemometer UAN_L6 and 

mechanical anemometer ANE_L35, are used to analyze the 

average wind characteristics and turbulence wind 

characteristics. The measured wind data includes the wind  
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speed v(t) and the horizontal wind direction θ(t). In the 

analysis of the average wind, the basic interval for the 

average wind speed is 10 minutes. The average horizontal 

wind speed U and average wind direction ϕ in the 10-min 

interval are calculated by (Chen et al. 2013) 

22

yx uuU   (1) 

U

uxcos  (2) 

where ūx and ūy are the mean value of the wind speed time 

series ux(t) and uy(t), respectively. In the 10-min interval, 

the fluctuating longitudinal wind speed ux(t) and the 

fluctuating lateral wind speed uy(t) can be determined by 

Utututu yx   )sin()cos()(  (3) 

 )cos()sin()( tututv yx   (4) 

The average wind speed and direction time histories 

(from 7 August 2015 to 10 August 2015) of Typhoon 

Soudelor for these two anemometers (UAN_L6 and 

ANE_L35) are illustrated in Fig. 10(a) and Fig. 10(b), 

respectively. It is observed from Fig. 10(a) and Fig. 10(b) 

that the characteristics of the mean wind speed and 

direction for these two kinds of anemometers are very 

similar. Fig. 10(a) shows that the 10-min average wind 

speeds during Typhoon Soudelor at the bridge site are 

ranged from 5 m/s to 15 m/s. The maximum 10-min 

average wind speeds measured by the mechanical 

anemometer and the ultrasonic anemometer are 13.82 m/s 

and 12.59 m/s, respectively. As illustrated in Fig 10(b), the 

wind direction time series indicate that the mean wind 

directions during Typhoon Soudelor are relatively steady 

ranging from 100º to 150º. The wind rose diagrams of 

average wind direction and the maximum mean wind speed 

in sixteen directions during Typhoon Soudelor are shown in 

Fig. 11. It can be found from Fig. 11 that the strong wind 

recorded by the ultrasonic anemometer (UAN_L6) is 
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(b) Maximum average wind speed 

Fig. 11 Wind rose diagram of Typhoon Soudelor 

 

 

predominantly sourced from Southeast direction, and the 

maximum 10-min average wind speed reaches 12.59 m/s 

with the wind direction being SE. 

 
3.2 Turbulence intensity and gust factor 

 

The turbulence intensity is one of the most important 

components which can reflect the turbulence characteristic 

of the strong wind. After calculating the fluctuating wind 

speed and the average wind speed, the turbulence intensity  

 
(a) Time histories of average wind speed 

 
(b) Time histories of average wind direction 

Fig. 10 Average wind speed and direction data of Typhoon Soudelor 
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Ii (i=u,v) and the gust factor Gi (i=u,v) in the longitudinal 

and lateral directions can be defined as: 

),( vui
U

I i
i 


 (5) 

U

u
G gt

u

)max(
1  (6) 

U

v
G gt

v

)max(
  (7) 

where σu and σv are the root mean square (RMS) values of 

the turbulence component in the longitudinal and lateral 

directions, respectively; and U is the 10-min mean wind 

speed in the longitudinal direction. In this study, we choose 

tg=3 s as the duration of the gust wind; ūx(tg) and ūy(tg) are 

the longitudinal and lateral average wind speeds within the 

3 s interval, respectively. 

 

 

Fig. 12 shows the variations of the turbulence intensities 

in the longitudinal and lateral directions in the 10-min 

interval, measured by the two anemometers (UAN_L6 and 

ANE_L35) during Typhoon Goni. It is observed from Fig. 

