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1. Introduction 
 

Damage identification methods, based on changes of 

modal data or, more in general, vibration-based data, have 

attracted the attention of researchers in the past thirty years. 

Hundreds of papers have been written all over the world, 

including reviews or technical reports, trying to recap 

previous work in the last twenty years; in particular, the list 

of references (Dimarogonas 1996, Salawu 1997, Doebling 

et al. 1998, Staszewski 1998, Farrar et al. 2001, Chang et 

al. 2003, Sohn et al. 2004, Montalvao et al. 2006, Taha et 

al. 2006, Su et al. 2006, Friswell 2007, Worden et al. 2007, 

Yan et al. 2007, Fan et al. 2011, Thatoi et al. 2012, Sinou 

2013, Hakim et al. 2014) regards reviews with a rate of 

about one paper per year. Within such a vast scientific 

overview the vibration-based structural health monitoring as 

mean of diagnosis of unhealthy structure (existence of 

damage) is generally also intended as an activity aimed at 

identifying location of damage. The extent of the damage 

and of the residual life of the structure are also recognized 

of engineering interest (Rytter 1993), but both existence and 

location are still playing a significant role in all areas 

interested by structural health monitoring (i.e. aeronautical, 

civil and mechanical engineering). 

The problem of vibration-based structural health 

monitoring is essentially inverse with non-unique solution 

and a few data available, polluted both by noise and 

ambient influences. The appeal of this problem is related to 

the expectation of being able to extract diagnosing 
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information without knowing in advance where the possible 

damage is placed. First traces of such a research activity can 

be found around the 70’ (Adams et al. 1978). The 

development of modern digital systems and the reduced 

costs of devices have also contributed to additionally 

increase ideas, thus resulting in a remarkable increasing 

amount of literature. In broad terms, we could try to recap 

the state of the art of the proposed methodologies by 

looking at the existence of two approaches: (i) vibration-

based structural health monitoring by only using the actual 

system and (ii) vibration-based structural health monitoring 

by including a comparison of the actual system to its 

original healthy state. Along with such proposed 

methodologies, the nature of adopted data also plays a 

fundamental role in distinguishing different approaches. 

In this latter regard since Adams et al. (Adams et al. 

1978) launched the idea of using natural frequencies, 

several researchers based their investigations on these 

particular set of data simply because such a set is privileged 

for several reasons: (i) its measurement is cheap if 

compared to the measurement process of other modal data 

(i.e. damping or mode shapes), (ii) its measurement is quite 

stable, accurate and relatively less polluted by noise (e.g., 

(Messina et al. 1996)) and, finally, (iii) each natural 

frequency which is a potential messenger of the health state 

of the system can, in principle, be measured without 

necessarily knowing a priori the potential damaged location. 

Of course, such a set of modal data is not only bearer of 

good news; we cannot indeed forget that N natural 

frequencies are just a list of N numbers and, even though 

their N variations symptomatically can represent that 

something in the system under test is changing, we have not 

any direct correlation between such varied numbers and the 

same system. Therefore, even though natural frequency 

changes could serve as a warning against insurgent damages 
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(detection), key information correlating the frequencies 

changes (between health ad damaged structures) with the 

geometry of the system under test is needed to single out 

damaged places (location); to this end the numerical model 

is the key information providing the correlation between 

natural frequency changes (differential or finite) and the 

system. 

The attraction of using such procedures (based on 

frequency changes), for an analyst, becomes therefore quite 

clear especially when we realize that the literature is 

recently re-evaluating frequency shifts; indeed, ref. (Sinou 

2013) recognizes that even if a lot of robust and new tools 

based on linear measurements have been developed, using 

frequency shifts to detect damage appears to be more 

practical in engineering applications. On the other hand, 

however, the analyst should also be willing to implement a 

related numerical model whenever his/her analysis is 

related with detection and placement of damage. Based on 

the above premise in 1998 (Messina et al. 1998) a damage 

identification procedure driven by the optimization of a 

specific objective function (MDLAC: Multiple Damage 

Location Assurance Criterion) was introduced and is here 

taken into account as a starting base. MDLAC was later 

used by other researchers in order to extend or generalize 

the method and/or using itself as a base for comparisons 

versus other proposals. The so called MDLAC-strategy in 

ref. (Messina et al. 1998) was based on the advantage of 

using a privileged class of experimental data (natural 

frequencies) along with the possibility to implement the 

method for any type of structure (beam, plates, truss, frames 

etc.). As extensively discussed in ref. (Messina et al. 2012), 

MDLAC was initially introduced (Messina et al. 1998) in 

conjunction with the sensitivity frequencies of the system 

around its healthy condition and thus basing the approach 

on a first order perturbation of the natural frequencies 

around the healthy condition; in this regard the MDLAC 

approach, based on the classification of ref. (Friswell 2007), 

would belong to the class of sensitivity methods. 

The damage at its early stage is well represented through 

a differential formulation, although the frequency shifts 

could more easily be masked by shifts due to influences 

which are not properly related with occurring damage (i.e., 

ambient and/or noise influences); therefore, the present 

work is aimed at extending the MDLAC approach from a 

differential formulation to a finite formulation by 

simultaneously keeping the adoption of a privileged class of 

experimental data: natural frequencies. The criterion based 

on MDLAC is also kept, because MDLAC, being based on 

a statistical comparing criterion, showed even the ability to 

slightly go over a differential formulation, although an 

increasing number of damaged sites along with remarkable 

finite damage could create uncertain identifications. The 

extension of the classical MDLAC approach (Messina et al. 

1998) to use finite frequency changes is herein carried out 

exploiting parallel computing on multicore processors. The 

challenge related to the computational effort required is 

overcome through the selection of a reduced set of possible 

scenario-solutions; in this latter regard, two different 

criterions are introduced along with recommendations to 

efficiently implement them in parallel. The analysis, the 

criterions and the implementations are carried out within the 

frame of large complex structures and also by accounting 

for the reality, uncommonly taken into account in the 

literature, i.e., distinguishing between finite elements with 

damaged places. 

 

 

2. Theoretical formulation of the damage detection 
method 

 

Let us call ∆fe the column vector containing the relative 

measured frequency changes which are experimentally 

measurable (N) and occurring between the healthy and 

damaged states of the system, i.e. ∆fe = ((𝑓1
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

−

𝑓1
𝑑𝑎𝑚𝑎𝑔𝑒𝑑

)/𝑓1
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

, … , (𝑓𝑁
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

− 𝑓𝑁
𝑑𝑎𝑚𝑎𝑔𝑒𝑑

)/𝑓𝑁
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

)
𝑇

. 

