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1. Introduction 
 

Due to the important performance heat resistance ability 

and outstanding characteristics comparatively to 

conventional composites, Functionally Graded Materials 

(FGMs) which are microscopically composites and made of 

mixture of metal and ceramic constituents have gained 

considerable attention recent years. These materials are 

manufactured by a continuous variation of the gradient of 

the volume fractions of the constituents (Koizumi 1997); 

the FGM is hence adapted for various practical applications, 

such as thermal coatings of barrier for ceramic engines, gas 

turbines, nuclear fusions, optical thin layers, biomaterial 

electronics, etc. As a result, the mechanical response of 

FGM structures is of considerable importance in both 

research and industrial fields (Tounsi et al. 2013, Bouderba 

et al. 2013, Chakraverty and Pradhan 2014, Liang et al. 

2014, Zidi et al. 2014, Ait Atmane et al. 2015, Ait Yahia et 

al. 2015, Akbaş 2015, Meksi et al. 2015, Arefi 2015a,b, 

Arefi and Allam 2015, Kar and Panda 2015, Zemri et al. 

2015, Barati and Shahverdi 2016, Bounouara et al. 2016, 

Laoufi et al. 2016, Besseghier et al. 2017). 

In recent years, buckling and post-buckling behaviors of 

functionally graded (FGM) structures under different types 

of loading are important for practical applications and have 

received considerable interest. Shariat et al. (2005) 
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employed the classical plate theory (CPT) to discuss the 

buckling response of geometrically imperfect FG plates. 

Chen and Liew (2004) have considered a nonlinearly 

distributed in-plane edge loads and they have presented a 

two-dimensional elastic plane stress problem of FG plate 

based on the Mindlin's plate assumption for buckling 

response using the radial basis function. Using the principle 

of minimum potential energy and differential quadrature 

method along with first-order shear deformation theory, 

Liew et al. (2004) studied the thermal buckling and post-

buckling response of FG hybrid plates. Na and Kim (2006) 

developed a finite element formulation to investigate the 

instability of clamped unsymmetric composite FG plates. In 

their work, temperature dependency of material properties 

is also incorporated. Matsunaga (2009) presented a two-

dimensional global higher-order deformation theory for 

thermal stability of FG plates subjected to uniformly and 

linearly distributed temperatures. Zhao et al. (2009) 

examined the buckling response of plates made of FGMs 

using the element-free kp-Ritz method. Lee et al. (2010) 

have employed element-free Ritz method to investigate the 

post-buckling of FG plates under compressive and thermal 

loads. A new refined hyperbolic shear deformation theory 

was developed by El Meiche et al. (2011) by employing 

Navier's solution method for buckling and free vibration 

analysis of FG sandwich plates. Using an analytical 

approach, Yaghoobi and Torabi (2013) studied the stability 

analysis of FG plates resting on two-parameter Pasternak’s 

foundations under thermal loads. Based on the first-order 

shear deformation plate theory, Yaghoobi and Yaghoobi 

(2013) discussed the buckling response of symmetric 
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sandwich plates with FGM face sheets supported by an 

elastic foundation and subjected to mechanical, thermal and 

thermo-mechanical loads. Kettaf et al. (2013) developed a 

new hyperbolic shear deformation theory to study the 

thermal buckling response of FG sandwich plates. Bachir 

Bouiadjra et al. (2013) studied analytically the nonlinear 

thermal buckling response of FG plates using an efficient 

sinusoidal shear deformation theory. The stability of heated 

FG annular plates based on the CPT was investigated by 

Kiani and Eslami (2013) and an exact analytical solution 

was developed to compute the thermal buckling load. 

Tebboune et al. (2014) discussed the thermal stability of FG 

plates resting on elastic foundations. Khalfi et al. (2014) 

investigated the thermal buckling behavior of solar FG 

plates resting on a two-parameter Pasternak's foundations 

using refined and simple shear deformation theory. Ait 

Amar Meziane et al. (2014) presented an efficient and 

simple refined theory for buckling and free vibration of 

exponentially graded sandwich plates under various 

boundary conditions. Swaminathan and Naveenkumar 

(2014) presented an analytical formulation for the buckling 

investigation of FG sandwich plates based on higher order 

refined computational models. Yaghoobi et al. (2014) 

presented an analytical study on post-buckling and 

nonlinear free vibration analysis of FG beams resting on 

nonlinear elastic foundation under thermo-mechanical 

loading. Bouderba et al. (2016) presented the thermal 

stability of functionally graded sandwich plates using a 

simple shear deformation theory. Bousahla et al. (2016) 

studied the thermal stability of plates with functionally 

graded coefficient of thermal expansion. Chikh et al. (2017) 

investigated the thermal buckling behavior of cross-ply 

laminated plates using a simplified HSDT. Kar et al. (2017) 

studied the effect of different temperature load on thermal 

post-buckling response of FG shallow curved shell panels. 