12 that the values of the turbulence intensities measured by 

the two anemometers (UAN_L6 and ANE_L35) are varied 

with time with a similar tendency and reach a peak value 

around 15:00 on 24 August 2015. The average values of the 

longitudinal and lateral turbulence intensities of Typhoon 

Goni are 0.397 and 0.291, respectively, and the maximum 

values are 0.789 and 0.786, respectively. Fig. 13 

demonstrates the relationship between the average wind 

speed and the turbulence intensity, measured by the 

ultrasonic anemometer UAN_L6 during Typhoon Chan-

hom. It is obviously seen from Fig. 13 that the turbulence 

intensity is decreased with the increase of the average wind  

speed. Furthermore, the 10-min turbulence intensities 

during three typhoons are also calculated and used to 

facilitate the comparative study. Table 1 and Table 2 give  
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(b) Lateral direction 

Fig. 12 Turbulence intensity of Typhoon Goni 
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(b) Lateral direction 

Fig. 13 Relationship between mean speed and turbulence intensity during Typhoon Chan-hom 
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Table 1 Maximum values of turbulence intensity during 

three typhoons 

Typhoon Longitudinal Iu Lateral Iv 

Typhoon Chan-hom 0.7418 0.9844 

Typhoon Soudelor 0.4019 0.2401 

Typhoon Goni 0.7890 0.7868 

 

Table 2 Mean values of turbulence intensity during three 

typhoons  

Typhoon Longitudinal Īu Lateral Īv Īv/Īu 

Typhoon Chan-hom 0.3628 0.2719 0.74945 

Typhoon Soudelor 0.1397 0.1309 0.93682 

Typhoon Goni 0.3965 0.2918 0.74359 

 

 

the maximum and mean values of the turbulence intensity. 

The mean turbulence intensity of Typhoon Goni is larger 

than others in both the longitudinal and lateral directions. 

Fig. 14 presents the values of the longitudinal and lateral 

gust factors in the 10-min interval, measured by the 

ultrasonic anemometers UAN_L6 during Typhoon 

Soudelor. The average values of the longitudinal and lateral 

gust factors are 1.184 and 0.198, respectively. The ratio of 

the gust factors of the two components is Gu:Gv=1:0.167. 

 
3.3 Turbulence integral scale 

 

Based on the derived wind speed and direction in the 

10-min interval, the turbulence integral scale can be 

calculated by use of the auto-correlation function integral 

method as expressed by (Simiu and Scanlan 1996) 

),()(
02

vuidR
U

L i

i

x

i  





 (8) 

where U is the average wind speed; σi is the standard 

deviation of the turbulent components; and Ri(τ) represents 

the auto-correlation function of the fluctuating wind. 

The mean values of the 10-min turbulence integral scale 

 

Table 3 Mean values of 10-min turbulence integral scale of 

three typhoons (m) 

Typhoon 
Typhoon 

Chan-hom 

Typhoon 

Soudelor 

Typhoon 

Goni 

Along-wind (Lu) 89.2908 206.7202 58.1865 

Across-wind (Lv) 46.6108 124.8991 37.6344 

 

 

during three typhoons are shown in Table 3. Taking 

Typhoon Soudelor as an example, the turbulence integral 

scales of the fluctuating wind are 206.72 m and 124.90 m in 

the along-wind and cross-wind directions, respectively. 

However, the turbulence integral scales of Typhoon Chan-

hom and Typhoon Goni are far less than that of Typhoon 

Soudelor. Because the mean wind speeds of Typhoon Chan-

hom and Typhoon Goni are much smaller than that of 

Typhoon Soudelor. Fig. 15 shows the histograms of 10-min 

turbulence integral scale of Typhoon Soudelor. It can be 

found from Fig. 15 that the along-wind turbulence integral 

scales are mostly distributed in the range from 50 m to 300 

m and the most proportion of the turbulence integral scale is 

around 110 m. With respect to the across-wind turbulence 

integral scales, the concentration domain is ranged from 50 

m to 100 m and the peak area is located around 70 m. 

 
3.4 Power spectral density 

 

The energy distribution of the fluctuating wind can be 

expressed in the form of the power spectral density (PSD). 