If a numerical model of the system is available, a 

correlation between the finite measured frequency changes 

(∆fe) and a generic set of relative numerical frequency 

changes (∆fn) can be evaluated through the following 

equation. 

cos(∆fe, ∆fn )2=
(∆fe

T∆fn)
2

(∆fe
T∆fe)(∆fn

T∆fn)
 (1) 

Eq. (1) corresponds to an extended version of MDLAC 

(Messina et al. 1998) which was originally implemented 

between finite frequency changes compared to differential 

approximations. Eq. (1) also stresses how the MDLAC 

criterion is established through the squared cosine of two 

vectors (e.g., Horn et al. 1985) straightforwardly clarifying 

the reason why the result belongs to [0, 1], with 0 indicating 

no correlation and 1 indicating an exact match between the 

patterns of finite frequency changes. Any other value of the 

squared cosine in the middle between (0, 1) is assumed as 

measuring a correlation between pairs of vectors. An 

alternative to criterion (1), aimed at comparing vectors, 

could be, for example, the Euclidean distance between 

vectors. However, this proved to be experimentally not 

effective as the criterion established by the squared cosine 

(1). The numerical model we assume to have available 

consists essentially of two matrices (mass and stiffness 

matrix) related through Eq. (2) to the relevant modal 

parameters of the system (natural frequencies in Hz: fk= 

ωk/2π =√𝜆𝑘/2π) 

(K − λ
k
M)

k 
= 0 (2) 

In this work, we simulate an occurring damage as a 

uniform elemental reduction of the stiffness in Ne finite 

elements through their respective elemental stiffnesses. 

Such a uniform elemental reduction is realized by 

associating a relevant stiffness reduction coefficient Dj 

multiplying the structural element matrix (Kj) as in (3) 

(Messina et al. 1998). 

K = ∑ DjKj

Ne

j=1

 (3) 

where, Dj=1 for no damage and Dj=0 for complete loss of 

the jth element (in this latter case the damage corresponds 
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to 100%). 

 
2.1 Parallel implementation on multicore computers: 

the combinatorial method 
 

The algorithm proposed in this work basically founds its 

rationale on Eqs. (1)-(3). Namely, we are looking for a 

testing damaged scenario Dt=(D1, D2, ..., DNe)
T
 which 

applied to (3) is able to furnish a global stiffness matrix 

whose eigenvalues analysis through Eq. (2) provides finite 

natural frequency shifts (i.e., ∆fn) perfectly correlated to the 

experimental eigenvalues shifts (i.e., cos(∆fe, ∆fn)
2
=1 

through Eq. (1)). In spite of the simplicity of this rationale, 

we could clearly realize that such a simple algorithm is 

unpractical or even impossible to carry out without any 

further consideration. Indeed, owing to the fact that the 

damage is unknown (placement and extents), the number of 

possible combinations of testing damaged scenarios is 

infinite; moreover, the required number of eigenvalue 

analyses (2) would be infinite as well. However, if we 

assume that our damaged system contains both a maximum 

number of damaged locations (Nd) and a maximum number 

of damage levels (Nl) in an established scale (for example 

we assume testing Nl=9 levels from 0% up to Lmax=80% by 

10% steps), then the number of eigenvalue (Na) analyses 

and the relevant comparisons would correspond to the 

following equation 

Na(Ne, Nd, Nl) = (
Ne

Nd
* Nl

Nd =
Ne!

Nd! (Ne − Nd)!
Nl

Nd (4) 

Eq. (4) should be read through two essential terms, i.e., 

n1 and n2. In particular, n1 refers to the binomial coefficient 

Ne choose Nd and multiplies n2=Nl
Nd

. In other terms, n1 

corresponds, all over the elements of the system, to the 

number of all possible combinations of Nd damaged 

elements. If we were certain about the existence of a single 

damage level, we would need to test, by comparing (∆fe, 

∆fn), only n1 cases. Since we are assuming that each 

element can be subject to Nl possible damage levels (or 

close to each one of these levels), then each single 

combination of Nd elements in the population of n1 cases 

can be subject to n2 damaged scenarios. In total, we have to 

compare, as stated by equation (4), Na=n1n2 pairs of 

frequency shifts (∆fe, ∆fn) and aiming at choosing the 

respective scenarios providing the highest squared cosine 

(1). Therefore, on the basis of Eq. (4), the most critical 

computational aspects of the problem we are dealing with 

are the following two main points: (i) the need to store 

matrix Cn1xNd keeping all possible combinations of 

potentially damaged elements along with matrix Vn1xNd 

which keeps all possible damaging levels of all elements 

listed row by row in C; (ii) the need to solve the 

eigenproblem (2) Na = n1n2 times. 

Both matrices C and V play a significant role in our 

approach because they can become extremely large 

depending on the investigated scenario; in this regard, the 

analyst could save these matrices on disk or keep them into 

Random Access Memory (RAM). The practice of keeping 

(C, V) into the RAM is faster and should be always 

preferred as it has been carried out in this work; however, 

the required amount of RAM may be high. For example, if 

an analyst sets up four possible damaged elements (Nd=4) 

through 10 levels of possible damage (Nl=10) in a finite 

elements model constituted by Ne=250 elements, the 

required memory allocation in double precision for C and V 

would be 4.7 GB along with Na=1,588,827,500,000 

analyses (2). As a second example, a numerical FE-model 

made up of 930 elements (e.g., the model in ref. (Farrar et 

al. 2000)) would even require about 923 GB to store C and 

V whilst requiring Na=309,681,406,800,000 analyses. The 

above mentioned computational efforts could seem 

unfeasible but they should be read within the context of the 

most modern workstations and computers available today. 

Indeed, current workstations can be easily configured with 

1024 GB of RAM and several multicore processors; even 

high-end laptops can be equipped with 64 GB of RAM 

along with quad core processors. The configuration and 

performances of computers dramatically increase when 

high-performance computing systems (HPC) are taken into 

account. With regard to the TOP500 List of June 2016 

(TOP500.org 2017), the number one HPC system Sunway 

TaihuLight is equipped with 10,649,600 cores and 

1,310,720 GB of memory. Therefore, if the proposed 

damage detection procedure would be solely implemented 

through Eqs. (1)-(3) on the most intensive above mentioned 

case (Ne=930, Nl=10, Nd=4) its computational effort on the 

Sunway TaihuLight, would be abated to at most 

Na=29,079,159 analyses per core. 

It is finally stressed that each analysis among the 

population of Na analyses is absolutely independent and can 

be carried out without requiring any intermediate results 

extraneous to the specific and single analysis; from a 

computational point of view such a situation requires 

implementing a straightforward embarrassingly parallel 

application. 

