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1. Introduction 
 

It is well known that structural system identification 

/damage detection and structural reliability evaluation are 

two important issues to ensure the serviceability and safety 

of structures (Yao and Natke 1994, Doeblin et al. 1998, 

Wong and Yao 2001, Li and Chen 2006, Ou and Li 2010, 

Fan and Qiao 2011, Li and Chen 2013). However, in most 

of previous investigations, structural system 

identification/damage detection and reliability evaluation 

were investigated separately. When uncertainties which are 

inevitably involved in civil structures are taken into 

account, the identified structural parameters are random 

parameters (Li and Law 2008). Under some circumstance, it 

is prohibitive to evaluate structural reliability by the current 

reliability analysis methods due to the lack of knowledge of 

the uncertainty propagation. Therefore, the methods of 

assessing structural reliability in conjunction with the 

structural identification of stochastic building structures are 

indeed desirable (Li and Law 2010, Zhang et al. 2011). 

Research efforts devoted to the methodologies that 

accept the monitoring data as input and produce as output 

the reliability of the concerned building structure are very 
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few in comparison with the vast literature addressing on 

structural identification/damage detection and reliability 

evaluation, respectively. Zhang et al. (2011) proposed an 

integrated system identification and reliability evaluation of 

stochastic building structures by combining a statistical 

moment-based damage detection method (SMBDD) (Zhang 

et al. 2008, Xu et al. 2009) with the probability density 

evolution equation (PDE) based structural reliability 

evaluation method (Li and Chen 2004). Li and Law (2010) 

investigate the possibility of updating the reliability of a 

bridge structure based on measured information and shown 

that the measured information of a structural system could 

be integrated with the reliability analysis to yield a safety 

estimate on the component or system. Their presented 

frameworks are innovative, but the presented integrations 

are off-line approaches as long time series of measured 

discrete time history of structural responses are needed for 

the evaluation of statistical moment in the SMBDD (Zhang 

et al. 2011) and in the sensitivity analysis of structural 

responses with respect to the coefficients of structural 

parameters and unknown interaction forces (Li and Law 

2010).   

In practical SHM, it is impossible to deploy so many 

sensors to measure all responses of structural systems. 

Thus, it is highly desirable to explore efficient algorithms 

which can detect structural damage utilizing partially 

measured responses of structures (Sun and Betti 2014). The 

extended Kalman filter (EKF) approach has been shown to 

be useful tool for this purpose and it has been widely used 

for structural identification and damage detection (Hoshiya 

and Saito 1984, Yang et al. 2006, Lei et al. 2012a, 2012b, 
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Lei et al. 2015). Especially the unique recursive formulation 

of the extended Kalman filter makes it suitable for on-line 

structural identification and damage detection. Some 

approaches have been proposed for the on-line integrations 

of structural damage detection and optimal vibration control 

(Chen et al. 2008, He et al. 2014, Lei et al. 2014).  

Moreover, it is often difficult or even impossible to 

measure all structural external excitations under actual 

operating conditions. In the last decade, some approaches 

have been proposed for simultaneous identification of 

structural systems and unknown external excitations. 

Among these approaches, the approaches based on the 

extended Kalman filter (EKF) with consideration of 

unknown input have received great attention (Yang et al. 

2007, Lei et al. 2014). The authors recently extended the 

traditional extended Kalman filter (EKF) approach to 

extended Kalman filter with unknown inputs (EKF-UI) (Liu 

et al. 2016). Based on the procedures of the traditional EKF, 

analytical recursive solutions for the EKF-UI are derived 

and presented, so it is a straightforward, intuitive and easy 

to implement method. Moreover, data fusion of 

displacement and acceleration measurements is used to 

prevent in real time the low-frequency drifts in the 

identification results. Such an analytical recursive solution 

for data fusion based EKF-UI is not available in the 

previous literature. Due to the recursive estimation by EKF-

UI, it is suitable for on-line integration of on-line 

integration of structural identification/damage detection and 

structural reliability evaluation of stochastic building 

structures subject to unknown excitations. 

