
Structural Engineering and Mechanics, Vol. 63, No. 4 (2017) 457-469

DOI: https://doi.org/10.12989/sem.2017.63.4.457 457

Copyright © 2017 Techno-Press, Ltd.
http://www.techno-press.com/journals/sem&subpage=7 ISSN: 1225-4568 (Print), 1598-6217 (Online)

1. Introduction

Damage identification methods, based on changes of

modal data or, more in general, vibration-based data, have

attracted the attention of researchers in the past thirty years.

Hundreds of papers have been written all over the world,

including reviews or technical reports, trying to recap

previous work in the last twenty years; in particular, the list

of references (Dimarogonas 1996, Salawu 1997, Doebling

et al. 1998, Staszewski 1998, Farrar et al. 2001, Chang et

al. 2003, Sohn et al. 2004, Montalvao et al. 2006, Taha et

al. 2006, Su et al. 2006, Friswell 2007, Worden et al. 2007,

Yan et al. 2007, Fan et al. 2011, Thatoi et al. 2012, Sinou

2013, Hakim et al. 2014) regards reviews with a rate of

about one paper per year. Within such a vast scientific

overview the vibration-based structural health monitoring as

mean of diagnosis of unhealthy structure (existence of

damage) is generally also intended as an activity aimed at

identifying location of damage. The extent of the damage

and of the residual life of the structure are also recognized

of engineering interest (Rytter 1993), but both existence and

location are still playing a significant role in all areas

interested by structural health monitoring (i.e. aeronautical,

civil and mechanical engineering).

The problem of vibration-based structural health

monitoring is essentially inverse with non-unique solution

and a few data available, polluted both by noise and

ambient influences. The appeal of this problem is related to

the expectation of being able to extract diagnosing

Corresponding author, Professor

E-mail: massimo.cafaro@unisalento.it
a
Professor

E-mail: arcangelo.messina@unisalento.it

information without knowing in advance where the possible

damage is placed. First traces of such a research activity can

be found around the 70’ (Adams et al. 1978). The

development of modern digital systems and the reduced

costs of devices have also contributed to additionally

increase ideas, thus resulting in a remarkable increasing

amount of literature. In broad terms, we could try to recap

the state of the art of the proposed methodologies by

looking at the existence of two approaches: (i) vibration-

based structural health monitoring by only using the actual

system and (ii) vibration-based structural health monitoring

by including a comparison of the actual system to its

original healthy state. Along with such proposed

methodologies, the nature of adopted data also plays a

fundamental role in distinguishing different approaches.

In this latter regard since Adams et al. (Adams et al.

1978) launched the idea of using natural frequencies,

several researchers based their investigations on these

particular set of data simply because such a set is privileged

for several reasons: (i) its measurement is cheap if

compared to the measurement process of other modal data

(i.e. damping or mode shapes), (ii) its measurement is quite

stable, accurate and relatively less polluted by noise (e.g.,

(Messina et al. 1996)) and, finally, (iii) each natural

frequency which is a potential messenger of the health state

of the system can, in principle, be measured without

necessarily knowing a priori the potential damaged location.

Of course, such a set of modal data is not only bearer of

good news; we cannot indeed forget that N natural

frequencies are just a list of N numbers and, even though

their N variations symptomatically can represent that

something in the system under test is changing, we have not

any direct correlation between such varied numbers and the

same system. Therefore, even though natural frequency

changes could serve as a warning against insurgent damages

Parallel damage detection through finite frequency changes
on multicore processors

Arcangelo Messinaa and Massimo Cafaro


Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Lecce, Italy

(Received January 5, 2017, Revised February 15, 2017, Accepted May 14, 2017)

Abstract. This manuscript deals with a novel approach aimed at identifying multiple damaged sites in structural components

through finite frequency changes. Natural frequencies, meant as a privileged set of modal data, are adopted along with a

numerical model of the system. The adoption of finite changes efficiently allows challenging characteristic problems

encountered in damage detection techniques such as unexpected comparison of possible shifted modes and the significance of

modal data changes very often affected by experimental/environmental noise. The new procedure extends MDLAC and exploits

parallel computing on modern multicore processors. Smart filters, aimed at reducing the potential damaged sites, are

implemented in order to reduce the computational effort. Several use cases are presented in order to illustrate the potentiality of

the new damage detection procedure.

Keywords: damage detection; natural frequency changes; MDLAC; parallel computing; inverse methods

Arcangelo Messina and Massimo Cafaro

(detection), key information correlating the frequencies

changes (between health ad damaged structures) with the

geometry of the system under test is needed to single out

damaged places (location); to this end the numerical model

is the key information providing the correlation between

natural frequency changes (differential or finite) and the

system.

The attraction of using such procedures (based on

frequency changes), for an analyst, becomes therefore quite

clear especially when we realize that the literature is

recently re-evaluating frequency shifts; indeed, ref. (Sinou

2013) recognizes that even if a lot of robust and new tools

based on linear measurements have been developed, using

frequency shifts to detect damage appears to be more

practical in engineering applications. On the other hand,

however, the analyst should also be willing to implement a

related numerical model whenever his/her analysis is

related with detection and placement of damage. Based on

the above premise in 1998 (Messina et al. 1998) a damage

identification procedure driven by the optimization of a

specific objective function (MDLAC: Multiple Damage

Location Assurance Criterion) was introduced and is here

taken into account as a starting base. MDLAC was later

used by other researchers in order to extend or generalize

the method and/or using itself as a base for comparisons

versus other proposals. The so called MDLAC-strategy in

ref. (Messina et al. 1998) was based on the advantage of

using a privileged class of experimental data (natural

frequencies) along with the possibility to implement the

method for any type of structure (beam, plates, truss, frames

etc.). As extensively discussed in ref. (Messina et al. 2012),

MDLAC was initially introduced (Messina et al. 1998) in

conjunction with the sensitivity frequencies of the system

around its healthy condition and thus basing the approach

on a first order perturbation of the natural frequencies

around the healthy condition; in this regard the MDLAC

approach, based on the classification of ref. (Friswell 2007),

would belong to the class of sensitivity methods.

The damage at its early stage is well represented through

a differential formulation, although the frequency shifts

could more easily be masked by shifts due to influences

which are not properly related with occurring damage (i.e.,

ambient and/or noise influences); therefore, the present

work is aimed at extending the MDLAC approach from a

differential formulation to a finite formulation by

simultaneously keeping the adoption of a privileged class of

experimental data: natural frequencies. The criterion based

on MDLAC is also kept, because MDLAC, being based on

a statistical comparing criterion, showed even the ability to

slightly go over a differential formulation, although an

increasing number of damaged sites along with remarkable

finite damage could create uncertain identifications. The

extension of the classical MDLAC approach (Messina et al.

1998) to use finite frequency changes is herein carried out

exploiting parallel computing on multicore processors. The

challenge related to the computational effort required is

overcome through the selection of a reduced set of possible

scenario-solutions; in this latter regard, two different

criterions are introduced along with recommendations to

efficiently implement them in parallel. The analysis, the

criterions and the implementations are carried out within the

frame of large complex structures and also by accounting

for the reality, uncommonly taken into account in the

literature, i.e., distinguishing between finite elements with

damaged places.