 

2.2 Filters excluding improbable damaged scenarios 
 

In spite of the possibility offered by the most modern 

computers equipped with multicore processors, still there exist 

the need to reduce the number of eigenvalue analyses (2) (i.e., 

Na=n1n2). In this regard two distinct filters (or procedures) are 

herein presented in order to exclude a number of elements as 

being potentially undamaged and thus reducing the number of 

eigenvalue analyses. Both the procedures are based on a linear 

approximation and are herein tested along with the 

combinatorial method described in Section 2.1. We shall also 

test one of the procedures by proving that it is able by itself, i.e. 

independently from the combinatorial method, to coarsely 

single out large regions where the damage could be placed. 

 
2.2.1 Filter 1: Large-scale damage detection method 
This method is essentially designed in order to coarsely 

locate large areas where the damage can be potentially 

placed. For this reason, such a method is implemented to 

directly detect damaged large areas rather than aimed at 

complementarily excluding potentially undamaged areas. 

Of course, if the method were able to properly single out 

such large areas where the damage is potentially placed it 

would be able to provide an indication regarding the 
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elements which are undamaged and should be excluded 

from any more accurate subsequent investigation. The 

method is initially funded on the following equation which 

is based on a linear approximation 

𝛿f
k

= f
k,D1

𝛿D1+…+ f
k,DNe

δDNe         k = 1,…, N (5) 

between a general damaged scenario (δD1, δD2,..., δDNe) 

and its consistent variation of measurable natural 

frequencies (δf1, δf2,..., δfN) where fk,Dj indicates fk/Dj with 

j=1,...,Ne. Eq. (5) states an evident differential relationship 

among the above mentioned quantities; such a relationship 

is however, based on the choice of looking at any element 

(for j=1,..., Ne) as bearer of a potential damage. This choice 

is strategically the simplest one and it is usually adopted in 

all the algorithms proposed in the literature. However, we 

cannot ignore that elements are usually part of a mesh 

which is conditioned by convergence criterions, 

technological needs etc. Above all, any valid reason aimed 

at believing that a damage must occur in single elements 

does not exist at all. Conversely, when an FE-model has 

been built up along with its mesh, we should expect a 

damaged zone generally different by a damaged element. In 

other words, we should introduce the concept of zones that 

can contain damage and, more specifically, (i) zones which 

are arranged by the analyst depending on the investigated 

model within its FE-scheme, (ii) a zone can fall in an 

element or in a group of elements, (iii) such a zone can even 

contain both damaged and undamaged elements. This latter 

eventuality is more in agreement both with macro-damage 

we are dealing with FE-schemes which are usually 

characterized by many elements for, at least, convergence 

criterions. 

In this perspective, we could implement an algorithm by 

associating a damaging coefficient (Zi with i=1,...,Nz) at 

each single zone rather than associating a damaging 

coefficient (Dj with j=1,…, Ne) at each single element. 

Based on this choice to group several elements in each 

zone, the number of zones will be less than or equal to the 

number of elements (Nz≤Ne). Such a choice would 

transform Eq. (5) in Eq. (6) 

𝛿f
k
= f

k,Z1
𝛿Z1+…+f

k,ZNz
𝛿ZNz         k = 1,…, N (6) 

where fk,Zi indicates fk/Zi with i=1,...,Nz, and a uniform 

condition of damage per zone has been attributed. At this 

stage, by taking into account the uniqueness of a damaged 

zone and comparing Eqs. (5) and (6), for example with 

regard to zone 1 made of N1 elements, the following 

equation holds. 

f
k,D1

𝛿D1+…+ f
k,DN1

𝛿DN1 = f
k,Z1

𝛿Z1 (7) 

From Eq. (7), recalling the physical meaning of the 

sensitivity terms (i.e., property 2 in appendix of ref. 

(Contursi et al. 1998)) it is possible to realize that the 

formal position aimed at classifying N1 elements in an 

established group essentially consists of evaluating an 

extent of damage for a zone which is a mean weighted 

through the frequency sensitivities (8). 

𝛿Z1=
f
k,D1

𝛿D1+…+ f
k,DN1

𝛿DN1

f
k,D1

+…+ f
k,DN1

 (8) 

 

 

Fig. 1 Filter 1: flowchart 

 

 

Eq. (8) through its simplicity proves some intriguing 

and non-negligible aspects. For example, if a high value of 

damage, even finite, is present only in one element or in a 

few ones of the group, we should expect an evaluation of 

damage spread over the entire zone and thus leading to a δZ 

less than the true localized damage; such a minor extent of 

damage also goes in the direction of improving the 

differential relationship between damage and the consistent 

elementary variation of frequencies. Moreover, the problem 

of the real availability of experimental data (usually 

consisting of a few lower natural frequencies) is also 

mitigated: indeed, a method working with zones goes in the 

direction of reducing the gap between unknowns (damaged 

zones) and data (natural frequency changes). Therefore, an 

approach dealing with zones is generally expected to 

provide benefits. 

A question remains open regarding the criterion of 

making up groups of elements in Nz zones where each zone 

is characterized by a uniform damage (δZi with i=1,...,Nz). 

In this work, we shall create zones by classifying elements 

having centroids placed at the lowest distance from a 

reference point. Once zones are defined, the algorithm 

herein used to identify damage shall be based on the 

classical MDLAC (Messina et al. 1998) implemented per 

zones rather than per elements. In both cases the function 

fmincon() built-in within the Matlab Optimization toolbox 

(MathWorks 2017) is used. MDLAC shall provide the 

damaged zones or equivalently shall implement a large-

scale damage detection method, as well as allowing a 

subsequent focused application of the combinatorial method 

on a drastically reduced number of potentially damaged 

elements or subzones. Fig. 1 depicts the flowchart of this 

filter and clarifies that its output, as implemented in the 

present context, regards a set of elements probably damaged 

because belonging to the zones which have been detected as 

containing damage.  
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2.2.2 Filter 2: Sensitivity damage exclusion method 
This filter is strictly designed in order to work for the 

combinatorial method. We have experimentally confirmed in 

all the implementations carried out in this work that the 

eigenvalue analysis (2) represents the most demanding part of 

the combinatorial method, requiring Na (4) analyses. Therefore, 

this filter was designed in order to exclude certain Nd 

combinations reasonably undamaged. For example, Na 

analyses contain combinations certainly and trivially 

undamaged such as all the n1 rows in matrix C respect to the 

undamaged condition, which are strongly uncorrelated with 

any damaged scenario because in ideal conditions 

(uncontaminated measurements by noise and/or ambient 

influences) the relevant patterns of frequency changes ∆fn 

would be coincident with the nil vector. This latter statement 

can be generalized introducing the following filter: any 

simulated damaged scenario providing an uncorrelated pattern 

of frequency changes, which means providing a cos(∆fe, ∆fn)
2
 

lower than a threshold value, is excluded from the Na analyses. 