In this paper, based on the recursive formulation of the 

extended Kalman filter, an on-line integration of structural 

identification/damage detection and reliability evaluation of 

stochastic building structures is investigated. Structural 

limit state is expanded by the Taylor series in terms of 

uncertain variables to obtain the probability density 

function (PDF). Both structural component reliability with 

only one limit state function and system reliability with 

multi-limit state functions are studied. Then, it is extended 

to adopt the recent extended Kalman filter with unknown 

input (EKF-UI) proposed by the authors for on-line 

integration of structural identification/damage detection and 

structural reliability evaluation of stochastic building 

structures subject to unknown excitations. Numerical 

examples are used to demonstrate the proposed method and 

the evaluated results are compared with those by the Monte 

Carlo simulation to validate the proposed method. 

 

 

2. The proposed on-line integration for stochastic 
building structures under known excitation 

 

Due to the inevitable uncertainties, structural dynamic 

response is a random process with the equation of motion 

expressed as 

( ) ( ) ( ) ( ) ( ) ( )t t t t  Mx C Θ x K Θ x f  (1) 

where (t)x , (t)x and x(t) are n-dimensional vectors of 

structural acceleration, velocity and displacement, 

respectively; M, C(), K() are n×n structural mass, 

damping and stiffness matrices, respectively; Θis a m-

dimensional random parameter vector reflecting the 

uncertainties in the structural identification procedure, with 

the known probability density function pΘ(θ). In this paper, 

it is assumed that structural mass matrix is known, so only 

structural damping and stiffness matrices are functions of 

random parameter vector Θ in the stochastic building 

model. f(t) is a deterministic or random external input 

vector, and η is the corresponding influence matrix 

associated with the external input f(t). 

For simplicity, it is assumed that random variables in the 

random parameter vector Θare independent to each other. 

Then, structural limit state denoted by Z(Θ, t) can be 

expanded as the first-order Taylor series in terms of 

uncertain variable vector as (Li and Law 2008, Li and Law 

2010) 
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where Θ0 is the vector of mean value Θ.
In Eq. (2), Z(Θ0, tk+1) can be estimated recursively based 

on the extended Kalman filter approach using partial 

measurement of structural responses. 

 

2.1 On-line integration with the EKF 
 

When the random variable vector Θ takes its mean value 

Θ0, structural dynamic responses become deterministic. By 

introducing an extended structural state vector Xe as 

( ), ( ),
T

T T T

e t t   X x x θ  (3) 

Where θ is the unknown structural parametric vector. Eq.(1) 

can be converted into the following state equation as 

1

0 0

0

( )

[ ( , ) ( ) ( , ) ( ) ( )]

    ( , , )

e

e

t

t t t

 
 

    
 
 



x

X M C x K x f

0

g X f

    



 (4) 

in which g denotes a nonlinear function. 

In practice, only some structural responses can be 

measured. Therefore, the discrete equation for the 

observation vector (measured output) can be expressed as 

1 , 1 0 1 1( , , )k e k k k    y h X f v  (5) 

where yk+1 is the measured structural response vector at time 

t=(k+1)Δt
 
with Δt being the sampling time step. vk+1 is the 

measurement noise vector of a Gaussian white noise vector 

with zero mean and a covariance matrix 1 1 1

T

k k k  
    E v v R . 

Let and be the estimates of and

given the observations (y1, y2,…, yk), respectively, Eqs. (4)-

(5) can be linearized at  and  by the Taylor 

series expansion to the first order as 
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(7)      

The EKF mainly consists of the two recursive 

procedures. The first one is the time update (prediction) 

procedure, in which 

( )Δ

, 1 0 , 0 , 0
Δ

ˆ ˆ( ) ( ) ( , , )
k+1 t

e k e k e k
k t

dt   X X g X f    (8) 

and the prediction error of +1e,kX is  +1 +1 +1 0k e,k e,k e X X 

with the prediction error covariance matrix 

+1 +1 +1 k k k
  

 T
P = E e e . It can be derived that 

+1 +1 +1
ˆ T

k k k k k P P Q   (9) 

where +1 2k n l kt  I G , ˆ ˆ ˆ T

k k k
   P E e e , in which, 2n lI is a 

unit matrix of dimension 2n+l. 