In this study, several along-wind spectra including Karman 

spectrum (Von Karman 1948), Kaimal spectrum (Kaimal et 

al. 1972), and Teunissen spectrum (Teunissen 1980) are 

adopted to compare the PSD of turbulence in the along-

wind direction. These spectra are defined as: 

Karman spectrum 
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(b) Lateral direction 

Fig. 14 Gust factor during Typhoon Soudelor 
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Table 4 Values of fiction wind speed 

Typhoon 
Typhoon 

Chan-hom 

Typhoon 

Soudelor 

Typhoon 

Goni 

u* 0.6248 0.2346 0.6545 

 

 
2*2 )(uu    (11) 

Kaimal spectrum 

352* )501(

200

)(

),(

f

f

u

nZnSu


  (12) 

UnZf   (13) 

Teunissen spectrum 

352* )3344.0(

105

)(

),(

f

f

u

nZnSu


  (14) 

UnZf   (15) 

where Su is the PSD of along-wind turbulence; n is the 

natural frequency of the fluctuating wind; Z is the altitude 

of the wind speed; U is the mean speed at the standard 

height; β is the coefficient of the friction wind speed; σu is 

the standard deviation of the fluctuating wind speed; and u
*
 

is the friction wind speed which can be calculated by the 

energy unitary method (Simiu and Scanlan 1996) as 

expressed by 

6/)( 22*

uu   (16) 

Table 4 lists the friction wind speed values of three 

typhoons which are different from each other. The friction 

wind speed value of Typhoon Chan-hon is similar to that of 

Typhoon Goni. 

The PSD of the wind speed is one of the significant 

factors which affect the wind-induced dynamic responses of 

long-span bridges, thus it is essential to analyze the PSD 

function based on the measured wind data. Fig. 16 

illustrates a comparison of the measured along-wind 

turbulence PSD with three typical PSDs of three typhoons. 

It can be seen from Fig. 16 that the measured along-wind 

turbulence power densities are basically matched with the 

selected PSDs. In order to evaluate the matching degree of 
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(a) Typhoon Chan-hom 
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(b) Typhoon Soudelor 
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(c) Typhoon Goni 

Fig. 16 Along-wind PSD of turbulence during three 

typhoons 

 

Table 5 RMS value of selected PSD to measured PSD 

Typhoon 
Karman 

spectrum 

Kaimal 

spectrum 

Teunsissen 

spectrum 

Typhoon Chan-hom 1.65785 0.92074 3.06191 

Typhoon Soudelor 0.62854 0.64010 0.29590 

Typhoon Goni 1.51966 1.462055 4.37309 

 

 

each selected PSD to the measured PSD of three typhoons, 

the RMS values are calculated and listed in Table 5. From 

Table 5, it can be found that Kaimal spectrum matches well 

with the measured spectra of Typhoon Chan-hom and 
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(a) Along-wind (b) Across-wind 

Fig. 15 Histograms of turbulence integral scale 
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Typhoon Goni, and Teunsissen spectrum matches well with 

the measured spectrum of Typhoon Soudelor. However, 

there still has a deviation between the selected spectra and 

the measured spectrum. Taking Typhoon Soudelor as an 

example, Teunsissen spectrum matches quite well with the 

measured spectrum but the range between 0.01 Hz~0.4 Hz 

of the measured PSD is overestimated. Both Karman 

spectrum and Kaimal spectrum underestimate the PSD of 

turbulence in the low-frequency region and overestimate 

that in the middle region. In the case of Typhoon Chan-

hom, the selected PSDs fit well with the measured PSD in 

the range of low frequency but have a fluctuation in the 

range of high frequency. As for Typhoon Goni, the 

measured PSD is overestimated by all the selected PSDs in 

the low frequency region, while the measured PSD is higher 

than all selected PSD in the high-frequency ranging from 

0.7 Hz to 2 Hz. 

 
 
4. Probabilistic modeling of wind speed and 
direction 
 

4.1 Angular-linear model 
 

There are several major approaches for the construction 

of bivariate distribution. One of these approaches to 

construct the joint distribution function is based on the 

univariate PDF, such as the isotropic Gaussian model 

(McWilliams et al. 1979), anisotropic Gaussian model 

(Weber 1991), Farlie-Gumbel-Morgenstern model (Johnson 

and Kotz 1975), and angular-linear model (Johnson and 

Wehrly 1978). In the study, the angular-linear model is 

adopted to establish the joint probability distribution of the 

wind speed and direction. 