2. Theoretical formulation of the damage detection
method

Let us call ∆fe the column vector containing the relative

measured frequency changes which are experimentally

measurable (N) and occurring between the healthy and

damaged states of the system, i.e. ∆fe = ((𝑓1
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

−

𝑓1
𝑑𝑎𝑚𝑎𝑔𝑒𝑑

)/𝑓1
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

, … , (𝑓𝑁
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

− 𝑓𝑁
𝑑𝑎𝑚𝑎𝑔𝑒𝑑

)/𝑓𝑁
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

)
𝑇

.

If a numerical model of the system is available, a

correlation between the finite measured frequency changes

(∆fe) and a generic set of relative numerical frequency

changes (∆fn) can be evaluated through the following

equation.

cos(∆fe, ∆fn)2=
(∆fe

T∆fn)
2

(∆fe
T∆fe)(∆fn

T∆fn)
 (1)

Eq. (1) corresponds to an extended version of MDLAC

(Messina et al. 1998) which was originally implemented

between finite frequency changes compared to differential

approximations. Eq. (1) also stresses how the MDLAC

criterion is established through the squared cosine of two

vectors (e.g., Horn et al. 1985) straightforwardly clarifying

the reason why the result belongs to [0, 1], with 0 indicating

no correlation and 1 indicating an exact match between the

patterns of finite frequency changes. Any other value of the

squared cosine in the middle between (0, 1) is assumed as

measuring a correlation between pairs of vectors. An

alternative to criterion (1), aimed at comparing vectors,

could be, for example, the Euclidean distance between

vectors. However, this proved to be experimentally not

effective as the criterion established by the squared cosine

(1). The numerical model we assume to have available

consists essentially of two matrices (mass and stiffness

matrix) related through Eq. (2) to the relevant modal

parameters of the system (natural frequencies in Hz: fk=

ωk/2π =√𝜆𝑘/2π)

(K − λ
k
M)

k
= 0 (2)

In this work, we simulate an occurring damage as a

uniform elemental reduction of the stiffness in Ne finite

elements through their respective elemental stiffnesses.

Such a uniform elemental reduction is realized by

associating a relevant stiffness reduction coefficient Dj

multiplying the structural element matrix (Kj) as in (3)

(Messina et al. 1998).

K = ∑ DjKj

Ne

j=1

 (3)

where, Dj=1 for no damage and Dj=0 for complete loss of

the jth element (in this latter case the damage corresponds

458

Parallel damage detection through finite frequency changes on multicore processors

to 100%).

2.1 Parallel implementation on multicore computers:

the combinatorial method

The algorithm proposed in this work basically founds its

rationale on Eqs. (1)-(3). Namely, we are looking for a

testing damaged scenario Dt=(D1, D2, ..., DNe)
T
 which

applied to (3) is able to furnish a global stiffness matrix

whose eigenvalues analysis through Eq. (2) provides finite

natural frequency shifts (i.e., ∆fn) perfectly correlated to the

experimental eigenvalues shifts (i.e., cos(∆fe, ∆fn)
2
=1

through Eq. (1)). In spite of the simplicity of this rationale,

we could clearly realize that such a simple algorithm is

unpractical or even impossible to carry out without any

further consideration. Indeed, owing to the fact that the

damage is unknown (placement and extents), the number of

possible combinations of testing damaged scenarios is

infinite; moreover, the required number of eigenvalue

analyses (2) would be infinite as well. However, if we

assume that our damaged system contains both a maximum

number of damaged locations (Nd) and a maximum number

of damage levels (Nl) in an established scale (for example

we assume testing Nl=9 levels from 0% up to Lmax=80% by

10% steps), then the number of eigenvalue (Na) analyses

and the relevant comparisons would correspond to the

following equation

Na(Ne, Nd, Nl) = (
Ne

Nd
* Nl

Nd =
Ne!

Nd! (Ne − Nd)!
Nl

Nd (4)

Eq. (4) should be read through two essential terms, i.e.,

n1 and n2. In particular, n1 refers to the binomial coefficient

Ne choose Nd and multiplies n2=Nl
Nd

. In other terms, n1

corresponds, all over the elements of the system, to the

number of all possible combinations of Nd damaged

elements. If we were certain about the existence of a single

damage level, we would need to test, by comparing (∆fe,

∆fn), only n1 cases. Since we are assuming that each

element can be subject to Nl possible damage levels (or

close to each one of these levels), then each single

combination of Nd elements in the population of n1 cases

can be subject to n2 damaged scenarios. In total, we have to

compare, as stated by equation (4), Na=n1n2 pairs of

frequency shifts (∆fe, ∆fn) and aiming at choosing the

respective scenarios providing the highest squared cosine

(1). Therefore, on the basis of Eq. (4), the most critical

computational aspects of the problem we are dealing with

are the following two main points: (i) the need to store

matrix Cn1xNd keeping all possible combinations of

potentially damaged elements along with matrix Vn1xNd

which keeps all possible damaging levels of all elements

listed row by row in C; (ii) the need to solve the

eigenproblem (2) Na = n1n2 times.

Both matrices C and V play a significant role in our

approach because they can become extremely large

depending on the investigated scenario; in this regard, the

analyst could save these matrices on disk or keep them into

Random Access Memory (RAM). The practice of keeping

(C, V) into the RAM is faster and should be always

preferred as it has been carried out in this work; however,

the required amount of RAM may be high. For example, if

an analyst sets up four possible damaged elements (Nd=4)

through 10 levels of possible damage (Nl=10) in a finite

elements model constituted by Ne=250 elements, the

required memory allocation in double precision for C and V

would be 4.7 GB along with Na=1,588,827,500,000

analyses (2). As a second example, a numerical FE-model

made up of 930 elements (e.g., the model in ref. (Farrar et

al. 2000)) would even require about 923 GB to store C and

V whilst requiring Na=309,681,406,800,000 analyses. The

above mentioned computational efforts could seem

unfeasible but they should be read within the context of the

most modern workstations and computers available today.

Indeed, current workstations can be easily configured with

1024 GB of RAM and several multicore processors; even

high-end laptops can be equipped with 64 GB of RAM

along with quad core processors. The configuration and

performances of computers dramatically increase when

high-performance computing systems (HPC) are taken into

account. With regard to the TOP500 List of June 2016

(TOP500.org 2017), the number one HPC system Sunway

TaihuLight is equipped with 10,649,600 cores and

1,310,720 GB of memory. Therefore, if the proposed

damage detection procedure would be solely implemented

through Eqs. (1)-(3) on the most intensive above mentioned

case (Ne=930, Nl=10, Nd=4) its computational effort on the

Sunway TaihuLight, would be abated to at most

Na=29,079,159 analyses per core.

It is finally stressed that each analysis among the

population of Na analyses is absolutely independent and can

be carried out without requiring any intermediate results

extraneous to the specific and single analysis; from a

computational point of view such a situation requires

implementing a straightforward embarrassingly parallel

application.

2.2 Filters excluding improbable damaged scenarios

In spite of the possibility offered by the most modern

computers equipped with multicore processors, still there exist

the need to reduce the number of eigenvalue analyses (2) (i.e.,

Na=n1n2). In this regard two distinct filters (or procedures) are

herein presented in order to exclude a number of elements as

being potentially undamaged and thus reducing the number of

eigenvalue analyses. Both the procedures are based on a linear

approximation and are herein tested along with the

combinatorial method described in Section 2.1. We shall also

test one of the procedures by proving that it is able by itself, i.e.

independently from the combinatorial method, to coarsely

single out large regions where the damage could be placed.