Recently, Klouche et al. (2017) proposed an original single 

variable shear deformation theory for buckling analysis of 

thick isotropic plates. Bellifa et al. developed a nonlocal 

zeroth-order shear deformation theory for nonlinear 

postbuckling of nanobeams. Fahsi et al. (2017) presented a 

four variable refined nth-order shear deformation theory for 

mechanical and thermal buckling analysis of FG plates.  

The objective of this work is to investigate the buckling 

response of thick FG sandwich plates subjected to thermal 

loads. A sinusoidal shear deformation theory together with 

stress function is utilized to establish governing Eqs. taking 

into account geometrical nonlinearity. The thermal loads are 

assumed as uniform, linear and non-linear temperature rises 

across the thickness direction. Closed form solutions for 

thermal stability analysis of FG sandwich plates are 

determined. Numerical examples are illustrated to check the 

accuracy of the present formulation. 

 

 

2. Theoretical formulations 
 

2.1 Material properties of FG sandwich plate 
 

In this work, material properties of a FG sandwich plate are 

assumed to vary in accordance with the rule of mixtures as  

 

Fig. 1 Geometry of the FGM sandwich plate 

 

 

(Kettaf et al. 2013). The plate is referred to a Cartesian 

coordinate system x, y, z, where xy is the mid-surface f the plate 

and z is the thickness coordinator, 2/2/ hzh  . The 

length, width, and total thickness of the plate are a, b and h, 

respectively (Fig. 1).  

The face layers of the sandwich structure are made of an 

isotropic material with material properties varying smoothly in 

the z  direction only. The core layer is composed with an 

isotropic homogeneous material. The vertical positions of the 

bottom surface, the two interfaces between the core and faces 

layers, and the top surface are defined, respectively, by 

2/0 hh  , h1, h2 and h3=h/2. The total thickness of the FG 

plate h is given by h=tC+tF, with tC=h2−h1. tC and tF are the 

layer thickness of the core and all-FGM layers, respectively. 

The mechanical and thermal material properties for each 

layer, like Young’s modulus, Poisson’s ratio and thermal 

expansion coefficient, can be expressed as (Attia et al. 2015, 

Bakora and Tounsi, 2015; Belkorissat et al. 2015, Mahi et al. 

2015, Beldjelili et al. 2016, Boukhari et al. 2016, Bellifa et al. 

2016, Benferhat et al. 2016, Houari et al. 2016, Tounsi et al. 

2016) 
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(1) 

where P
(n)

 is the effective material characteristic of 

FGM of layer n. Pm and Pc present the property of the 

bottom and top faces of layer 1 ( 10 hzh  ), respectively, 

and vice versa for layer 3 ( 32 hzh  ) depending on the 

volume fraction V
(n)

 (n=1,2,3). Note that Pm and Pc are, 

respectively, the corresponding properties of the metal and 

ceramic of the FGM sandwich plate. The volume fraction 

V
(n)

 of the FGMs is assumed to obey a power-law function 

along the thickness direction (Houari et al. 2011, Taibi et al. 

2015, Meksi et al. 2017) 
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where k is the power-law index, which takes values greater 

than or equals to zero. The core layer is independent of the 

value of k which is a fully ceramic layer. However, the 

value of k equal to zero represents a fully ceramic plate. 

(1) 

(2a) 

(2c) 
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2.2 Kinematics 
 
In this study, the sinusoidal shear deformation plate 

theory (Touratier 1991) is utilized. The displacement field 

can then be written as 

 (3a) 

With 

 (3b) 

where u0, v0 and w0 are generalized displacement at the mid-

plane of the plate in the x, y, and z directions, respectively; 

ϕx, ϕy are the slope rotations in the (x, z) and (y, z) planes, 

respectively; and h is the plate thickness. 