As the name implies, the angular-linear model is used to 

construct the joint distribution of bivariate random variables 

when one variable is directional and the other is scalar. The 

PDF of the angular-linear model is defined as 

)()()(2)( 21 xffgθ,xf   (17) 

where f(θ,x) represents the joint probability distribution of 

the wind speed and direction; f1(θ) denotes the PDF of the 

wind direction; f2(x) is the PDF of the wind speed; and g() 

is the PDF of the circular variable δ, defined as 

)]()([2 21 xFF    (18) 

where F1(θ) and F2(x) represent the CDF of the wind 

direction and wind speed, respectively. 

To construct the joint bivariate distribution of the wind 

speed and direction by use of the angular-linear approach, 

the univariate marginal distributions of the wind speed and 

direction should be determined. In the literatures, several 

distributions were used to model the wind speed, including 

Weibull distribution, Frechet distribution, and Gumbel 

distribution. In this study, a two-parameter Weibull 

distribution is selected to model the wind speed (Seguro and 

Lambert 2000), which is defined as 

0,0,0,)exp(),;(
1




ckx
c

x

c

x
kkcxf k

k

k

 (19) 

or 

0,0,0],)(exp[1),;(  ckx
c

x
kcxF k  (20) 

where f(x;c,k) and F(x;c,k) represent the PDF and CDF, 

respectively; and the two key parameters are: k>0, the 

shape parameter, and c>0, the scale parameter of the 

distribution. 

For the PDF of the wind direction, the mixture of von 

Mises distribution is chosen (Carta et al. 2008b), which is 

the most useful continuous probability distribution on the 

circle for statistical analysis of angular data. The von Mises 

probability distribution for the angle θ is given by 

π20)],cos(exp[
)(π2

1
),;(

0

 θμθκ
κI

κμθf  (21) 

or 





0

),;(),;( fF  (22) 

where f(θ;μ,κ) and F(θ;μ,κ) represent the PDF and CDF, 

respectively; the parameter μ is a measure of the location 

which means that the distribution is symmetrically 

distributed around μ; and the parameter κ is a measure of 

concentration. Here, I0(k) is the modified Bessel function of 

order zero, which is expressed by 

k

k k
kI

2

0
20 )

2
(

)!(

1
)( 






  (23) 

After obtaining the univariate marginal distributions of 

the wind speed and direction, the circular variable δ can be 

calculated by Eq. (18). A mixture of von Mises distribution 

is chosen to construct the distribution of circular variable δ. 

The parameter estimation of these three univariate marginal 

distributions will be described in the following section. 

 
4.2 Parameter estimation 
 

In this study, the EM algorithm is used to estimate the 

unknown parameters wi, ki, ci (i=1,…,n) in the mixture of 

Weibull distribution and wi, μi, κi (i=1,…,n) in the mixture 

of von Mises distribution. Since the finite mixture 

distribution model includes the latent variable, specifying 

the weight of each component of the mixture model, the 

EM algorithm is a useful tool for finding the maximum 

likelihood estimation of the mixture parameters (McLachlan 

and Basford 1998). 

The EM algorithm, which is a method to find a locally 

maximum likelihood from the incomplete data, can be 

applied to find the maximum likelihood parameters of a 

statistical model in the case where the equations cannot be 

solved directly. The EM algorithm estimates the parameters 

by a way to solve two sets of equations numerically namely 

E-step and M-step. For example, given the statistical model 

which generates a set x of observed data, a set of latent data 

Z, and a vector of unknown parameters θ, the flowchart of 

the EM algorithm is shown in Fig. 17, and the EM 

algorithm estimate the parameters by the following two 

steps: 
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Initialize  parameters θ0

E–step:
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M–step:

Compute θ= argmax Q(θ0|θn)
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Fig. 17 Flowchart of EM method 

 

 