By looking at the combinatorial method, such a filter 

would seem to be unfeasible or resulting in a vicious circle; 

namely, in order to estimate if a simulated damaged scenario 

provides an uncorrelated pattern of frequency changes an 

eigenvalue analysis (2) is needed to produce the pattern of 

frequency changes. It would be, indeed, a vicious circle if we 

pretend to accurately compute the pattern of frequency changes 

due to the simulated damaged scenario; differently such a filter 

is applied by estimating (rather than accurately computing) the 

pattern of frequency changes due to the simulated damaged 

scenario. Such an estimation is herein carried out through the 

linear approximation of Eq. (9). 

From Eq. (9), it is clear that the estimation of relative 

frequency changes is carried out by a linear approximation 

through a sensitivity matrix evaluated once for all at any 

beginning analysis. This implies that before carrying out an 

eigenvalue analysis a correlation test is carried out as reported 

in Fig. 2, which shows that operationally the present filter 

consists of making a matrix product (9) for subsequently 

carrying out the evaluation of a cos()
2
 (Eq. (1)), operations 

which are computationally much less demanding than an 

eigenvalue analysis (Eq. (2)). The latter is carried out only if 

 

 

the simulating damage vector ∆D passes through the filter 

acquiring the qualification of probable damaged scenario. 

∆fn
e = (

∆f
n1

 e /f
1

 healthy

⋮

∆f
nN

 e /f
N

 healthy

, 

= [

f
1,D1

/f
1

 healthy … f
1,DN𝑒

/f
1

 healthy

⋮ ⋱ ⋮

f
N,D1

/f
N

 healthy … f
N,DN𝑒

/f
N

 healthy

] ∙ (
∆D1

⋮
∆DN𝑒

+ 

(9) 

In order to implement the filter in Fig. 2, the analyst 

must set a threshold which can be set in the range [0, 1] 

where 0 means the filter 2 is completely bypassed whilst a 

threshold equal to 1 means a filter probably closed with the 

possibility to provide an empty set of damaged scenarios. 

 

 

3. Implementation of the combinatorial method and 
Filters 1 & 2 
 

In this Section the implementation regarding the 

combinatorial method along with the filters by themselves or in 

a mutual co-operation are illustrated by keeping in mind 

multicore processors used to design serial and parallel 

algorithms. The relevant numerical implementations have been 

based on the parallel computing toolbox (Ver. 6.6) 

implemented in Matlab (R2015a), running on a computer 

equipped with an Intel I7 2.5 GHz quad-core processor, and 16 

GB of RAM. 

As reported in Fig. 3, the starting point is based on a pattern 

of experimental finite frequency changes (∆fe) which alarms 

the analyst with regard to significant changes occurring on the 

system. Such a condition starts the operations aimed at 

searching the damaged scenario. Filter 1 is initially applied in 

order to single out probably damaged zones; these zones are 

constituted by a number Re of elements (located in damaged 

zones) generally less than Ne. The searching method is then 

focused among these Re elements once a maximum number of 

damaged elements (Nd) has been set through an established 

number of damaged levels (Nl). Therefore, all the possible  

 
Fig. 2 Filter 2: flowchart 
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combinations of Nd elements are allocated in Cn1xNd and for 

each of its rows n2 damaged scenarios (Vn2xNd) should be tested 

by running Eqs. (1)-(3). At this stage filter 2 can save 

significant computational time; indeed, filter 2 dynamically 

allows comparing pairs (∆fe, ∆fn) by running Eqs. (1)-(3) only 

when δfn passes through the same filter. In this way, the 

eigenvalue analysis (Eq. (2)) is carried out only when it is 

certainly required, thus saving a significant amount of 

computational time. 

Before closing this paragraph, a note is worth mentioning 

when the perspective is to carry out the comparisons among 

the residual damaged scenarios through an embarrassingly 

parallel application: the rows of Cn1xNd should be randomly 

permuted; if this recommendation were not followed the whole 

computational workload could be carried out by only one of 

the cores and the advantages of parallel computing could be 

entirely lost. 

 
 
4. Numerical examples 

 
The combinatorial method is herein tested versus two 

examples: (i) a clamped 2D Euler-Bernoulli beam meshed 

 

 

through 10 and 60 elements and (ii) a truss structure realized 

through 250 classical rod elements. These two examples are 

structurally different and were chosen in order to prove the 

capability of the combinatorial method to identify damaged 

locations even though only a few natural frequencies are 

available and independently from the structural case under test. 

In both cases filters 1 and 2 (Figs. 1, 2) are used along with the 

combinatorial method; however, the ability of filter 1 of 

identifying macro damaged areas is also illustrated 

independently of using or not the combinatorial method. The 

beam (Fig. 4) is characterized by the following material and 

geometric characteristics: length 1 m, density 7860 kg/m
3
, 

Young’s module 210 GPa, a square transversal section 1 cm×1 

cm. 

The second example (Fig. 5) consists of a truss tower 

(Sonnenhof Holdings 2013) 20 m high and made of 10 

identical double frames (1 m×1 m×2 m) connected end to 

end. All joints are free to rotate in any direction. The 4 

nodes at the base are constrained against displacement in all 

directions. All beams have the same material (200 GPa and 

density is 7800 kg/m
3
) and whilst the chords at the corners 

have 0.01 m
2
 cross sectional area, the bracing members 

have 0.001 m
2
 cross sections. 

 
Fig. 3 The full procedure: flowchart 
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Fig. 4 Clamped 2D Euler-Bernoulli beam meshed through       

10 and 60 elements; nomenclature 

 

 

Fig. 5 Truss structure realised through 250 elements; basic 

group (double frame) and nomenclature (ref. (Sonnenhof 

Holdings 2013)) 

 

 

4.1 The case of a clamped beam 
 

Based on Fig. 4 two meshes have been taken into account: 

10 and 60 elements. With regard to the clamped beam the 

numeration of the elements follows the natural numbers 

through a unitary step. This is a particular case where the 

number of an element is representative of its location; in 

general, this is not true as Fig. 5 clearly shows. The natural 

frequencies slightly change when two meshes are used but this 

has not been considered significantly relevant with the strategy 

we are dealing with; f
healthy

[Hz]MESH10=(8.349856, 52.32934, 

146.5561, 287.3920, 475.8238, 712.8381, 1,000.146, 

1,339.921, 1,732.5001, 2,153.748); f
healthy

[Hz]MESH60= 

(8.349849, 52.32761, 146.5189, 287.1187, 474.6283, 

709.0144, 990.2808, 1,318.431, 1,693.469, 2,115.403). 

Fig. 6 illustrates in one graph three location charts of the 

damage with regard to the mesh of 10 elements. The white 

bars, in this and in all of the next figures, correspond to the 

simulated true damaged scenario whilst the red bars 

represent the identified damage based on the first ten 

natural frequency changes. 