2.2.1 Filter 1: Large-scale damage detection method
This method is essentially designed in order to coarsely

locate large areas where the damage can be potentially

placed. For this reason, such a method is implemented to

directly detect damaged large areas rather than aimed at

complementarily excluding potentially undamaged areas.

Of course, if the method were able to properly single out

such large areas where the damage is potentially placed it

would be able to provide an indication regarding the

459

Arcangelo Messina and Massimo Cafaro

elements which are undamaged and should be excluded

from any more accurate subsequent investigation. The

method is initially funded on the following equation which

is based on a linear approximation

𝛿f
k

= f
k,D1

𝛿D1+…+ f
k,DNe

δDNe k = 1,…, N (5)

between a general damaged scenario (δD1, δD2,..., δDNe)

and its consistent variation of measurable natural

frequencies (δf1, δf2,..., δfN) where fk,Dj indicates fk/Dj with

j=1,...,Ne. Eq. (5) states an evident differential relationship

among the above mentioned quantities; such a relationship

is however, based on the choice of looking at any element

(for j=1,..., Ne) as bearer of a potential damage. This choice

is strategically the simplest one and it is usually adopted in

all the algorithms proposed in the literature. However, we

cannot ignore that elements are usually part of a mesh

which is conditioned by convergence criterions,

technological needs etc. Above all, any valid reason aimed

at believing that a damage must occur in single elements

does not exist at all. Conversely, when an FE-model has

been built up along with its mesh, we should expect a

damaged zone generally different by a damaged element. In

other words, we should introduce the concept of zones that

can contain damage and, more specifically, (i) zones which

are arranged by the analyst depending on the investigated

model within its FE-scheme, (ii) a zone can fall in an

element or in a group of elements, (iii) such a zone can even

contain both damaged and undamaged elements. This latter

eventuality is more in agreement both with macro-damage

we are dealing with FE-schemes which are usually

characterized by many elements for, at least, convergence

criterions.

In this perspective, we could implement an algorithm by

associating a damaging coefficient (Zi with i=1,...,Nz) at

each single zone rather than associating a damaging

coefficient (Dj with j=1,…, Ne) at each single element.

Based on this choice to group several elements in each

zone, the number of zones will be less than or equal to the

number of elements (Nz≤Ne). Such a choice would

transform Eq. (5) in Eq. (6)

𝛿f
k
= f

k,Z1
𝛿Z1+…+f

k,ZNz
𝛿ZNz k = 1,…, N (6)

where fk,Zi indicates fk/Zi with i=1,...,Nz, and a uniform

condition of damage per zone has been attributed. At this

stage, by taking into account the uniqueness of a damaged

zone and comparing Eqs. (5) and (6), for example with

regard to zone 1 made of N1 elements, the following

equation holds.

f
k,D1

𝛿D1+…+ f
k,DN1

𝛿DN1 = f
k,Z1

𝛿Z1 (7)

From Eq. (7), recalling the physical meaning of the

sensitivity terms (i.e., property 2 in appendix of ref.

(Contursi et al. 1998)) it is possible to realize that the

formal position aimed at classifying N1 elements in an

established group essentially consists of evaluating an

extent of damage for a zone which is a mean weighted

through the frequency sensitivities (8).

𝛿Z1=
f
k,D1

𝛿D1+…+ f
k,DN1

𝛿DN1

f
k,D1

+…+ f
k,DN1

 (8)

Fig. 1 Filter 1: flowchart

Eq. (8) through its simplicity proves some intriguing

and non-negligible aspects. For example, if a high value of

damage, even finite, is present only in one element or in a

few ones of the group, we should expect an evaluation of

damage spread over the entire zone and thus leading to a δZ

less than the true localized damage; such a minor extent of

damage also goes in the direction of improving the

differential relationship between damage and the consistent

elementary variation of frequencies. Moreover, the problem

of the real availability of experimental data (usually

consisting of a few lower natural frequencies) is also

mitigated: indeed, a method working with zones goes in the

direction of reducing the gap between unknowns (damaged

zones) and data (natural frequency changes). Therefore, an

approach dealing with zones is generally expected to

provide benefits.

A question remains open regarding the criterion of

making up groups of elements in Nz zones where each zone

is characterized by a uniform damage (δZi with i=1,...,Nz).

In this work, we shall create zones by classifying elements

having centroids placed at the lowest distance from a

reference point. Once zones are defined, the algorithm

herein used to identify damage shall be based on the

classical MDLAC (Messina et al. 1998) implemented per

zones rather than per elements. In both cases the function

fmincon() built-in within the Matlab Optimization toolbox

(MathWorks 2017) is used. MDLAC shall provide the

damaged zones or equivalently shall implement a large-

scale damage detection method, as well as allowing a

subsequent focused application of the combinatorial method

on a drastically reduced number of potentially damaged

elements or subzones. Fig. 1 depicts the flowchart of this

filter and clarifies that its output, as implemented in the

present context, regards a set of elements probably damaged

because belonging to the zones which have been detected as

containing damage.

460

Parallel damage detection through finite frequency changes on multicore processors

2.2.2 Filter 2: Sensitivity damage exclusion method
This filter is strictly designed in order to work for the

combinatorial method. We have experimentally confirmed in

all the implementations carried out in this work that the

eigenvalue analysis (2) represents the most demanding part of

the combinatorial method, requiring Na (4) analyses. Therefore,

this filter was designed in order to exclude certain Nd

combinations reasonably undamaged. For example, Na

analyses contain combinations certainly and trivially

undamaged such as all the n1 rows in matrix C respect to the

undamaged condition, which are strongly uncorrelated with

any damaged scenario because in ideal conditions

(uncontaminated measurements by noise and/or ambient

influences) the relevant patterns of frequency changes ∆fn

would be coincident with the nil vector. This latter statement

can be generalized introducing the following filter: any

simulated damaged scenario providing an uncorrelated pattern

of frequency changes, which means providing a cos(∆fe, ∆fn)
2

lower than a threshold value, is excluded from the Na analyses.

By looking at the combinatorial method, such a filter

would seem to be unfeasible or resulting in a vicious circle;

namely, in order to estimate if a simulated damaged scenario

provides an uncorrelated pattern of frequency changes an

eigenvalue analysis (2) is needed to produce the pattern of

frequency changes. It would be, indeed, a vicious circle if we

pretend to accurately compute the pattern of frequency changes

due to the simulated damaged scenario; differently such a filter

is applied by estimating (rather than accurately computing) the

pattern of frequency changes due to the simulated damaged

scenario. Such an estimation is herein carried out through the

linear approximation of Eq. (9).

From Eq. (9), it is clear that the estimation of relative

frequency changes is carried out by a linear approximation

through a sensitivity matrix evaluated once for all at any

beginning analysis. This implies that before carrying out an

eigenvalue analysis a correlation test is carried out as reported

in Fig. 2, which shows that operationally the present filter

consists of making a matrix product (9) for subsequently

carrying out the evaluation of a cos()
2
 (Eq. (1)), operations

which are computationally much less demanding than an

eigenvalue analysis (Eq. (2)). The latter is carried out only if

the simulating damage vector ∆D passes through the filter

acquiring the qualification of probable damaged scenario.