The second process of EKF is the measurement update 

(correction) procedure, in which 
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where  , 1 0
ˆ

e kX  is the optimal estimate of Xe,k+1 given the 

observations (y1, y2,…, yk+1) and Kk+1 is the Kalman gain 

matrix, which can be derived as 

 +1 +1 1 +1 +1 +1k k k+ k k k+1 k



 T T
K P H H P H R  (11) 

and 

+1 2 1 1 +1 2 1 1 1 1 1
ˆ ( ) ( )T T

k n l k k k n l k k+ k k k          P I K H P I K H K R K  (12) 

Based on the above recursive EKF approach,

 , 1 0
ˆ

e kX  can be estimated, i.e., structural model at time 

t=(k+1)Δt is identified based on the measured data (y1, 

y2,…, yk+1). The updated structural model can be used for 

on-line estimation of Z(Θ0, tk+1) based on the defined 

structural limit state. 

 
2.2 Structural reliability evaluation based on the 

recursively updated model 
 

Based on the above recursive results of  , 1 0
ˆ

e kX  by 

the on-line integration of EKF, Z(Θ0, tk+1) in Eq. (2) can be 

estimated based on the defined structural limit state. 

Also, based on structural updated model at time 

t=(k+1)Δt by the above recursive EKF approach, 
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 can be evaluated in a recursive procedure. 

The detailed evaluation of 
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 depends on the 

type of Θ. 

If structural first-modal damping ratio is treated as an 

uncertain parameter, the following equation can be obtained 

from Eq. (1) by taking the derivative with respect to  
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where a and b are two coefficients of Rayleigh damping 

defined by 
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in which ω1 
and ω2 are the first two order natural 

frequencies. 

Finally, 

0
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Z 
 can be evaluated. And based 

on Eq. (2), the probability density functions of structural 

limit state can be achieved when probability distribution of 

the uncertain parametric vector Θ is known. This useful 

information can be used for on-line structural reliability 

evaluation. 

 

2.2.1 Structural component reliability evaluation 
based on the recursively updated model 

In this study, the structural reliability is evaluated 

through either the building top displacement or one 

particular inter-story drift, structural limit state is the 

structural component reliability can be expressed as 

 top
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where P{∙} is the probability of the random event; xtop(t) is 

the displacement response of the building at the top, h is the 

total height of the building; xinter-story(t) is the particular story 

drift and hinter-story is the height of the particular story 

investigated; Ltop and Linter-story are the thresholds of the 

dimensionless top displacement and particular story drift, 

respectively. 

 

2.2.2 Structural system reliability evaluation based on 
the recursively updated model 
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More general, for the serviceability of a multi-story 

building structure, not only the first inter-story angle is 

required not to exceed a threshold, but also all the other 

inter-story angles are required not to exceed corresponding 

thresholds. In this case, Structural system reliability system 

reliability with multi-limit state functions are studied. 

By denoting the dimensionless inter-story drifts from 

the bottom to the top floor by Δ1(Θ, t), Δ2(Θ, t), … , Δn(Θ, 

t), Structural system reliability is evaluated by 

 i

1

( , )
( ) ,    0,

n
i

i i

t
R t P L t t

h

    
    

  


 (17) 

where Li denotes the threshold value of the dimensionless i-

th inter-story drift. 

 

 

3. The proposed on-line integration for stochastic 
building structures under unknown excitation 
 

For the building structure under some unknown inputs, 

the equation of motion can be expressed by 

u u( ) ( ) ( ) ( ) ( ) ( )+ ( )t t t t t  Mx C Θ x K Θ x f f   (18) 

where fu denotes a unmeasured q-dimensional external 

excitation vector and ηu is the corresponding influence 

matrices associated with the unknown fu. 