The non-linear von Karman strain-displacement 

equations are as follows 
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2.3 Constitutive equations 
 

The linear constitutive relations of a FG plate can be 

expressed as  
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where ΔT is temperature rise from stress free initial state or 

temperature difference between two surfaces of the FG 

plate. 

By using the virtual work principle to minimize the 

functional of total potential energy function result in the 

expressions for the nonlinear equilibrium equations of a 

plate as 
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The force and moment resultants (N, Q, S and M) of the 

FG sandwich plate are obtained by 
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Substitution of Eqs. (4) and (6) into Eq. (8) yields the 

constitutive relations as 
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The last three Eq. (7) may be rewritten into two Eqs. in 

terms of variables w0 and ϕx,x+ϕy,y by substituting Eqs. (5) 

and (9) into Eqs. (7c)-(7e). Subsequently, elimination of the 

variable ϕx,x+ϕy,y from two the resulting equations leads to 

the following system of equilibrium equations 
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For a FG sandwich plate, Eq. (11) are modified into 

form as 
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where f(x,y) is stress function defined by 
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The geometrical compatibility equation for a sandwich 

plate is written as 
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From the constitutive relations (9) and Eq. (14) one can 

write 
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   Substituting Eq. (16) into Eq. (15), the compatibility 

equations of a FG sandwich plate becomes 

4 2
1 0, 0, 0,( ) 0xy xx yyf E w w w     (17) 

We are here concerned with the exact solution of Eqs. 

(13) and (18) for a simply supported FG sandwich plate. In 

this case, the proposed solutions of w and f respecting 

boundary conditions are considered to be (Librescu and Lin 

1997, Lin and Librescu 1998) 
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where λm=mπ/a, δn=nπ/b, m, n are odd numbers and W is 

amplitude of the deflection. The coefficients Ai (i=1, 2, 3) 

are obtained by substitution of Eqs. (19a, b) into Eq. (18) as 

2

2

2
1

1
32

W
E

A
m

n






,
2

2

2
1

2
32

W
E

A
n

m






,
03 A  (19) 

Then, setting Eqs. (19a, b) into Eq. (13) and using the 

Galerkin method for the resulting Eq. yield 
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3. Thermal buckling solution 
 

A simply supported FG sandwich plate with all 

immovable edges is considered here. The in-plane condition 

on immovability at all edges, i.e., u0=0 at x=0, a and v0=0 at 

y=0, b, is given in an average sense as (Tung and Duc 2010) 
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 (21) 

From Eqs. (5) and (8) one can determine the following 

expressions in which Eq. (14) has been introduced 
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   Introduction of Eq. (19) into Eq. (23) and then the result 

into Eq. (22) give 
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When the deflection dependence of fictitious edge loads is 

ignored, i.e., W=0, Eq. (24) becomes  


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1
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Substituting Eqs. (24) into Eq. (21) yields the expression 

of thermal parameter as 
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(27) 

 

3.1 Uniform temperature rise 
 

The FG sandwich plate is subjected to temperature 

environments uniformly raised from stress free initial state 

Ti to final value Tf, and temperature change ΔT=TfTi  is 

assumed to be independent from thickness variable. The 

thermal parameter Φ1 is obtained from Eqs. (10b), and 

substitution of the result into Eq. (26) yields 
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where 
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Table 1 Material properties used in the FG sandwich plate 

Properties Metal: Ti-6A1-4V Ceramic: ZrO2 

E (GPa) 66.2 244.27 

v 0.3 0.3 

α (10-6/K) 10.3 12.766 

 
Table 2 Minimum critical temperature parameter (αTcr) of 

the simply supported isotropic plate (a/b=1, tC/h, E=1.0×10
6
 

N/m
2
, v=0.3) 

a/h Present theory Kettaf et al. (2013) Matsunaga (2005) 

10 0.1198×10-1 0.1198×10-1 0.1183×10-1 

20 0.3119×10-2 0.3119×10-2 0.3109×10-2 

100 0.1265×10-3 0.1265×10-3 0.1264×10-3 

 
 
3.2 Buckling of FGM plates subjected to graded 

temperature change across the thickness 
 

We consider that the temperature of the top surface is Tt 

and the temperature varies from Tt, according to the power 

law variation through-the-thickness, to the bottom surface 

temperature Tb in which the plate buckles. In this case, the 

temperature through-the-thickness is given by 
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where the buckling critical temperature difference 