∆fn
e = (

∆f
n1

 e /f
1

 healthy

⋮

∆f
nN

 e /f
N

 healthy

,

= [

f
1,D1

/f
1

 healthy … f
1,DN𝑒

/f
1

 healthy

⋮ ⋱ ⋮

f
N,D1

/f
N

 healthy … f
N,DN𝑒

/f
N

 healthy

] ∙ (
∆D1

⋮
∆DN𝑒

+

(9)

In order to implement the filter in Fig. 2, the analyst

must set a threshold which can be set in the range [0, 1]

where 0 means the filter 2 is completely bypassed whilst a

threshold equal to 1 means a filter probably closed with the

possibility to provide an empty set of damaged scenarios.

3. Implementation of the combinatorial method and
Filters 1 & 2

In this Section the implementation regarding the

combinatorial method along with the filters by themselves or in

a mutual co-operation are illustrated by keeping in mind

multicore processors used to design serial and parallel

algorithms. The relevant numerical implementations have been

based on the parallel computing toolbox (Ver. 6.6)

implemented in Matlab (R2015a), running on a computer

equipped with an Intel I7 2.5 GHz quad-core processor, and 16

GB of RAM.

As reported in Fig. 3, the starting point is based on a pattern

of experimental finite frequency changes (∆fe) which alarms

the analyst with regard to significant changes occurring on the

system. Such a condition starts the operations aimed at

searching the damaged scenario. Filter 1 is initially applied in

order to single out probably damaged zones; these zones are

constituted by a number Re of elements (located in damaged

zones) generally less than Ne. The searching method is then

focused among these Re elements once a maximum number of

damaged elements (Nd) has been set through an established

number of damaged levels (Nl). Therefore, all the possible

Fig. 2 Filter 2: flowchart

461

Arcangelo Messina and Massimo Cafaro

combinations of Nd elements are allocated in Cn1xNd and for

each of its rows n2 damaged scenarios (Vn2xNd) should be tested

by running Eqs. (1)-(3). At this stage filter 2 can save

significant computational time; indeed, filter 2 dynamically

allows comparing pairs (∆fe, ∆fn) by running Eqs. (1)-(3) only

when δfn passes through the same filter. In this way, the

eigenvalue analysis (Eq. (2)) is carried out only when it is

certainly required, thus saving a significant amount of

computational time.

Before closing this paragraph, a note is worth mentioning

when the perspective is to carry out the comparisons among

the residual damaged scenarios through an embarrassingly

parallel application: the rows of Cn1xNd should be randomly

permuted; if this recommendation were not followed the whole

computational workload could be carried out by only one of

the cores and the advantages of parallel computing could be

entirely lost.

4. Numerical examples

The combinatorial method is herein tested versus two

examples: (i) a clamped 2D Euler-Bernoulli beam meshed

through 10 and 60 elements and (ii) a truss structure realized

through 250 classical rod elements. These two examples are

structurally different and were chosen in order to prove the

capability of the combinatorial method to identify damaged

locations even though only a few natural frequencies are

available and independently from the structural case under test.

In both cases filters 1 and 2 (Figs. 1, 2) are used along with the

combinatorial method; however, the ability of filter 1 of

identifying macro damaged areas is also illustrated

independently of using or not the combinatorial method. The

beam (Fig. 4) is characterized by the following material and

geometric characteristics: length 1 m, density 7860 kg/m
3
,

Young’s module 210 GPa, a square transversal section 1 cm×1

cm.

The second example (Fig. 5) consists of a truss tower

(Sonnenhof Holdings 2013) 20 m high and made of 10

identical double frames (1 m×1 m×2 m) connected end to

end. All joints are free to rotate in any direction. The 4

nodes at the base are constrained against displacement in all

directions. All beams have the same material (200 GPa and

density is 7800 kg/m
3
) and whilst the chords at the corners

have 0.01 m
2
 cross sectional area, the bracing members

have 0.001 m
2
 cross sections.

Fig. 3 The full procedure: flowchart

462

Parallel damage detection through finite frequency changes on multicore processors

Fig. 4 Clamped 2D Euler-Bernoulli beam meshed through

10 and 60 elements; nomenclature

Fig. 5 Truss structure realised through 250 elements; basic

group (double frame) and nomenclature (ref. (Sonnenhof

Holdings 2013))

4.1 The case of a clamped beam

Based on Fig. 4 two meshes have been taken into account:

10 and 60 elements. With regard to the clamped beam the

numeration of the elements follows the natural numbers

through a unitary step. This is a particular case where the

number of an element is representative of its location; in

general, this is not true as Fig. 5 clearly shows. The natural

frequencies slightly change when two meshes are used but this

has not been considered significantly relevant with the strategy

we are dealing with; f
healthy

[Hz]MESH10=(8.349856, 52.32934,

146.5561, 287.3920, 475.8238, 712.8381, 1,000.146,

1,339.921, 1,732.5001, 2,153.748); f
healthy

[Hz]MESH60=

(8.349849, 52.32761, 146.5189, 287.1187, 474.6283,

709.0144, 990.2808, 1,318.431, 1,693.469, 2,115.403).

Fig. 6 illustrates in one graph three location charts of the

damage with regard to the mesh of 10 elements. The white

bars, in this and in all of the next figures, correspond to the

simulated true damaged scenario whilst the red bars

represent the identified damage based on the first ten

natural frequency changes.

The red vertical bars illustrate the identified damage

through the classical MDLAC (Messina et al. 1998),

element by element, whilst the red horizontal bars illustrate

the identified damage through the classical MDLAC based

on zones rather than on elements. In this latter case Filter 1

has been adopted to identify the areas where the damage

can be potentially located; in this regard the reference point

was the clamped node whilst the zones containing the

remainder elements (due to the fact that Ne/Nz is not usually

an integer number) were randomly distributed all over the

zones. Each horizontal bar has a length proportional to the

number of elements grouped in its respective zone; i.e.,

counting the zones from left to right in Fig. 6 as (1, 2, 3, 4)

they contain elements [(1, 2), (3, 4, 5), (6, 7, 8), (9, 10)]

Table 1 Damage detection results by using MDLAC based

on only Filter 1 (ref. Fig. 4(a)); Nz=4, N=6 frequency

changes; true damaged scenario: ∆D1=30%, ∆D6=60%

Run
Zone 1:

dam%

Zone 2:

dam%

Zone 3:

dam%

Zone 4:

dam%

1 1,2,3: 6.4 4,5,6: 47 7,8: no damage 9,10: no damage

2 1,2,3: 6.4 4,5: 59 6,7,8: 7.7 9,10: no damage

3 1,2: 26 3,4,5: no damage 6,7,8: 30 9,10: no damage

4 1,2: 23 3,4,5: no damage 6,7: 49 8,9,10: no damage

Table 2 Damage detection results by using MDLAC based

on only Filter 1 (ref. Fig. 4(a)); Nz=3, N=6 frequency

changes; true damaged scenario: ∆D1=30%, ∆D6=60%

Run Zone 1: dam% Zone 2: dam% Zone 3: dam%

1 1,2,3,4: 10 5,6,7: 39 8,9,10: no damage

2 1,2,3: 6.4 4,5,6: 47 7,8,9,10: no damage

Fig. 6 Location chart through MDLAC for elements and for

zones (MESH:10). The absolute % frequency changes

(100x∆fe) correspond to 8.63, 15.7, 5.55, 8.48, 6.32, 6.05,

6.98, 6.95, 5.80, 8.02

respectively. The percent damage is written close to each

single horizontal bar if damaged through a significant

percent.