The traditional EKF approach is only applicable when 

the information of external inputs to structures is available. 

In order to solve above problem, the authors (Liu et al. 

2016) proposed an extended Kalman filter with unknown 

inputs (EKF-UI) based on the procedures of the traditional 

EKF. 

 

3.1 A brief review of the recent data fusion EKF-UI 
 

When some external inputs to the n-DOF structure are 

unknown, the equation of motion of can be expressed as 

 , u u  Mx F x x θ f + f   (19) 

where M is the mass matrix of the structure, x, ẋ and ẍ are 

the vectors of the displacement, velocity and acceleration 

responses, respectively. θ is a l-dimensional unknown 

structural parametric vector, F(x, ẋ, θ) is the a force vector 

which can be linear or nonlinear function of the 

displacements, velocities and the structural parameters, f 

andηdenote an known external excitation vector and the 

influence matrix associated with the excitation f, 

respectively. fu and ηu are a unmeasured p-dimensional 

external excitation vector and the influence matrix 

associated with the excitation fu. 

By introducing a 2n+l dimensional extended state vector 

Z=(xT, ẋT, θT) and considering modeling error, Eq. (19) can 

be converted into the following state equation as 

( , ) (t), u Z g Z f wf  (20) 

in which,  g  is a nonlinear function and w(t) is the 

model noise (uncertainty) with zero mean and a covariance 

matrix Q(t). 

The nonlinear discrete equation for an observation 

vector can be expressed as 

1 1 1 1 1( , )u

k+ k+ k+ k+ k  y h Z f f v  (21) 

in which yk+1 is a m-dimensional measured acceleration 

response vector at time t=(k+1)Δt with Δt being the 

sampling time step and 1kv  is the measurement noise 

vector of a Gaussian white noise vector with zero mean and 

a covariance matrix  1 1 1

T

k k k  E v v R . 

Let ˆ
k|kZ  and ˆ u

k|kf  be the estimates of Zk and u
kf  

given the observations (y1,y2,…, yk), respectively, Eq. (20) 

can be linearized at ˆ
k|kZ  and ˆ

k|kf  by Taylor series 

expansion to the first order as 
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Analogous to the traditional EKF, the first time update 

(prediction) procedure is 

( )Δ

+1
Δ

ˆˆ ˆ( , )
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u
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The prediction error of +1k |kZ is
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The observation equation can also be linearized at 

+1k |kZ and ˆ u

k|kf  by Taylor series expansion to the first order 

as 
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Then, the second measurement update (correction) 

procedure is 

1| 1 +1

1 1 +1 1 1 1 1
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where 1| 1
ˆ

k k Z and 1 1
ˆ u

k+ |k+f are the estimate of 1k+Z and 1

u

k+f

given the observations (y1,y2,…, yk+1), respectively, and Kk+1 

is the Kalman gain matrix, which is derived as 

 +1 1 1 1 1 1 +1k k+ |k k+ |k k+ |k k+ |k k+ |k k



 T T
K P H H P H + R

 
 (28) 

Under the condition that the number of acceleration 

response measurements is not large than the total number of 

unknown external excitations, i.e., m>p, 1 1
ˆ u

k+ |k+f can be 

estimated by the least-squares estimation as 
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Also, the error covariance matrix 
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derived from Eq. (28) by 
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and  can be given from  by 
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Moreover, previous EKF-UI approaches by only using 

sparse noisy acceleration measurements are inherently 

unstable which leads poor tracking and low-frequency drifts 

in the estimated unknown inputs and structural 

displacements. The authors (Liu et al. 2016) recently have 

developed a data fusion based EKF-UI to prevent the drifts 

in the estimated structural state vector and unknown 

external inputs by previous approaches. 

 

3.2 On-line integration with the EKF-UI 
 

Based on the above recursive EKF-UI approach,

 , 1 0
ˆ

e kX  can be estimated, i.e., structural model at time 

t=(k+1)Δt is identified based on the measured data (y1, y2, 

…, yk+1). The updated structural model can be used for on-

line estimation of Z(Θ0, tk+1) based on the identified 

unknown excitation and the defined structural limit state. 