(1) Expectation step (E-step): compute the conditional 

expectation value of the logarithm likelihood function 

],),([log)( )()( tt pEQ θxθxZθθ   (24) 

(2) Maximization step (M-step) 

)(maxarg )(

θ

)1( tt Q θθθ   (25) 

As for the wind speed distribution, the mixture of 

Weibull distribution can be expressed by 


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where wk, kk, ck are the weight and parameters of the 

Weibull distribution. The detailed procedure about the 

parameter estimation of the wind speed distribution by the 

EM algorithm is described as follows: 

(1) Initialize the parameters wk
0
, kk

0
, ck

0
 (k=1,…, K) in 

the mixture of Weibull distribution randomly; 

(2) Expectation step: the responsibility γik of the 

component k for the wind speed sample xi can be estimated 

using the current parameter values as expressed 
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(27) 

(3) Maximization step: the new values of parameters wk, 

kk, ck are calculated by 
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(28) 

The values of kk are given as the roots of the function 
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As for the wind direction distribution, the mixture of 

von Mises distribution can be expressed by 



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K
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kk
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k
kkk x

I

w
wf

1 0

)]cos(exp[
)(π2

),,;( 


  (31) 

where wk, μk, κk are the weight and parameters of the von 

Mises distribution. Presented in the following is the 

framework for estimating the parameters of the wind 

direction distribution by the EM algorithm which is derived 

in Calderara et al. (2011) and the method to determine the 

initial parameters wk
0
, μk

0
, κk

0
 as addressed in 

Heckenbergerova et al. (2015). 

(1) Initial step: in order to obtain the initial values, the 

entire wind direction range is divided into K parts, and the 

initial weight for each interval wk
0
 (k=1,…, K) is given by 

relative observation data. 

n

X
w

Ui

L i

k
i


0  (32) 

where Li and Ui are the boundaries of the i
th

 interval; and n 

is the total number of data. 

The concentration parameters μk
0
 are estimated by: 
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where 
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c
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,
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The initial values of the concentration parameters κk
0
 are 

evaluated as the roots of the function 

22

0

0

0

1
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k
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I

I
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

  (35) 

(2) Expectation step: the responsibility γik of the 

component k for the wind direction sample θi can be 

estimated using the parameter values of the previous 
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iteration as expressed by 
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(3) Maximization step: the M step calculates the new 

values of the mixture parameters w={w1,…,wK}, 

κ={κ1,…,κK}, μ={μ1,…,μK}. They can be estimated for each 

component k by 
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The values of κk are given as roots of function 
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The Expectation step and Maximization step are iterated 

until the convergence (reached when the likelihood change 

in the limit range between two consecutive iterations) or 

reach a given number of iterations. 

 
4.3 Selection of optimal model 

 

To evaluate if the wind data measured during typhoons 

match the selected statistical distribution models, the 

candidate distribution models with different components 

need to be compared and then selected based on the fit 

performance. In this study, the R
2
 statistic and the AIC 

value as the fitness performance to select the optimal 

distribution model are used. 

The AIC value is first announced by Akaike in 1974 and 

is a measure of the relative quality of statistical models for a 

set of data (Akaike 1974). The AIC value aims to measure 

the goodness of fit based on the likelihood function. The 

AIC value of the model is expressed by 

)ln(22AIC Lk   (40) 

where L is the value of the maximum likelihood function of 

the model; and k is a penalty which is the number of 

estimated parameters in the model. This penalty discourages 

overfitting and increases the value of AIC with the increase 

of estimated parameter number. It can be found that the 

lower AIC value is, the better model is. 

In statistics, the coefficient of determination denoted R
2
 

improves a measure of how well the observed outcomes are 

replicated by the distribution model. R
2
 statistic is a special 

bin test and it focuses on measuring the fit performance 

between the expected and observed frequencies of the bins. 

The most general definition of the R
2
 statistic is expressed 

as 

tot

res

SS

SS
R -12   

(41) 

The term SStot denotes the total sum of squares which 

shows the proportional to the variance of the data. It is 

defined as the sum of the squared differences between the 

observed and average frequency of all bins. 