ΔT=Tb−Tt and γ is the temperature exponent (0<γ<∞). Note 

that the value of γ equal to unity represents a linear 

temperature distribution within the thickness. While the 

value of γ excluding unity represents a non-linear 

temperature variation through-the-thickness. Similar to the 

previous loading case, the buckling temperature change 

ΔTcr 
can be determined, for the present theory, as 
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4. Numerical results 
 

The general formulation presented in the previous 

sections for the thermal stability analysis of the FG 

sandwich plates subjected to the uniform, linear and non-

linear temperature rises through-the-thickness is examined 

here. The shear correction factor for the first shear 

deformation theory (FSDT) is set equal to 5/6. For the 

linear and non-linear temperature rises through-the-

thickness, Tt=25°C. FG plates made of the combination of 

Titanium and Zirconia are considered in this work. The 

Young’s modulus and the coefficient of thermal expansion  

Table 3 Critical buckling temperature (10
3
α0ΔTcr) of a 

homogeneous isotropic plate under uniform temperature 

rise 

b/a Theory a/h=5 a/h=10 a/h=15 a/h=25 a/h=50 

0.5 

Present 81.18684 27.73637 13.23204 4.94986 1.25824 

Kettaf et al. 

(2013) 
81.15170 27.73347 13.23144 4.94979 1.25825 

CPT 126.53339 31.63335 14.05927 5.06134 1.26533 

1 

Present 41.33313 11.97926 5.48643 2.00646 0.50500 

Kettaf et al. 

(2013) 
41.32613 11.97877 5.48633 2.00644 0.50500 

CPT 50.61336 12.65334 5.62371 2.02453 0.50613 

2 

Present 27.73637 7.63958 3.46069 1.25824 0.31588 

Kettaf et al. 

(2013) 
27.73347 7.63938 3.46065 1.25824 0.31589 

CPT 31.63335 7.90834 3.51482 1.26533 0.31633 

5 

Present 23.56351 6.39261 2.88676 1.04785 0.26288 

Kettaf et al. 

(2013) 
23.56145 6.39248 2.88674 1.04785 0.26288 

CPT 26.31895 6.57974 2.92433 1.05276 0.26319 

 

 

for Titanium and Zirconia are given in Table 1. 

  In order to verify the validity of the proposed method in 

predicting the thermal buckling behaviors of plates, a 

comparison has been performed with the results reported by 

Kettaf et al. (2013) and Matsunaga (2005) for homogeneous 

isotropic plates under uniform temperature rise. The critical 

buckling temperature difference has been given in Table 2. 

The examination of this table demonstrates that the 

results provided by the present analytical method are in a 

good agreement with those reported by Kettaf et al. (2013) 

and Matsunaga (2005). 

To check also the validity of the proposed formulation, 

comparisons are carried out between the thermal stability 

results obtained from the present method and those 

determined by other plate theories. For a homogeneous 

isotropic plate k=0, E(z)=E0, α(z)=α0, v=0.3. Critical 

stability temperature change (10
3
α0ΔTcr) for different values 

of the thickness ratio a/h and aspect ratio b/a of a 

homogeneous plate is presented in Table 3. 

With the increase of the thickness ratio a/h, severe 

decrement for critical stability temperature can be clearly 

seen. Also, it can be remarked that the critical stability 

temperature for the homogeneous plate diminishes 

gradually as the plate aspect ratio b/a increases. The 

difference between the shear deformation plate theories and 

the CPT decreases as the ratios a/h or b/a increase because 

the plate becomes thin or long.  

Tables 4-6 provide the critical stability temperature 

difference (10
-3

ΔTcr) for FG sandwich plates subjected to 

the uniform, linear and nonlinear temperature distribution 

through the thickness, respectively.  

The comparison between the present formulation and 

the method developed by Kettaf et al. (2013) as well as 

classical plate theory (CPT) is established. From the results 

presented in Tables 4-6, it can be seen that there is a very 

good agreement between the present formulation and the 

plate theory proposed by Kettaf et al. (2013). Tables 4-6 

demonstrate also the effect of the layer thickness of the core 
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Table 4 Critical buckling temperature of FG sandwich 

square plates under uniform temperature rise versus 

gradient index k and tC/h (a/h=5) 

tC/h Theory 
k 

0 0.2 0.5 1 2 5 10 

0 

Present 3.23775 3.07197 2.87277 2.69065 2.63460 2.94205 3.31226 

Kettaf 

et al. 