The red vertical bars illustrate the identified damage 

through the classical MDLAC (Messina et al. 1998), 

element by element, whilst the red horizontal bars illustrate 

the identified damage through the classical MDLAC based 

on zones rather than on elements. In this latter case Filter 1 

has been adopted to identify the areas where the damage 

can be potentially located; in this regard the reference point 

was the clamped node whilst the zones containing the 

remainder elements (due to the fact that Ne/Nz is not usually 

an integer number) were randomly distributed all over the 

zones. Each horizontal bar has a length proportional to the 

number of elements grouped in its respective zone; i.e., 

counting the zones from left to right in Fig. 6 as (1, 2, 3, 4) 

they contain elements [(1, 2), (3, 4, 5), (6, 7, 8), (9, 10)]  

Table 1 Damage detection results by using MDLAC based 

on only Filter 1 (ref. Fig. 4(a)); Nz=4, N=6 frequency 

changes; true damaged scenario: ∆D1=30%, ∆D6=60% 

Run 
Zone 1: 

dam% 

Zone 2: 

dam% 

Zone 3: 

dam% 

Zone 4: 

dam% 

1 1,2,3: 6.4 4,5,6: 47 7,8: no damage 9,10: no damage 

2 1,2,3: 6.4 4,5: 59 6,7,8: 7.7 9,10: no damage 

3 1,2: 26 3,4,5: no damage 6,7,8: 30 9,10: no damage 

4 1,2: 23 3,4,5: no damage 6,7: 49 8,9,10: no damage 

 

Table 2 Damage detection results by using MDLAC based 

on only Filter 1 (ref. Fig. 4(a)); Nz=3, N=6 frequency 

changes; true damaged scenario: ∆D1=30%, ∆D6=60% 

Run Zone 1: dam% Zone 2: dam% Zone 3: dam% 

1 1,2,3,4: 10 5,6,7: 39 8,9,10: no damage 

2 1,2,3: 6.4 4,5,6: 47 7,8,9,10: no damage 

 

 

Fig. 6 Location chart through MDLAC for elements and for 

zones (MESH:10). The absolute % frequency changes 

(100x∆fe) correspond to 8.63, 15.7, 5.55, 8.48, 6.32, 6.05, 

6.98, 6.95, 5.80, 8.02 

 

 

respectively. The percent damage is written close to each 

single horizontal bar if damaged through a significant 

percent. 

Fig. 6 was based on the use of the first 10 natural 

frequency changes and clearly shows the capability of Filter 

1 to correctly identify macro areas containing damaged 

places. A similar performance was obtained by using the 

first six natural frequencies as well as by meshing the whole 

beam in three distinct areas; in this regard Tables 1 and 2 

illustrate the capability of Filter 1 to single out areas 

containing damaged elements. Tables 1 and 2 contain more 

lines with each respective simulation in order to show that 

the random grouping of elements in zones does not 

significantly affect the result. Finally, with regard to Fig. 6, 

it could be of a certain interest to know that MDLAC run on 

10 elements took about 1 second whilst it took about 0.2 

seconds when run on four zones. In practice, MDLAC run 

on zones was about 5 times faster. 

Fig. 7 is the counterpart of Fig. 6 when the clamped 

beam is meshed on the base of 60 elements. In this regard, 

four sub cases were analyzed with (3, 4, 5, 6) zones 

respectively (corresponding to Fig. 7(a), 7(b), 7(c) and 

7(d)). Fig. 7 clearly shows the capability of Filter 1 to 

accurately single out the macro areas where the damaged 

elements are placed. In this case the classical MDLAC ran 
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on 60 elements taking about 9 seconds whilst the same 

algorithm, when run per zones, took about 0.2 seconds 

almost independently of the number of zones (in this case, 

MDLAC run on zones was about 45 times faster); this latter 

result is evidently due to the marginal time required in all 

these cases where a few zones were adopted. However, in 

addition to all the above considerations we should recognize 

as impressive the capability of Filter 1 to single out macro 

areas containing damage or, complementarily, its capability 

to exclude others macro areas which could be considered 

healthy. 

On the basis of the performance shown by Filter 1, it 

comes quite natural and advantageous the application of the 

combinatorial method (Fig. 3) aimed at investigating a 

reduced number of elements when a finite damage is 

expected to be localized in macro areas. Therefore, in order 

to show the capability of the combinatorial method, based 

on both serial and parallel computing, the specific damaged 

scenario involving elements number 3 and 33 (over a mesh 

of 60 elements) with a percent damage of 60% and 90% 

respectively, is carried out. Ten frequency changes are still 

taken into account and the combinatorial method depicted 

in Fig. 3 is applied on the basis of four zones grouping 

fifteen elements per zone, by assuming Nl=10, Lmax=95%, 

Threshold=0 or 0.5 (Filter 2) and Nd=2 or 3. Here it is added 

the strategy suggested in ref. (Messina et al. 2012) which is 

aimed at applying the combinatorial method in two 

subsequent phases. The first phase investigates the whole 

structure or a portion of it (depending on the application or 

the exclusion of Filter 1 respectively) and tries to reduce the 

computational effort by assuming a reduced number of 

damaging levels (the mentioned Nl=10) whilst the second 

phase applies again the combinatorial method on the best 

 

 

solution achieved after running the first phase on Nd 

elements; in the second phase the number of damaging 

levels is increased to Nl=100 because the combinatorial 

method shall be applied on Nd elements only, thus allowing 

a significantly reduced computational effort. 

Fig. 8 illustrates the capability of MDLAC based on 

elements (classical MDLAC) and on zones (MDLAC 

identifying damaged macro areas). Fig. 9 illustrates the 

capability to correctly identify the damaged sites through 

the combinatorial method when all the possible damaged 

elements are tested. 

The damage detection illustrated in Fig. 9 has been 

achieved by carrying out the computation serially with 

Nd=2, by activating both Filter 1 (Nz=4) and Filter 2 

(Threshold=0.5), by using the first ten natural frequency  

 

 

 
Fig. 8 Location chart through MDLAC for elements and for 

zones (MESH:60). The absolute % frequency      

changes (100x∆fe) correspond to 6.35, 14.7, 3.56,      

8.87, 3.74, 5.16, 4.51, 2.52, 5.28, 1.11 
 

  
(a) Nz=3 (b) Nz=4 

  
(c) Nz=5 (d) Nz=6 

Fig. 7 Location chart through MDLAC for elements (MESH: 60) and for zones. The absolute % frequency changes      

(100x∆fe) correspond to 8.63, 15.7, 5.55, 8.48, 6.33, 6.05, 7.09, 6.79, 6.49, 7.92 
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Fig. 9 Location chart through MDLAC and combinatorial 

method (ref. Figs. 3, 8) (MESH:60). Mode: serial 

computation 

 

 

changes and leaving Nl=10 for the first and Nl=100 for the 

second phase respectively. 