2
)( 

i

itot yySS  
(42) 

The term SSres denotes the sum of squares of residuals 

which reflects the total discrepancy between the observed 

data and the estimation model. 

 
i

i

i

iires efySS 22
)(  

(43) 

It is obvious that the value of R
2
 statistic is between zero 

and one, and the higher R
2
 value is, the more likely the 

measured data match the distribution model. 

 
4.4 Application to Jiubao Bridge 

 

In order to demonstrate the effectiveness of the above-

mentioned procedure in bivariate modeling, the wind 

monitoring data of the Jiubao Bridge during typhoons are 

employed for the construction of the joint distribution of the 

wind speed and direction. In consideration of the effect of 

heavy rain on the normality of the ultrasonic anemometer 

during typhoons, the wind data measured by the mechanical 

anemometer ANE_L4 are chosen for further analysis. 

As described in the previous section, the angular-linear 

joint distribution model depends on the construction of 
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(b) Histogram and PDF of wind speed 

Fig. 18 Distribution model of wind speed 
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(b) Histogram and PDF of wind speed 

Fig. 19 Distribution model of wind direction 

 

 

three univariate distribution models, i.e., the wind speed 

distribution model, the wind direction distribution model, 

and the circular variable distribution model. Thus, the first 

step is to construct the univariate distribution of the wind 

speed and direction and estimate the parameters of each 

distribution by the EM method. The next step is to calculate 

the circular variable and construct the distribution of the 

circular variable. For each univariate distribution model, the 

AIC and R
2
 are used to evaluate the fitness performance of 

each model and choose the optimal model. After that, the 

joint PDF of the wind speed and direction can be obtained. 

In this study, the Weibull distribution is chosen for the 

construction of the wind speed model and the EM method is 

adopted to estimate the parameters of the model, i.e., wi, ki 

and ci. For this purpose, the wind speed spectrum ranging 

from 0 m/s to 20 m/s is divided into 40 bins with an equal 

width, and the corresponding probability densities are 

calculated. Based on these probability densities, the 

parameters of the wind speed mode with different 

components are estimated. Fig. 18 shows the values of AIC 

and R
2
 with different numbers of components of the wind 

speed. It is obviously observed from Fig. 18 that, for the 

wind speed data, the values of AIC and R
2
 become stable 

from three components. This means that a mixture Weibull 

distribution with three components is sufficient to model the 

wind speed distribution, and the parameters of the optimal 

model are listed in Table 6. 

Table 6 Estimated parameters of angular-linear model 

Distribution Value of parameter 

Wind 

speed 

Weibull 

distribution 

Weight (w) 

Scale 

parameter (c) 

(m/s) 

Shape 

parameter (k) 

0.3332 7.85599 4.73984 

0.3332 8.83756 3.57578 

0.3336 5.95338 1.88789 

Wind 

direction 

Von Mises 

distribution 

Weight (w) 

Location 

parameter (μ) 

(rad) 

Concentration 

parameter (κ) 

0.1880 0.02828 22.86277 

0.1124 1.21237 207.71978 

0.2569 1.27857 12.60357 

0.1741 0.17767 1.88044 

0.0486 5.37936 403.47627 

0.2200 5.49044 31.23524 

Circular 

variable 

Von Mises 

distribution 

Weight (w) 

Location 

parameter (μ) 

(rad) 

Concentration 

parameter (κ) 

0.2094 0.53505 3.41286 

0.1737 1.72808 3.62675 

0.1315 2.85067 5.68220 

0.1214 3.76685 4.23272 

0.1266 4.82119 3.19768 

0.2374 5.78352 3.61949 
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(b) Histogram and PDF of wind speed 

Fig. 20 Distribution model of circular variable 

 

 

For the wind direction distribution, the von Mises 

distribution is used to construct the wind direction model. 