Fig. 6 was based on the use of the first 10 natural

frequency changes and clearly shows the capability of Filter

1 to correctly identify macro areas containing damaged

places. A similar performance was obtained by using the

first six natural frequencies as well as by meshing the whole

beam in three distinct areas; in this regard Tables 1 and 2

illustrate the capability of Filter 1 to single out areas

containing damaged elements. Tables 1 and 2 contain more

lines with each respective simulation in order to show that

the random grouping of elements in zones does not

significantly affect the result. Finally, with regard to Fig. 6,

it could be of a certain interest to know that MDLAC run on

10 elements took about 1 second whilst it took about 0.2

seconds when run on four zones. In practice, MDLAC run

on zones was about 5 times faster.

Fig. 7 is the counterpart of Fig. 6 when the clamped

beam is meshed on the base of 60 elements. In this regard,

four sub cases were analyzed with (3, 4, 5, 6) zones

respectively (corresponding to Fig. 7(a), 7(b), 7(c) and

7(d)). Fig. 7 clearly shows the capability of Filter 1 to

accurately single out the macro areas where the damaged

elements are placed. In this case the classical MDLAC ran

463

Arcangelo Messina and Massimo Cafaro

on 60 elements taking about 9 seconds whilst the same

algorithm, when run per zones, took about 0.2 seconds

almost independently of the number of zones (in this case,

MDLAC run on zones was about 45 times faster); this latter

result is evidently due to the marginal time required in all

these cases where a few zones were adopted. However, in

addition to all the above considerations we should recognize

as impressive the capability of Filter 1 to single out macro

areas containing damage or, complementarily, its capability

to exclude others macro areas which could be considered

healthy.

On the basis of the performance shown by Filter 1, it

comes quite natural and advantageous the application of the

combinatorial method (Fig. 3) aimed at investigating a

reduced number of elements when a finite damage is

expected to be localized in macro areas. Therefore, in order

to show the capability of the combinatorial method, based

on both serial and parallel computing, the specific damaged

scenario involving elements number 3 and 33 (over a mesh

of 60 elements) with a percent damage of 60% and 90%

respectively, is carried out. Ten frequency changes are still

taken into account and the combinatorial method depicted

in Fig. 3 is applied on the basis of four zones grouping

fifteen elements per zone, by assuming Nl=10, Lmax=95%,

Threshold=0 or 0.5 (Filter 2) and Nd=2 or 3. Here it is added

the strategy suggested in ref. (Messina et al. 2012) which is

aimed at applying the combinatorial method in two

subsequent phases. The first phase investigates the whole

structure or a portion of it (depending on the application or

the exclusion of Filter 1 respectively) and tries to reduce the

computational effort by assuming a reduced number of

damaging levels (the mentioned Nl=10) whilst the second

phase applies again the combinatorial method on the best

solution achieved after running the first phase on Nd

elements; in the second phase the number of damaging

levels is increased to Nl=100 because the combinatorial

method shall be applied on Nd elements only, thus allowing

a significantly reduced computational effort.

Fig. 8 illustrates the capability of MDLAC based on

elements (classical MDLAC) and on zones (MDLAC

identifying damaged macro areas). Fig. 9 illustrates the

capability to correctly identify the damaged sites through

the combinatorial method when all the possible damaged

elements are tested.

The damage detection illustrated in Fig. 9 has been

achieved by carrying out the computation serially with

Nd=2, by activating both Filter 1 (Nz=4) and Filter 2

(Threshold=0.5), by using the first ten natural frequency

Fig. 8 Location chart through MDLAC for elements and for

zones (MESH:60). The absolute % frequency

changes (100x∆fe) correspond to 6.35, 14.7, 3.56,

8.87, 3.74, 5.16, 4.51, 2.52, 5.28, 1.11

(a) Nz=3 (b) Nz=4

(c) Nz=5 (d) Nz=6

Fig. 7 Location chart through MDLAC for elements (MESH: 60) and for zones. The absolute % frequency changes

(100x∆fe) correspond to 8.63, 15.7, 5.55, 8.48, 6.33, 6.05, 7.09, 6.79, 6.49, 7.92

464

Parallel damage detection through finite frequency changes on multicore processors

Fig. 9 Location chart through MDLAC and combinatorial

method (ref. Figs. 3, 8) (MESH:60). Mode: serial

computation

changes and leaving Nl=10 for the first and Nl=100 for the

second phase respectively.

The damage detected in Fig. 9 produces a pattern of

natural frequency changes which are correlated with the

simulated counterpart through a squared cosine (equation

(1)) (let us call it a MAC as in (Allemang et al. 1982)) equal

to MACIphase=0.9983 and MACIIphase=0.9999935. Such a

Fig. 9 was obtained after running a simulation taking about

26 seconds. An identical picture was achieved when the

routines were run by increasing Nd from 2 to 3; in this latter

case the location 14 was also slightly detected as damaged

with 1% of damage which does not disrupt the excellent

capability of the combinatorial method to detect the true

damaged scenario.

The damage detection, based on the combinatorial

method, was then run by changing the involved parameters

in order to appreciate the computational effort involved; in

all the simulations Fig. 9 is representative of the capability

of the method to detect the damage as above described.

What, instead, needs to be appreciated is the computational

time required, which, for the combinatorial strategy we are

dealing with, is the most representative parameter

describing the successful or unsuccessful application of the

method; in this regard Tables 3 and 4 recap the

performances of the method. Namely Table 3 and Table 4

refer to assuming Nd=2 and Nd=3 respectively. Both Tables

3 and 4 show how the computational time taken is well

correlated with the number of analyses required. In

particular, profiling the code during runs clarified that the

required computational time was mostly due to the routines

extracting eigenvalues. Therefore, in general efficient

routines extracting eigenvalues would result in great

computational savings.

The first four rows in both tables regard the performance

of the method when it is run on the basis of classical serial

computation. Instead, the last four rows refer to the

combinatorial method performed by using parallel

computing through four cores. For each core the respective

number of analyses is reported in the second column. In

particular, in order to partition the analyses to be carried out

among the available cores, we use a 1D block-based domain

decomposition technique, commonly used in parallel

computing, i.e., the Na analyses to be performed are

distributed to the p available cores so that each one is

responsible for either ⌊Na/p⌋ or ⌈Na/p⌉ elements; letting left

and right be respectively the indices of the first and last

analysis performed by the core with rank id (ranks are

numbered from 0 to p−1), then the core whose rank is id

Table 3 Performance table for the combinatorial method

(Nz=4, Threshold=0.5) serial and parallel runs, N=10, Nd=2;

true damaged scenario: ∆D3=60%, ∆D33=90%

Mode
Procs:

Analyses

Filter

1

Filter

2

Comp.