(2013) 

3.23720 3.07138 2.87207 2.68975 2.63325 2.93978 3.30959 

CPT 3.96470 3.66606 3.34559 3.06734 2.96200 3.32950 3.82441 

0.2 

Present 3.23775 3.05598 2.83194 2.59458 2.39953 2.35401 2.42818 

Kettaf 

et al. 

(2013) 

3.23720 3.05543 2.83135 2.59388 2.39856 2.35252 2.42641 

CPT 3.96470 3.64978 3.30066 2.95538 2.68016 2.59922 2.68195 

0.4 

Present 3.23775 3.05956 2.84318 2.60545 2.37450 2.19992 2.17714 

Kettaf 

et al. 

(2013) 

3.23720 3.05915 2.84285 2.60512 2.37406 2.19921 2.17624 

CPT 3.96470 3.66567 3.33354 2.99117 2.67295 2.43609 2.39804 

0.5 

Present 3.23775 3,07014 2,86992 2,64976 2,42900 2,24005 2,17784 

Kettaf 

et al. 

(2013) 

3.23720 3,06980 2,86974 2,64965 2,42885 2,23972 2,17737 

CPT 3.96470 3,68764 3,38155 3,06366 2,75801 2,50252 2,41816 

0.6 

Present 3.23775 3.08741 2.91146 2.71909 2.52297 2.34310 2.27458 

Kettaf 

et al. 

(2013) 

3.23720 3.08713 2.91139 2.71917 2.52309 2.34313 2.27452 

CPT 3.96470 3.71993 3.45164 3.17226 2.89771 2.65182 2.55878 

0.8 

Present 3.23775 3.14474 3.04107 2.93038 2.81650 2.74092 2.65609 

Kettaf 

et al. 

(2013) 

3.23720 3.14445 3.04101 2.93052 2.81681 2.74134 2.65659 

CPT 3.96470 3.81800 3.66058 3.49712 3.33246 3.21552 3.10423 

1 

Present 3.23775 3.23775 3.23775 3.23775 3.23775 3.23775 3.23775 

Kettaf 

et al. 

(2013) 

3.23720 3.23720 3.23720 3.23720 3.23720 3.23720 3.23720 

CPT 3.96470 3.96470 3.96470 3.96470 3.96470 3.96470 3.96470 

 

 

tC (ceramic layer) on the thermal stability response of the 

FG sandwich plates. As can be observed from Tables 4 and 

5, the thermal stability temperatures are reduced with the 

increase in gradient index k. Consequently, the increase in 

thermal stability temperature of FG sandwich plate could be 

attributed to the ceramic property. Indeed, this remark is 

also confirmed when a small gradient index is considered 

(k≤2) for all values of tC. A small gradient index k shows 

that the ceramic is the dominant constituent in FG sandwich 

plates. However, Table 6 demonstrates that the thermal 

stability temperatures increase with the increase in gradient 

index k when the plate is subjected to a non-linear 

temperature variation with γ=5. It can be seen that the 

thermal stability temperature decreases with increasing the 

thickness of the core layer (tC) for all considered gradient 

index. 

Finally, it should be noted from the comparison carried 

out within Tables 2 to 6 that the present formulation 

involves only two Eqs. (13) and (18) contrary to the theory 

Table 5 Critical buckling temperature of FG sandwich 

square plates under linear temperature rise versus gradient 

index k and tC/h (a/h=5) 