Finally, structural reliability evaluation based on the 

recursively updated model can be implemented according to 

the procedure in Sect. 2.2. 

4. Numerical example validations of the proposed 
method 

 

A six-story shear frame building under ground motion is 

chosen as an example to validate the proposed integration 

method. The mass of the building is m={600 550 500 450 

400 350}kg, the story stiffness are k={1.4 1.3 1.1 0.9 0.7 

0.5}×106 N/m, and the height of each floor are the same 

with h =2.0 m. Rayleigh damping is adopted, and the first 

modal damping ratio  is considered as a random 

parameter with a lognormal distribution due to the 

uncertainty. The mean value ofis 3% and the standard 

deviation is σ=10%. 
The ground acceleration is generated by the Kanai–

Tajimi spectrum KT with the spectral density function in 

the form as 

2 2

02
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S S
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in which ωg, ζg and S0 are the characteristic parameters of 

the ground motion. These parameters are selected as 

ωg=15.0 rad/s, ζg=0.6, S0=4.64×10-4 m2/rads3. The time 

duration of the simulated acceleration is 15s and the 

sampling frequency is 1000 Hz 

The structural damage scenario of the building is 

assumed as a 10% story stiffness degradation at the1st 

story, and the measured accelerations of the 1st, 2nd, 4th 

and the 5th floors are polluted by 5% noise. 

In this situation, the extended state vector Xe at time

t k t  can be written as Xe,k=[x, ẋ, k]T where 

k=[k1,k2,…,k6]
T. The matrix Gk in Eq. (6) can be worked out 

as 
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in which 

1,

1, 2, 2,

2, 2, 3, 3,

1, , ,

, ,

= [ ]

0 0

0

=

0 0 0

0 0 0

k k

k k k

k k k k

n k n k n k

n k n k

k k k

k k k k

k k k

k k





  
 

  
 
 
 

  
  

G M K

M
 (33) 

where [K]k is the stiffness matrix consisting of the elements 

ki,k in matrix Xe,k at the time of t=kΔt. 

2, [ ]k k k ka b   G MC M K  (34) 

where ak and bk denote the coefficient values identified at 

time tk based on Eq. (34). 
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In Eq. (35), the value of 
a

k  
and 

b

k  
can be worked 

out as 

a a b b
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Also, it is derived that 
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4.1 Numerical integration results for stochastic 
building structures under known excitation 

 

Table 1 shows the results of the identification in the 

undamaged and damaged scenarios, where u
k , 

u

i d
k  and

d

i d
k  are structural actual undamaged stiffness, identified 

mean value of undamaged stiffness and the identified mean 

value of damaged stiffness parameters of the i-th stroy, 

respectively. It can be seen that the error is acceptable, and 

the identified degree of damage, which is estimated by the 

differences between the mean values of the identified 

undamaged and damaged story stiffness parameters, is 

closed to the preset value. 

Figs. 1-2 are the component reliability in terms of the 

threshold of top rotation angle of the undamaged structure 

and the damaged structure. As seen from these figures, the 

reliabilities increase when the threshold enlarges and the 

reliabilities decrease for the damaged structure. In these  

Table 1 The results of the stiffness identification 

Story 

No. 
uk (N/m) 

u

i d
k (N/m) Error 

d

i d
k  (N/m) 

Damage 

degree 

1 1400000 1402206 0.16% 1261966 -9.86% 

2 1300000 1299441 -0.04% 1298667 -0.10% 

3 1100000 1100631 0.06% 1100959 0.09% 

4 900000 899829 -0.02% 900245 0.03% 

5 700000 700244 0.03% 700187 0.03% 

6 500000 500165 0.03% 500164 0.03% 

 

 

Fig. 1 Component reliability of the undamaged structure 

 

 

Fig. 2 Component reliability of the damaged structure 

 

 

Fig. 3 The System Reliability of the undamaged structure 

 

 

figures, the evaluated structural component reliability 

results are also compared with those by Monte Carlo 

simulation (MCS) and it is noted that evaluated structural 

component reliabilities are in good agreements with those 

by MCS. The reasons for the discrepancies between the 

evaluated reliabilities and those by MCS include the 
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influences of partial measurements and measurement noise, 

structural reliability evaluation based on the first-order 

Taylor series in terms of uncertain variables, etc. 