The damage detected in Fig. 9 produces a pattern of 

natural frequency changes which are correlated with the 

simulated counterpart through a squared cosine (equation 

(1)) (let us call it a MAC as in (Allemang et al. 1982)) equal 

to MACIphase=0.9983 and MACIIphase=0.9999935. Such a 

Fig. 9 was obtained after running a simulation taking about 

26 seconds. An identical picture was achieved when the 

routines were run by increasing Nd from 2 to 3; in this latter 

case the location 14 was also slightly detected as damaged 

with 1% of damage which does not disrupt the excellent 

capability of the combinatorial method to detect the true 

damaged scenario. 

The damage detection, based on the combinatorial 

method, was then run by changing the involved parameters 

in order to appreciate the computational effort involved; in 

all the simulations Fig. 9 is representative of the capability 

of the method to detect the damage as above described. 

What, instead, needs to be appreciated is the computational 

time required, which, for the combinatorial strategy we are 

dealing with, is the most representative parameter 

describing the successful or unsuccessful application of the 

method; in this regard Tables 3 and 4 recap the 

performances of the method. Namely Table 3 and Table 4 

refer to assuming Nd=2 and Nd=3 respectively. Both Tables 

3 and 4 show how the computational time taken is well 

correlated with the number of analyses required. In 

particular, profiling the code during runs clarified that the 

required computational time was mostly due to the routines 

extracting eigenvalues. Therefore, in general efficient 

routines extracting eigenvalues would result in great 

computational savings. 

The first four rows in both tables regard the performance 

of the method when it is run on the basis of classical serial 

computation. Instead, the last four rows refer to the 

combinatorial method performed by using parallel 

computing through four cores. For each core the respective 

number of analyses is reported in the second column. In 

particular, in order to partition the analyses to be carried out 

among the available cores, we use a 1D block-based domain 

decomposition technique, commonly used in parallel 

computing, i.e., the Na analyses to be performed are 

distributed to the p available cores so that each one is 

responsible for either ⌊Na/p⌋ or ⌈Na/p⌉ elements; letting left 

and right be respectively the indices of the first and last 

analysis performed by the core with rank id (ranks are 

numbered from 0 to p−1), then the core whose rank is id  

Table 3 Performance table for the combinatorial method 

(Nz=4, Threshold=0.5) serial and parallel runs, N=10, Nd=2; 

true damaged scenario: ∆D3=60%, ∆D33=90% 

Mode 
Procs:  

Analyses 

Filter 

1 

Filter 

2 

Comp.  

Time [s] 

First phase 

no analyses 

(Na) 

First phase 

analyses 

excluded (%) 

Serial 1: 177,000 no no 180 177,000 0 (0) 

Serial 1: 81,916 no yes 80 81,916 95,084 (54) 

Serial 1: 43,500 yes no 41 43,500 133,500 (75) 

Serial 1: 28,311 yes yes 26 28,311 148,689 (84) 

Parallel 

1: 44,300 

2: 44,200 

3: 44,300 

4: 44,200 

no no 74 177,000 0 (0) 

Parallel 

1: 20,605 

2: 18,933 

3: 21,694 

4: 20,684 

no yes 44 81,916 95,084 (54) 

Parallel 

1: 10,900 

2: 10,900 

3: 10,800 

4: 10,900 

yes no 32 43,500 133,500 (75) 

Parallel 

1: 7,197 

2: 7,169 

3: 7,052 

4: 6,893 

yes yes 29 28,311 148,689 (84) 

 

 

performs all the analyses in the range [left, right], with left 

=⌊(id−1)Na/p⌋ and right=⌊id Na/p⌋−1. It follows that the core 

whose rank is id performs a total of ek=⌊(id+1) Na/p⌋−⌊id 

Na/p⌋ analyses. The third and fourth columns report using or 

not Filters 1 (Nz=4) and 2 (Threshold=0.5). The fifth 

column lists the computational time required by the 

combinatorial method whilst the last two columns reports 

the required number of analysis (Na) and the analyses 

eventually excluded by the Filters 1 and/or 2. 

In particular, with regard to Table 3 (Nd=2), the 

combinatorial method requires Na=177,000 analyses. Such 

analyses are totally carried out unless Filter 1 and 2 are 

used; this happens independently of the mode (serial or 

parallel). For example, when both filters are activated, only 

28,311 analyses are carried out whilst the remaining 

148,689 (corresponding to 84% of the whole computational 

work) are excluded. Looking at such a simple example, the 

importance of designing efficient filters should be 

appreciated. 

With regard to specific comparisons between serial and 

parallel computations, by looking at Table 3 it would seem 

that certain circumstances can let the serial computation to 

be less time consuming than the corresponding parallel 

computation. Indeed, when both filters are activated the 

serial computation takes about 26 seconds to complete the 

analysis whilst its counterpart, based on parallel computing, 

takes 3 seconds more. In all the remaining cases the parallel 

computation is faster. This can be explained taking into 

account tha t  the para l lel  computa tion incurs a 

computational overhead (due to the time required for the 

activation of the Matlab Parallel Toolbox on the available 

cores, concurrent access to shared memory etc.) which can 

make it not convenient when the number of required 

analyses falls down a machine specific threshold; this is the  
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Table 4 Performance table for the combinatorial method 

(Nz=4, Threshold=0.5) serial and parallel runs, N=10, Nd=3; 

true damaged scenario: ∆D3=60%, ∆D33=90% 

Mode 
Procs: 

Analyses 

Filter 

1 

Filter 

2 

Comp. 

Time [s] 

First phase 

no analyses 

(Na) 

First phase 

analyses 

excluded (%) 

Serial 1: 34,220,000 no no 31,731 34,220,000 0 (0) 

Serial 1: 12,608,078 no yes 20,761 21,611,922 
12,608,078 

(37) 

Serial 1: 4,060,000 yes no 3,789 4,060,000 
30,160,000 

(88) 

Serial 1: 3,449,011 yes yes 3,502 3,449,011 
30,770,989 

(90) 

Parallel 

1: 8,500,000 

2: 8,500,000 

3: 8,500,000 

4: 8,500,000 

no no 10,721 34,220,000 0 (0) 

Parallel 

1: 5,391,059 

2: 5,433,963 

3: 5,385,715 

4: 5,401,185 

no yes 7,053 21,611,922 
12,608,078 

(37) 

Parallel 

1: 1,015,000 

2: 1,015,001 

3: 1,015,002 

4: 1,015,003 

yes no 1,327 4,060,000 
30,160,000 

(88) 

Parallel 

1: 863,722 

2: 866,468 

3: 863,634 

4: 855,187 

yes yes 1,100 3,449,011 
30,770,989 

(90) 

 

 

case in one of our experiments when both filters are 

activated and a significantly low number of analyses is 

taken into account (28,311 with regard to the initial 177,000 

cases). Such an interpretation is confirmed by also looking 

at Table 4 where a particularly high number of cases is 

taken into account (from about 34 to 3.4 millions); here 

independently of the activation or not of the filters the 

parallel approach is always more convenient (less time 

consuming) than its serial counterpart. However, if the 

parallel computation shows interesting performance along 

with the proposed combinatorial method, certainly the 

designed filters play an important role when used in 

combination with it. Indeed, Table 4 makes evident that 

when the classical serial mode is adopted (first row) the 

combinatorial method takes 31,731 seconds (about 9 hours; 

moreover, the second phase, which runs serially, requires 

about 900 seconds); the computational effort reduces to 

about 1/3 when the parallel computation is used (10,721 s) 

and when the parallel computation is used along with the 

activation of both filters the same analysis even runs in 

about 33 minutes letting the computational time reduce to 

about 1/18 (1,100 s).  