tC/h Theory 
k 

0 0.2 0.5 1 2 5 10 

0 

Present 6.42550 6.09396 5.69554 5.33130 5.21920 5.83411 6.57458 

Kettaf et 

al. (2013) 
6.42441 6.09275 5.69414 5.32949 5.21651 5.82957 6.56918 

CPT 7.87940 7.28211 6.64118 6.08468 5.87400 6.60901 7.59882 

0.2 

Present 6.42550 6.06196 5.61388 5.13917 4.74907 4.65803 4.80632 

Kettaf et 

al. (2013) 
6.42441 6.06087 5.61271 5.13775 4.74712 4.65504 4.80264 

CPT 7.87940 7.24955 6.55131 5.86076 5.31032 5.14843 5.31369 

0.4 

Present 6.42550 6.06912 5.63636 5.16089 4.69900 4.34984 4.24818 

Kettaf et 

al. (2013) 
6.42441 6.06830 5.63571 5.16024 4.69812 4.34842 4.26735 

CPT 7.87940 7.28133 6.61708 5.93233 5.29588 4.82217 4.70737 

0.5 

Present 6,42550 6,09028 6,68985 5,24951 4,80800 4,43010 4,30568 

Kettaf et 

al. (2013) 
6,42441 6,08961 5,68948 5,24929 4,80770 4,42943 4,30474 

CPT 7,87940 7,32529 6,71310 6,07732 5,46601 4,95505 4,78633 

0.6 

Present 6.42550 6.12481 5.77291 5.38818 4.99595 4.63609 4.84881 

Kettaf et 

al. (2013) 
6.42441 6.12425 5.77278 5.38833 4.99619 4.63616 4.49905 

CPT 7.87940 7.38985 6.85328 6.29453 5.74542 5.25352 5.06756 

0.8 

Present 6.42550 6.23948 6.03215 5.81076 5.58301 5.35903 5.26229 

Kettaf et 

al. (2013) 
6.42441 6.23889 6.03202 5.81104 5.58362 5.35987 5.26317 

CPT 7.87940 7.58600 7.27115 6.94424 6.61492 6.29563 6.15846 

1 

Present 6.42550 6.42550 6.42550 6.42550 6.42550 6.42550 6.42550 

Kettaf et 

al. (2013) 
6.42441 6.42441 6.42441 6.42441 6.42441 6.42441 6.42441 

CPT 7.87940 7.87940 7.87940 7.87940 7.87940 7.87940 7.87940 

 

Table 6 Critical buckling temperature of FG sandwich 

square plates under non-linear temperature rise versus 

gradient index k and tC/h (a/h=5, γ=5) 

tC/h Theory 
k 

0 0.2 0.5 1 2 5 10 

0 

 

Present 19.27655 20.57527 21.62878 22.43462 23.06831 23.77153 24.07624 

Kettaf 

et al. 

(2013) 

19.27322 20.57122 21.62347 22.42701 23.05643 23.75304 24.05661 

CPT 23.63820 24.58692 25.21986 25.60494 25.96247 26.92893 27.82720 

0.2 

Present 19.27655 20.43384 21.35073 22.00140 22.38252 22.66383 22.87336 

Kettaf 

et al. 

(2013) 

19.27322 20.43016 21.34626 21.99533 22.37338 22.64929 22.85562 

CPT 23.63820 24.43703 24.91598 25.09061 25.02775 25.04991 25.28770 

0.4 

Present 19.27655 20.24827 21.00993 21.54426 21.82347 21.87961 21.88456 

Kettaf 

et al. 

(2013) 

19.27322 20.24553 21.00745 21.54152 21.81937 21.87237 21.87534 

CPT 23.63820 24.29255 24.66557 24.76464 24.59556 24.25535 24.13098 

0.5 

Present 19,27655 20,13433 20,80528 21,28377 21,54917 21,60383 21,58327 

Kettaf 

et al. 

(2013) 

19,27322 20,13209 20,80394 21,28287 21,54783 21,60059 21,57856 

CPT 23,63820 24,29255 24,66557 24,76464 24,59556 24,25535 24,13098 
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Table 6 Continued 

0.6 

Present 19.27655 20.00359 20.57123 20.98563 21.23853 21.32522 21.31766 

Kettaf 

et al. 

(2013) 

19.27322 20.00176 20.57076 20.98623 21.23955 21.32555 21.31715 

CPT 23.63820 24.13520 24.42100 24.51562 24.42463 24.16529 24.01085 

0.8 

Present 19.27655 19.68398 19.99828 20.23774 20.41159 20.52420 20.55608 

Kettaf 

et al. 

(2013) 

19.27322 19.68210 19.99784 20.23872 20.41383 20.52740 20.55953 

CPT 23.63820 23.93190 24.10594 24.18546 24.18431 24.11121 24.05679 

1 

Present 19.27655 19.27655 19.27655 19.27655 19.27655 19.27655 19.27655 

Kettaf 

et al. 