Time [s]

First phase

no analyses

(Na)

First phase

analyses

excluded (%)

Serial 1: 177,000 no no 180 177,000 0 (0)

Serial 1: 81,916 no yes 80 81,916 95,084 (54)

Serial 1: 43,500 yes no 41 43,500 133,500 (75)

Serial 1: 28,311 yes yes 26 28,311 148,689 (84)

Parallel

1: 44,300

2: 44,200

3: 44,300

4: 44,200

no no 74 177,000 0 (0)

Parallel

1: 20,605

2: 18,933

3: 21,694

4: 20,684

no yes 44 81,916 95,084 (54)

Parallel

1: 10,900

2: 10,900

3: 10,800

4: 10,900

yes no 32 43,500 133,500 (75)

Parallel

1: 7,197

2: 7,169

3: 7,052

4: 6,893

yes yes 29 28,311 148,689 (84)

performs all the analyses in the range [left, right], with left

=⌊(id−1)Na/p⌋ and right=⌊id Na/p⌋−1. It follows that the core

whose rank is id performs a total of ek=⌊(id+1) Na/p⌋−⌊id

Na/p⌋ analyses. The third and fourth columns report using or

not Filters 1 (Nz=4) and 2 (Threshold=0.5). The fifth

column lists the computational time required by the

combinatorial method whilst the last two columns reports

the required number of analysis (Na) and the analyses

eventually excluded by the Filters 1 and/or 2.

In particular, with regard to Table 3 (Nd=2), the

combinatorial method requires Na=177,000 analyses. Such

analyses are totally carried out unless Filter 1 and 2 are

used; this happens independently of the mode (serial or

parallel). For example, when both filters are activated, only

28,311 analyses are carried out whilst the remaining

148,689 (corresponding to 84% of the whole computational

work) are excluded. Looking at such a simple example, the

importance of designing efficient filters should be

appreciated.

With regard to specific comparisons between serial and

parallel computations, by looking at Table 3 it would seem

that certain circumstances can let the serial computation to

be less time consuming than the corresponding parallel

computation. Indeed, when both filters are activated the

serial computation takes about 26 seconds to complete the

analysis whilst its counterpart, based on parallel computing,

takes 3 seconds more. In all the remaining cases the parallel

computation is faster. This can be explained taking into

account tha t the para l lel computa tion incurs a

computational overhead (due to the time required for the

activation of the Matlab Parallel Toolbox on the available

cores, concurrent access to shared memory etc.) which can

make it not convenient when the number of required

analyses falls down a machine specific threshold; this is the

465

Arcangelo Messina and Massimo Cafaro

Table 4 Performance table for the combinatorial method

(Nz=4, Threshold=0.5) serial and parallel runs, N=10, Nd=3;

true damaged scenario: ∆D3=60%, ∆D33=90%

Mode
Procs:

Analyses

Filter

1

Filter

2

Comp.

Time [s]

First phase

no analyses

(Na)

First phase

analyses

excluded (%)

Serial 1: 34,220,000 no no 31,731 34,220,000 0 (0)

Serial 1: 12,608,078 no yes 20,761 21,611,922
12,608,078

(37)

Serial 1: 4,060,000 yes no 3,789 4,060,000
30,160,000

(88)

Serial 1: 3,449,011 yes yes 3,502 3,449,011
30,770,989

(90)

Parallel

1: 8,500,000

2: 8,500,000

3: 8,500,000

4: 8,500,000

no no 10,721 34,220,000 0 (0)

Parallel

1: 5,391,059

2: 5,433,963

3: 5,385,715

4: 5,401,185

no yes 7,053 21,611,922
12,608,078

(37)

Parallel

1: 1,015,000

2: 1,015,001

3: 1,015,002

4: 1,015,003

yes no 1,327 4,060,000
30,160,000

(88)

Parallel

1: 863,722

2: 866,468

3: 863,634

4: 855,187

yes yes 1,100 3,449,011
30,770,989

(90)

case in one of our experiments when both filters are

activated and a significantly low number of analyses is

taken into account (28,311 with regard to the initial 177,000

cases). Such an interpretation is confirmed by also looking

at Table 4 where a particularly high number of cases is

taken into account (from about 34 to 3.4 millions); here

independently of the activation or not of the filters the

parallel approach is always more convenient (less time

consuming) than its serial counterpart. However, if the

parallel computation shows interesting performance along

with the proposed combinatorial method, certainly the

designed filters play an important role when used in

combination with it. Indeed, Table 4 makes evident that

when the classical serial mode is adopted (first row) the

combinatorial method takes 31,731 seconds (about 9 hours;

moreover, the second phase, which runs serially, requires

about 900 seconds); the computational effort reduces to

about 1/3 when the parallel computation is used (10,721 s)

and when the parallel computation is used along with the

activation of both filters the same analysis even runs in

about 33 minutes letting the computational time reduce to

about 1/18 (1,100 s).

We now discuss the performances obtained by the

parallel implementation. Let T(n,1) be the running time of

the application performing n analyses when run serially on

1 core and T(n, p) be the running time when run in parallel

on p cores. The parallel speedup obtained by the parallel

application is defined as S(n, p)=T(n, 1)/T(n, p); the

speedup measures how much an application gains when

running in parallel on multiple cores. The theoretical

maximum speedup achievable is p, obtained when the

parallel overhead is equal to zero. Indeed, denoting the

parallel overhead by To(n, p), since the total time spent by

all of the cores is pT(n, p), it follows that pT(n, p)=T(n,

1)+To(n, p), so that T(n, p)=(T(n,1)+To(n, p))/p and To(n,

p)=pT(n, p)−T(n, 1). Therefore, we can rewrite the speedup

as follows: S(n, p)=T(n, 1)/T(n, p)=pT(n, 1)/(T(n, 1)+To(n,

p)) from which it follows immediately that the S(n, p)=p

when To(n, p)=0. From a theoretical perspective,

embarrassingly parallel applications are characterized by

null parallel overhead. However, in practice the parallel

overhead is never null.

An important metric, which measures the utilization of

the available cores is the parallel efficiency, which is

defined as E(n, p)=T(n,1)/(p T(n, p))=S(n, p)/p. The

theoretical maximum efficiency achievable is 1 (or 100%).

Again, E(n, p)=1 when To(n, p)=0. Indeed, it is enough to

rewrite the efficiency as E(n, p)=S(n, p)/p=T(n, 1)/(T(n,1)+

To(n, p)). A common rule of thumb used by parallel

application designers and developers is to try to achieve a

parallel efficiency of at least 0.7 (or 70%). Below this

threshold, the application is not making a good use of the

parallel resources available. Tables 5 and 6 report the

speedup and the efficiency achieved by the parallel

implementation on 4 cores, respectively for the simulations

related to Tables 3 and 4. It is immediate verifying that, as

already stated, the simulations discussed in Table 3 contain

too few analyses to benefit from parallelization in terms of

speedup and efficiency. In particular, when both Filter 1 and

2 are activated, the resulting number of analyses to be

actually carried out is so small that the corresponding

speedup is less than 1, i.e., in this case parallel computing is

worse than its serial counterpart (as already noted). The

parallel performances depicted in Table 6 are much better,

owing to the increased number of analyses to be carried out

despite the powerful action of the filters. Indeed, in all of

the cases speedup and efficiency values are high. In

particular, the speedup is around 3 in the first three cases

when at most one of the filters is activated, and is 3.18

when both filters are activated (the interested reader should

Table 5 Parallel Performance table for the combinatorial

method (Nz=4, Threshold=0.5) parallel runs on 4 cores,

N=10, Nd=2; true damaged scenario: ∆D3=60%, ∆D33=90%

Filter 1 Filter 2 Comp. Time [s] Speedup Efficiency

no no 74 2.43 0.60

no yes 44 1.81 0.45

yes no 32 1.28 0.32

yes yes 29 0.89 0.22

Table 6 Parallel Performance table for the combinatorial

method (Nz=4, Threshold=0.5) parallel runs on 4 cores,

N=10, Nd=3; true damaged scenario: ∆D3=60%, ∆D33=90%

Filter 1 Filter 2 Comp. Time [s] Speedup Efficiency

no no 10,721 2.95 0.73

no yes 7,053 2.94 0.73

yes no 1,327 2.85 0.71

yes yes 1,100 3.18 0.79

466

Parallel damage detection through finite frequency changes on multicore processors