 

 

 

Fig. 4 Component reliability of the damaged structure 

 

 
(a) PDFs at t=2.0 s 

 
(b) PDFs at t=5.4 s 

 
(c) PDFs at t=11.7 s 

Fig. 5 Comparison of PDFs of top rotation angle of 

undamaged and damaged structure 

Figs. 3-4 show the comparisons of the evaluated 

structural system reliability by the proposed method with 

those by Monte Carlo simulation (MCS). The failure  

 

 

 

Fig. 6 Component reliability of the undamaged structure 

 

 

Fig. 7 Component reliability of the damaged structure 

 

 

Fig. 8 The System reliability of the undamaged structure 

 

 

Fig. 9 Component reliability of the damaged structure 
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probability of the whole structure equals to the maximum 

value of those of story drifts. Again, it is shown that that 

evaluated structural system reliabilities by the proposed 

method are also in good agreement with those by MCS. 

The probability distribution functions (PDFs) of the 

extreme value of the top dimensionless displacement 

(rotational angle) of undamaged and damaged structure at 

t=2.0 s, 5.4 s, 11.7 s are calculated and presented in Fig. 5. 

 

4.2 Numerical integration results for stochastic 
building structures under unknown excitation 

 

The same shear-building model and damaged scenario 

studied above is utilized. However, Figs. 6-7 show 

structural component reliabilities in terms of the threshold 

of top displacement of the undamaged structure and the 

damaged structure, respectively. Figs. 8-9 show the 

comparisons of the evaluated structural system reliability by 

the proposed method. In all the figures, the evaluated 

structural reliabilities are compared with those by Monte 

Carlo simulation (MCS). It is shown that that evaluated 

structural reliabilities by the proposed algorithm are in good 

are in good agreement with those by MCS. 

Fig. 10 show the comparison of the identified unknown 

ground excitation with the actual excitation in the time 

segment of 6.0~6.5 sec., which indicates that the 

identification results of unknown input is acceptable. 

 
 
5. Conclusions 

 

The integration of structural reliability evaluation with 

the results from system identification (damage detection) is 

still in its infancy. To overcome the limitations of some 

previous techniques for integrated system identification and 

reliability evaluation of stochastic building structures, on-

line integration of structural identification/damage detection 

and reliability evaluation of stochastic building structures is 

investigated in this paper. First, based on the recursive 

formulation of the extended Kalman filter, structural model 

with damage detection is recursively updated. Structural 

limit state is expanded by the Taylor series in terms of 

uncertain variables to obtain the probability density 

function (PDF). Both structural component reliability with 

only one limit state function and system reliability with 

multi-limit state functions are studied. Then, it is it is 

extended to adopt the recent extended Kalman filter with 

unknown input (EKF-UI) proposed by the authors for on- 

 

 

line integration of structural identification/damage detection 

and structural reliability evaluation of stochastic building 

structures subject to unknown excitations. Numerical 

examples demonstrate the proposed method. By comparing 

with the Monte Carlo simulation results for the evaluation 

of structural component reliability and structural system 

reliability, it is validated that the proposed method is 

suitable for on-line integration of structural 

identification/damage detection and reliability evaluation of 

stochastic building structures subject to known or unknown 

excitations. 

In the proposed method, structural limit state is 

expended by the first-order Taylor series in terms of 

uncertain variables. Therefore, the deviations of uncertain 

variables cannot be significant in the proposed approach. It 

is necessary to adopt a more sophisticate reliability 

evaluation algorithm to overcome such limitation. 
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