Similarly, 40 bins spanning the whole wind direction range  
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with an equal width are calculated and these probabilities 

are applied to estimate the parameters. The values of AIC 

and R
2
 with different numbers of components of the wind 

direction is illustrated in Fig. 19. The values of AIC and R
2
 

is stable from six components which means that the 

increase of components cannot generate better performance 

of the wind direction model. Thus, the mixture of von Mises 

distribution with six components is regarded as the optimal 

wind direction distribution model, and the parameters of the 

optimal model are listed in Table 6. 

After obtaining the parameters relative to the angular 

and linear component of the model, the next step is to 

combine these two components for the construction of a 

 

 

 

joint distribution function to fit the profile of the wind speed 

and direction simultaneously. The same statistical analysis 

procedure is applied to model the circular variable, as 

shown in Fig. 20, and the values of AIC and R
2
 become 

stable from six components. Then, the mixture of von Mises 

distribution with six components is regarded as the circular 

variable distribution model, and the parameters of the 

optimal model are listed in Table 6. 

Finally, three optimal univariate distribution models are 

determined and the parameters of each distribution are 

estimated. Then, the overall joint PDF of the wind speed 

and direction can be derived as shown in Fig. 21(a), and the 

histogram of the wind speed and direction is illustrated in  

  
(a) Fitted AL joint distribution model (b) Histogram of wind speed and direction 

Fig. 21 Joint distribution model of Typhoon Chan-hom 
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(c) Histogram and PDF of circular variable (d) Fitted AL joint distribution model 

Fig. 22 Joint distribution model of Typhoon Soudelor 
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Fig. 21(b). 

Likewise, the measured wind data of Typhoon Soudelor 

and Typhoon Goni are used to construct the joint 

distribution models by the angular-linear approach. Fig. 22 

shows the calculated joint distribution of the wind speed 

and direction for the wind data of Typhoon Soudelor, which 

includes the histogram and PDF of the wind speed (Fig. 

22(a)), the histogram and PDF of the wind direction (Fig. 

22(b)), the histogram and PDF of the circular variable (Fig. 

22(c)), and the joint PDF of the wind speed and direction 

(Fig. 22(d)). In the same way, the result of the joint 

distribution of Typhoon Goni is shown in Fig. 23. 

 

 
5. Conclusions 
 

This paper addressed the statistical analysis of the wind 

characteristics during typhoons and the bivariate 

probabilistic modeling of the wind speed and direction by 

the proposed EM algorithm-based angular-linear modeling 

approach using long-term wind monitoring data of the arch 

Jiubao Bridge located in Hangzhou, China. The wind 

characteristics nearby the bridge site recorded by the SHM 

system instrumented on the bridge were presented and 

carefully examined. Then, the measured wind data are 

adopted to construct the joint PDF of the wind speed and 

direction by use of the proposed EM algorithm-based 

angular-linear approach. For the angular-linear modeling 

approach, the distribution model of the wind speed and the 

wind direction were firstly obtained respectively and then 

the joint distribution model of the wind speed and direction 

 

 

was formulated by the circular variable. The finite mixture 

of Weibull distribution and the mixture of von Mises 

distribution were used to represent the wind speed 

distribution and the wind direction distribution, 

respectively. The EM algorithm-based unknown parameter 

estimation method was employed to estimate the parameters 

in the finite mixture distribution models, and the optical 

model was determined by the values of R
2
 statistic and AIC. 

The obtained results demonstrate that: (i) the stochastic 

properties of the wind field at the bridge site measured by 

the SHM system during typhoons are effectively 

characterized by the proposed EM algorithm-based angular-

linear modeling approach; (ii) the mixture of Weibull 

distribution and the mixture of von Mises distribution have 

a favorable performance in modeling the distribution of the 

wind speed and the wind direction, respectively; (iii) the 

joint PDF of the wind speed and direction constructed by 

the angular-linear approach can reflect the multimodal 

characteristic and consider the correlation between the wind 

speed and direction; and (iv) the results of statistical 

analysis and probabilistic modeling of the wind 

characteristics can facilitate the structural performance 

evaluation of the bridge under the typhoon attack as well as 

the prediction of typhoon-induced fatigue damage of the 

critical structural components on the bridge. 
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