take into account that 4 is the maximum theoretical speedup

when using 4 cores). The efficiency is greater than 70% in

all of the cases, and even reaches 79% when both filters are

activated. Finally, it is worth noting here that the

performances reported depend heavily on the particular

technology employed, which is Matlab and its Parallel

Toolbox. Future improvements to the internals of the

Parallel Toolbox could lead to increased parallel

performances without the need to modify the Matlab source

code.

Before closing the discussion on Tables 3 and 4 a final

perusal regarding the effectiveness of Filter 1 is certainly

worth of further consideration. When Nd=2 (Table 3) is

taken into account along with the activation of only Filter 1,

133,500 analyses are excluded by the combinatorial

strategy, i.e., only 25% of the initial cases needs to be tested

by leaving the remaining 75% out. When Nd=3 (Table 4) is

taken into account the percentage of excluded analyses

increases from 75% to 88% letting us infer that once a

number of zones (Nz) is established, the relative gain

increases when the number of potential damaged sites (Nd)

increases. This can be generalized through the following

proof. Let G be the relative gain defined as in Eq. (10), in

which a new term has been introduced (Ne
z) consisting of

the total number of elements belonging to the Nz zones; in

this regard Ne > Ne
z is an inequality which is always true

for obvious reasons.

𝐺 =
(

Ne

Nd
* Nl

Nd − (
Ne

z

Nd
* Nl

Nd

(
Ne

Nd
* Nl

Nd

 (10)

It is clear that the relative gain G has been intended as

only involving one of the essential terms of Eq. (4) and

specifically the combinations all over the Ne elements (i.e.,

n1). Accordingly, the second essential term of Eq. (4) (Nl

Nd)

is simplified. G is clearly less than 1 and corresponds to the

percentage value reported in Tables 3 and 4 as % in the

respective last columns. Based on the binomial coefficient

definition, Eq. (10) can be simplified as in Eq. (11), through

which it is possible to prove that G is monotonically

increasing in Nd.

𝐺=1-
(Ne-Nd)!

(Ne
z-Nd)!

 ∙
Ne

z!

Ne!
 (11)

Indeed, taking into account Eq. (11) and letting G(Nd+1)

>G(Nd), Eq. (12) follows

1-
(Ne-Nd-1)!

(Ne
z-Nd-1)!

 ∙
Ne

z!

Ne!
> 1-

(Ne-Nd)!

(Ne
z-Nd)!

 ∙

Ne
z!

Ne!
⇒

(Ne-Nd-1)!

(Ne
z-Nd-1)!

<
(Ne-Nd)!

(Ne
z-Nd)!

(12)

which can be transformed into Eq. (13)

(Ne-Nd-1)!

(Ne
z-Nd-1)!

<
(Ne-Nd)(Ne-Nd-1)!

(Ne
z-Nd)(Ne

z-Nd-1)!
 (13)

for finally obtaining Eq. (14) which is always verified

because Ne > Ne
z .

(Ne-Nd)

(Ne
z-Nd)

>1 (14)

Therefore, as proved by Eqs. (11)-(14), Filter 1, once a

number of zones (Nz) has been established, always provides

an increasing percent of computational saving when an

increasing number of elements potentially damaged (Nd) is

chosen.

4.2 The case of a three-dimensional 250-bar truss
tower

This case takes into account the three-dimensional

vibrating truss tower shown in ref. (Sonnenhof Holdings 2013)

among samples and verification. This structure presents

symmetries and can make particularly difficult the detection of

damaged scenario through natural frequency changes only.

This structure is recalled in Fig. 5 along with its first eleven

natural frequencies here assessed through a built-in Matlab

code (MathWorks 2017) as follows f
healthy

[Hz]: (2.902650,

2.9026818, 7.643402, 13.38692, 13.38783, 22.92009,

29.10572, 29.11273, 38.16575, 45.07039, 45.09624) and from

which weak modal symmetries can clearly be expected from

the bending modes of the tower as, for example, depicted in

Fig. 10 (mode 1, 2, 3 depicted respectively in Fig. 10(a), 10(b)

and 10(c)). In the following simulations the first ten natural

frequencies have been used in a simulated damaged scenario

involving only two elements (i.e., ∆D1=75%, ∆D5=50%).

Firstly, a damage detection procedure has been carried out

through only Filter 1. In this regard the reference point was

assumed to be the fixed node of element n. 1 (Fig. 5) whilst the

zones containing the remainder elements (due to the fact that

Ne/Nz is not usually an integer number) were randomly

distributed all over the closer zones.

Fig. 11 depicts two location charts with abscissae reporting

the number of elements which are not relevant with their own

numeration of Fig. 5; such a number of elements corresponds,

instead, to an ordered number of elements grouped in zones

and ordered by the distance from the reference point. Fig. 11

still illustrates the capability of Filter 1 to identify correctly the

macroscopic zone where the damage is placed; this is achieved

independently of the number of zones assumed, Nz=3 and Nz=5

for Fig. 11(a) and 11(b) respectively. It is also interesting to

note the improvement provided by Filter 1 to the original

MDLAC method (Messina et al. 1998) (per elements). Indeed,

Filter 1 has not any doubt on the macro area containing

damage; it is also interesting to note that the larger the area the

lower the damage is, exactly as theoretically predicted by Eqs.

(6)-(8). Finally, with regard to Fig. 11, it could be of a certain

interest to know that MDLAC runs on 250 elements taking

about 110 second whilst it took about 0.2 seconds when run on

three or five zones. In practice, MDLAC run on zones was

about 550 times faster.

Therefore, the results of this second example

corroborate the capability of Filter 1 to aim at improving the

performances of MDLAC (Messina et al. 1998) when it is

carried out per zones and is thus able to insulate reduced

areas where the damage can be potentially located. Once a

specific zone (shown in Fig. 11) has been detected as

potentially containing the damage, the combinatorial

467

Arcangelo Messina and Massimo Cafaro

method can be carried out. In this latter regard, on the basis

of both filters activated (Nz=5, Threshold=0.5) and Nd=2

(Nl=10 first phase, Nl=100 second phase, Lmax=95%), the

combinatorial method provided the location chart depicted

in Fig. 12 taking about 120 s in the first phase and about 44

s in the second phase. Such an evaluation only involved

26,236 analyses in the first phase, thus excluding 99% of

the total analyses, which were purely based on existing

combinations (i.e., 3,112,500). The adoption of parallel

computing (always based on four cores) allowed reducing

the computational time of the first phase from 120 to 57

seconds.