We now discuss the performances obtained by the 

parallel implementation. Let T(n,1) be the running time of 

the application performing n analyses when run serially on 

1 core and T(n, p) be the running time when run in parallel 

on p cores. The parallel speedup obtained by the parallel 

application is defined as S(n, p)=T(n, 1)/T(n, p); the 

speedup measures how much an application gains when 

running in parallel on multiple cores. The theoretical 

maximum speedup achievable is p, obtained when the 

parallel overhead is equal to zero. Indeed, denoting the 

parallel overhead by To(n, p), since the total time spent by 

all of the cores is pT(n, p), it follows that pT(n, p)=T(n, 

1)+To(n, p), so that T(n, p)=(T(n,1)+To(n, p))/p and To(n, 

p)=pT(n, p)−T(n, 1). Therefore, we can rewrite the speedup 

as follows: S(n, p)=T(n, 1)/T(n, p)=pT(n, 1)/(T(n, 1)+To(n, 

p)) from which it follows immediately that the S(n, p)=p 

when To(n, p)=0. From a theoretical perspective, 

embarrassingly parallel applications are characterized by 

null parallel overhead. However, in practice the parallel 

overhead is never null. 

An important metric, which measures the utilization of 

the available cores is the parallel efficiency, which is 

defined as E(n, p)=T(n,1)/(p T(n, p))=S(n, p)/p. The 

theoretical maximum efficiency achievable is 1 (or 100%). 

Again, E(n, p)=1 when To(n, p)=0. Indeed, it is enough to 

rewrite the efficiency as E(n, p)=S(n, p)/p=T(n, 1)/(T(n,1)+ 

To(n, p)). A common rule of thumb used by parallel 

application designers and developers is to try to achieve a 

parallel efficiency of at least 0.7 (or 70%). Below this 

threshold, the application is not making a good use of the 

parallel resources available. Tables 5 and 6 report the 

speedup and the efficiency achieved by the parallel 

implementation on 4 cores, respectively for the simulations 

related to Tables 3 and 4. It is immediate verifying that, as 

already stated, the simulations discussed in Table 3 contain 

too few analyses to benefit from parallelization in terms of 

speedup and efficiency. In particular, when both Filter 1 and 

2 are activated, the resulting number of analyses to be 

actually carried out is so small that the corresponding 

speedup is less than 1, i.e., in this case parallel computing is 

worse than its serial counterpart (as already noted). The 

parallel performances depicted in Table 6 are much better, 

owing to the increased number of analyses to be carried out 

despite the powerful action of the filters. Indeed, in all of 

the cases speedup and efficiency values are high. In 

particular, the speedup is around 3 in the first three cases 

when at most one of the filters is activated, and is 3.18 

when both filters are activated (the interested reader should  

 

 

Table 5 Parallel Performance table for the combinatorial 

method (Nz=4, Threshold=0.5) parallel runs on 4 cores, 

N=10, Nd=2; true damaged scenario: ∆D3=60%, ∆D33=90% 

Filter 1 Filter 2 Comp. Time [s] Speedup Efficiency 

no no 74 2.43 0.60 

no yes 44 1.81 0.45 

yes no 32 1.28 0.32 

yes yes 29 0.89 0.22 

 

Table 6 Parallel Performance table for the combinatorial 

method (Nz=4, Threshold=0.5) parallel runs on 4 cores, 

N=10, Nd=3; true damaged scenario: ∆D3=60%, ∆D33=90% 

Filter 1 Filter 2 Comp. Time [s] Speedup Efficiency 

no no 10,721 2.95 0.73 

no yes 7,053 2.94 0.73 

yes no 1,327 2.85 0.71 

yes yes 1,100 3.18 0.79 
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take into account that 4 is the maximum theoretical speedup 

when using 4 cores). The efficiency is greater than 70% in 

all of the cases, and even reaches 79% when both filters are 

activated. Finally, it is worth noting here that the 

performances reported depend heavily on the particular 

technology employed, which is Matlab and its Parallel 

Toolbox. Future improvements to the internals of the 

Parallel Toolbox could lead to increased parallel 

performances without the need to modify the Matlab source 

code. 

Before closing the discussion on Tables 3 and 4 a final 

perusal regarding the effectiveness of Filter 1 is certainly 

worth of further consideration. When Nd=2 (Table 3) is 

taken into account along with the activation of only Filter 1, 

133,500 analyses are excluded by the combinatorial 

strategy, i.e., only 25% of the initial cases needs to be tested 

by leaving the remaining 75% out. When Nd=3 (Table 4) is 

taken into account the percentage of excluded analyses 

increases from 75% to 88% letting us infer that once a 

number of zones (Nz) is established, the relative gain 

increases when the number of potential damaged sites (Nd) 

increases. This can be generalized through the following 

proof. Let G be the relative gain defined as in Eq. (10), in 

which a new term has been introduced (Ne
z) consisting of 

the total number of elements belonging to the Nz zones; in 

this regard Ne > Ne
z  is an inequality which is always true 

for obvious reasons. 

𝐺 =
(

Ne

Nd
* Nl

Nd − (
Ne

z

Nd
* Nl

Nd

(
Ne

Nd
* Nl

Nd

 (10) 

It is clear that the relative gain G has been intended as 

only involving one of the essential terms of Eq. (4) and 

specifically the combinations all over the Ne elements (i.e., 

n1). Accordingly, the second essential term of Eq. (4) (Nl

Nd) 

is simplified. G is clearly less than 1 and corresponds to the 

percentage value reported in Tables 3 and 4 as % in the 

respective last columns. Based on the binomial coefficient 

definition, Eq. (10) can be simplified as in Eq. (11), through 

which it is possible to prove that G is monotonically 

increasing in Nd. 

𝐺=1-
(Ne-Nd)!

(Ne
z-Nd)!

 ∙ 
Ne

z!