(2013) 

19.27322 19.27322 19.27322 19.27322 19.27322 19.27322 19.27322 

CPT 23.63820 23.63820 23.63820 23.63820 23.63820 23.63820 23.63820 
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Fig. 2 Critical stability temperature difference Tcr versus the 

gradient index k  for FG sandwich square plates with: (a) 

a/h=10, (b) tC=0, (c) tC=0.8h 
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Fig. 3 Critical stability temperature difference Tcr versus the 

thickness ratio a/h for FG sandwich square plate (k=2): (a) 

tC=0, (b) tC=0.4h, (c) tC=0.8h 

 

 

proposed by Kettaf et al. (2013) where four governing 

equations are needed and the theory proposed by Matsunaga 

(2005) involving a higher number of governing equations. 

Fig. 2 demonstrates the influence of the gradient index k 

on the critical stability temperature Tcr for different 

thickness of the core tC of FG sandwich plates under 

uniform, linear and non-linear temperature change through-

the-thickness using the present formulation.  

It can be shown that the non-linear temperature loading 

produces the highest critical stability temperature Tcr, while 

Tcr for the plates under linear temperature loading is 

intermediate between the non-linear and uniform the non-

linear temperature loading.  

Fig. 3 presents the variation of critical stability 

temperature Tcr versus the thickness ratio Tcr for FG 

sandwich square plates under various thermal loading types. 

It is observed that the critical temperature difference  
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Fig. 4 Critical stability temperature difference Tcr versus the 

aspect ratio b/a for FG sandwich square plates (k=1, 

a/h=10): (a) tC=0, (b) tC=0.4h, (c) tC=0.8h 

 

 

decreases monotonically when the plate becomes thin. It is 

also shown that the uniform temperature loading produces 

the small critical temperatures Tcr but the highest ones is 

found in the case of non-linear temperature loading. In 

addition, it is noticed that Tcr increases as the nonlinearity 

parameter γ increases. 

Fig. 4 indicates the influence of the aspect ratio ab /  

on the critical stability temperature change Tcr of FG 

sandwich plates subjected to various thermal loading types.  
It is observed that, regardless of the values of tC, the 

critical stability Tcr decreases gradually with the increase of 

the plate aspect ratio ab /  wherever the loading type is. It 

is also seen from Fig. 4 that the Tcr increases with the 

increase of the non-linearity parameter γ. 

Fig. 5 demonstrates the effect of the core thickness tC on 

the thermal stability behavior of the FG sandwich plates 

subjected to the uniform, linear and nonlinear cases of 
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Fig. 5 Critical stability temperature change Tcr of FG 

sandwich square plates versus k and tC/h: (a) uniform 

temperature; (b) linear temperature; (c) non-linear 

temperature (γ=5) 

 

 

temperature distribution through the thickness, respectively. 

As can be observed from Figs. 5(a) and (b) (uniform and 

linear temperature), the thermal stability temperatures 

diminishes with increasing the gradient index. A small 

gradient index γ indicates that the ceramic is the dominant 

constituent in the FG plate. Also, it is found that the thermal 

stability temperatures increase for tC≥0.4
 
which means that 

the ceramic is also the dominant constituent in the FG plate. 

Thus, the increase in thermal stability temperature of an FG 

sandwich plate could be attributed to the ceramic property. 

As expected, the thermal stability temperature will be 

maximum for the pure-ceramic plate (tC=h) in the cases of 

uniform and linear temperature loading. However, in case 

of nonlinear temperature loading (Fig. 5(c)), the thermal 

stability temperature will be minimum for the pure-ceramic 

plate and the thermal stability temperatures increase with 

the increase in gradient index. 
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5. Conclusions 
 

The buckling behaviors of FG sandwich plates subjected 

to thermal loads are presented analytically by using the 

sinusoidal shear deformation and stress function concept, 

with the assumption of power law composition for the 

constituent materials of FGM layers. The stability analysis 

of FG sandwich plates under different types of thermal 

loadings is presented. In conclusion, it can be said that the 

proposed formulation is accurate and simple in solving the 

thermal stability behaviors of FG sandwich plates. An 

improvement of present formulation will be considered in 

the future work to account for the thickness stretching effect 

by using quasi-3D shear deformation models (Bessaim et 

al. 2013, Bousahla et al. 2014, Belabed et al. 2014, Fekrar 

et al. 2014, Hebali et al. 2014, Meradjah et al. 2015, 

Hamidi et al. 2015, Bennai et al. 2015, Larbi Chaht et al. 

2016, Bourada et al. 2015, Bennoun et al. 2016, Draiche et 

al. 2016,Bouafia et al. 2017, Benahmed et al. 2017). 
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