A full and pure combinatorial analysis of the truss tower,

based on Nd=3, would require 2,573,000,000 analyses,

reducing to 19,600,000 when only Filter 1 is activated. In

particular, by setting Nd=3, Nl=10 (first phase), Nl=100

(second phase) along with the activation of both filters 1

and 2 (Nz=5, Threshold=0.5) the serial mode evaluation

took about 20,172 s (5.6 h) along with 3,947 s (1.1 h) for

the second phase to carry out the relevant simulations

consisting of 4,807,410 analyses (99.8% of the analyses

excluded). For the same experiment, carried out exploiting

parallel computing, the first phase, with four cores, took

about 2.7 h offering a significant computational saving with

regard to the serial computation. For Nd=3 the geometrically

symmetric solution (∆D3=74.8485%, ∆D7=48.8990%) was

detected (Fig. 5) instead of the true damaged solution

(∆D1=75%, ∆D5=50%) as shown in Fig. 12; this result is

expected because the detection comes through the second

phase and the latter consists of the refinement based on the

best result associated to the first phase. The first two highest

MAC values kept as solution of the first phase were

numerically equivalent (0.9999942596057161,

0.9999942596056380) and contained both the geometrically

symmetric solutions (i.e., (∆D1, ∆D5) and (∆D3, ∆D7)),

which, therefore must be considered equivalent. Before

closing the discussion, a question is worth additional

discussion: why the relevant solutions are not detected with

a perfect correlation (MAC=1.0) in all the numerical

analyses herein carried out? This happened because all

levels used (neither Nl=10 in the first phase nor Nl=100 in

the second phase) did not contain the true damaged

scenario.

5. Conclusions

This manuscript has introduced novel approaches aimed at

identifying multiple damaged sites in structural components

through finite frequency changes. The approaches essentially

regard finite damage along with finite frequency changes. The

natural frequencies have been taken into account because the

(a) (b) (c)

Fig. 10 First three mode shapes of the three-dimensional truss tower (ref. (Sonnenhof Holdings 2013))

Fig. 11 Location chart through MDLAC for elements and for zones (Nz=3, Nz=5)

468

Parallel damage detection through finite frequency changes on multicore processors

Fig. 12 Location chart through MDLAC and combinatorial

method. Detected damage: ∆D1=74.8485%, ∆D5=48.8990%

scientific literature still considers nowadays the frequencies as

a privileged set of modal data. The methods herein dealt with

need a reliable numerical model of the system in order to

correlate the natural frequency changes for identifying the

damaged locations. This allows dealing with any structure

independently of its geometry and/or material characteristics.

The approach, based on a combinatorial method, has been

carried out through multicore computers implementing parallel

computation along with smart strategies aimed at reducing the

relevant computational efforts. The parallel computation has

clearly shown successful performance independently of the

structures under investigation.

However, because the combinatorial method alone can, still

today, become cumbersome for several structures and even

when a high number of cores are available, the present work

has introduced two smart filters (or criterions) aimed at

reducing the computational work. The relative gain of

computational saving associated to one of the filters has also

been theoretically proved. The efficiency of these smart filters

has been tested in relevant simulations and one (Filter 1) can

even be used alone to single out macro areas within which

damage can be potentially insulated; this is achieved by using

very few natural frequency changes. The efficiency of such a

Filter 1 should be considered highly worthy of mention for two

reasons: (i) the analyst can focus the attention on a specific

area, (ii) few elements need to be investigated for damage

detection, thus making the combinatorial approach feasible for

many structures and even through few measurements (i.e.,

natural frequencies).

References

Adams, R.D., Cawley, P., Pye, C.J. and Stone, B.J. (1978), “A

vibration technique for non-destructively assessing the integrity

of structures”, J. Mech. Eng. Sci., 20(2), 93-100.

Allemang, R.J. and Brown, D.L. (1982), “A correlation coefficient

for modal vector analysis”, Proceedings of the 1st International

Modal Analysis Conference, Orlando, Florida, November.

Chang, P.C., Flatau, A. and Liu, S.C. (2003), “Review paper:

Health monitoring of civil infrastructure”, Struct. Hlth. Monit.,

2(3), 257-267.

Contursi, T., Messina, A. and Williams, E. (1998), “A multiple-

damage location assurance criterion based on natural frequency

changes”, J. Vib. Control, 4(5), 619-633.

Dimarogonas, A.D. (1996), “Vibration of cracked structures: A

state of the art review”, Eng. Fract. Mech., 55(5), 831-857.

Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), “A summary

review of vibration-based damage identification methods,

identification methods”, Shock Vib. Digest, 30, 91-105.

Fan, W. and Qiao, P. (2011), “Vibration-based damage

identification methods: A review and comparative study”,

Struct. Hlth. Monit., 10(1), 83-111.

Farrar, C.R., Cornwell, P.J., Doebling, S.W. and Prime, M.B.

(2000), “Structural Health Monitoring Studies of the Alamosa

Canyon and I-40 Bridges”, Los Alamos National Laboratory.

Farrar, C.R., Doebling, S.W. and Nix, D.A. (2001), “Vibration-

based structural damage identification”, Phil. Tran. Royal Soc.

London A: Math. Phys. Eng. Sci., 359(1778), 131-149.

Friswell, M.I. (2007), “Damage identification using inverse

methods”, Phil. Tran. Royal Soc. London A: Math. Phys. Eng.

Sci., 365(1851), 393-410.

Hakim, S. and Razak, H.A. (2014), “Modal parameters based

structural damage detection using artificial neural networks - a

review”, Smart Struct. Syst., 14(2), 159-189.

Horn, R. and Johnson, C. (1985), Matrix Analysis, Cambridge

University Press.

MathWorks (2017), Matlab© getting started guide.

Messina, A. and Mantriota, G. (2012), “Introspective of damage

detection methods based on natural frequencies changes and

sensitivities”, Proceedings of the 15th International Conference

on Experimental Mechanics, New Trends and Perspectives.

Porto, July.

Messina, A. and Williams, E.J. (1996), “Damage detection and

localisation using natural frequency changes”, Proceedings of

the 1st International Conference on Identification in

Engineering Systems, Wales, Swansea.

Messina, A., Williams, E. and Contursi, T. (1998), “Structural

damage detection by a sensitivity and statistical-based method”,

J. Sound Vib., 216(5), 791 - 808.

Montalvao, D., Maia, N. and Ribeiro, A. (2006), “A review of

vibration-based structural health monitoring with special

emphasis on composite materials”, Shock Vib. Digest, 38(4),

295-324.

Rytter, A. (1993), “Vibrational based inspection of civil

engineering structures”, Ph.D. Dissertation, University of

Aalborg, Denmark.

Salawu, O. (1997), “Detection of structural damage through

changes in frequency: a review”, Eng. Struct., 19(9), 718-723.

Sinou, J. (2013), “A review of damage detection and health

monitoring of mechanical systems from changes in the

measurement of linear and non-linear vibrations”, Hal archives-

ouvertes.fr

Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.

W., Nadler B. R. and Czarnecki J. J. (2004), “A review of

structural health monitoring literature”, 1996-2001, LA (Series)

(Los Alamos, N.M.).

Sonnenhof Holdings (2013), Lisa finite element analysis software

version 8.0.0 (2013), Tutorials and Reference Guide.

http://www.lisafea.com.

PL

469