Ne!
 (11) 

Indeed, taking into account Eq. (11) and letting G(Nd+1) 

>G(Nd), Eq. (12) follows 

1-
(Ne-Nd-1)!

(Ne
z-Nd-1)!

 ∙ 
Ne

z!

Ne!
> 1-

(Ne-Nd)!

(Ne
z-Nd)!

 ∙  

Ne
z!

Ne!
⇒

(Ne-Nd-1)!

(Ne
z-Nd-1)!

<
(Ne-Nd)!

(Ne
z-Nd)!

 

(12) 

which can be transformed into Eq. (13) 

(Ne-Nd-1)!

(Ne
z-Nd-1)!

<
(Ne-Nd)(Ne-Nd-1)!

(Ne
z-Nd)(Ne

z-Nd-1)!
 (13) 

for finally obtaining Eq. (14) which is always verified 

because Ne > Ne
z . 

(Ne-Nd)

(Ne
z-Nd)

>1 (14) 

Therefore, as proved by Eqs. (11)-(14), Filter 1, once a 

number of zones (Nz) has been established, always provides 

an increasing percent of computational saving when an 

increasing number of elements potentially damaged (Nd) is 

chosen. 

 

4.2 The case of a three-dimensional 250-bar truss 
tower 

 

This case takes into account the three-dimensional 

vibrating truss tower shown in ref. (Sonnenhof Holdings 2013) 

among samples and verification. This structure presents 

symmetries and can make particularly difficult the detection of 

damaged scenario through natural frequency changes only. 

This structure is recalled in Fig. 5 along with its first eleven 

natural frequencies here assessed through a built-in Matlab 

code (MathWorks 2017) as follows f
healthy

[Hz]: (2.902650, 

2.9026818, 7.643402, 13.38692, 13.38783, 22.92009, 

29.10572, 29.11273, 38.16575, 45.07039, 45.09624) and from 

which weak modal symmetries can clearly be expected from 

the bending modes of the tower as, for example, depicted in 

Fig. 10 (mode 1, 2, 3 depicted respectively in Fig. 10(a), 10(b) 

and 10(c)). In the following simulations the first ten natural 

frequencies have been used in a simulated damaged scenario 

involving only two elements (i.e., ∆D1=75%, ∆D5=50%). 

Firstly, a damage detection procedure has been carried out 

through only Filter 1. In this regard the reference point was 

assumed to be the fixed node of element n. 1 (Fig. 5) whilst the 

zones containing the remainder elements (due to the fact that 

Ne/Nz is not usually an integer number) were randomly 

distributed all over the closer zones. 

Fig. 11 depicts two location charts with abscissae reporting 

the number of elements which are not relevant with their own 

numeration of Fig. 5; such a number of elements corresponds, 

instead, to an ordered number of elements grouped in zones 

and ordered by the distance from the reference point. Fig. 11 

still illustrates the capability of Filter 1 to identify correctly the 

macroscopic zone where the damage is placed; this is achieved 

independently of the number of zones assumed, Nz=3 and Nz=5 

for Fig. 11(a) and 11(b) respectively. It is also interesting to 

note the improvement provided by Filter 1 to the original 

MDLAC method (Messina et al. 1998) (per elements). Indeed, 

Filter 1 has not any doubt on the macro area containing 

damage; it is also interesting to note that the larger the area the 

lower the damage is, exactly as theoretically predicted by Eqs. 

(6)-(8). Finally, with regard to Fig. 11, it could be of a certain 

interest to know that MDLAC runs on 250 elements taking 

about 110 second whilst it took about 0.2 seconds when run on 

three or five zones. In practice, MDLAC run on zones was 

about 550 times faster. 

Therefore, the results of this second example 

corroborate the capability of Filter 1 to aim at improving the 

performances of MDLAC (Messina et al. 1998) when it is 

carried out per zones and is thus able to insulate reduced 

areas where the damage can be potentially located. Once a 

specific zone (shown in Fig. 11) has been detected as 

potentially containing the damage, the combinatorial 
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method can be carried out. In this latter regard, on the basis 

of both filters activated (Nz=5, Threshold=0.5) and Nd=2 

(Nl=10 first phase, Nl=100 second phase, Lmax=95%), the 

combinatorial method provided the location chart depicted 

in Fig. 12 taking about 120 s in the first phase and about 44 

s in the second phase. Such an evaluation only involved 

26,236 analyses in the first phase, thus excluding 99% of 

the total analyses, which were purely based on existing 

combinations (i.e., 3,112,500). The adoption of parallel 

computing (always based on four cores) allowed reducing 

the computational time of the first phase from 120 to 57 

seconds. 

A full and pure combinatorial analysis of the truss tower, 

based on Nd=3, would require 2,573,000,000 analyses, 

reducing to 19,600,000 when only Filter 1 is activated. In 

particular, by setting Nd=3, Nl=10 (first phase), Nl=100 

(second phase) along with the activation of both filters 1 

and 2 (Nz=5, Threshold=0.5) the serial mode evaluation 

took about 20,172 s (5.6 h) along with 3,947 s (1.1 h) for 

the second phase to carry out the relevant simulations 

consisting of 4,807,410 analyses (99.8% of the analyses 

excluded). For the same experiment, carried out exploiting 

parallel computing, the first phase, with four cores, took 

about 2.7 h offering a significant computational saving with 

regard to the serial computation. For Nd=3 the geometrically 

symmetric solution (∆D3=74.8485%, ∆D7=48.8990%) was 

 

 

 

detected (Fig. 5) instead of the true damaged solution 

(∆D1=75%, ∆D5=50%) as shown in Fig. 12; this result is 

expected because the detection comes through the second 

phase and the latter consists of the refinement based on the 

best result associated to the first phase. The first two highest 

MAC values kept as solution of the first phase were 

numerically equivalent (0.9999942596057161, 

0.9999942596056380) and contained both the geometrically 

symmetric solutions (i.e., (∆D1, ∆D5) and (∆D3, ∆D7)), 

which, therefore must be considered equivalent. Before 

closing the discussion, a question is worth additional 

discussion: why the relevant solutions are not detected with 

a perfect correlation (MAC=1.0) in all the numerical 

analyses herein carried out? This happened because all 

levels used (neither Nl=10 in the first phase nor Nl=100 in 

the second phase) did not contain the true damaged 

scenario. 

 

 

5. Conclusions 
 

This manuscript has introduced novel approaches aimed at 

identifying multiple damaged sites in structural components 

through finite frequency changes. The approaches essentially 

regard finite damage along with finite frequency changes. The 

natural frequencies have been taken into account because the  

   
(a) (b) (c) 

Fig. 10 First three mode shapes of the three-dimensional truss tower (ref. (Sonnenhof Holdings 2013)) 

   

Fig. 11 Location chart through MDLAC for elements and for zones (Nz=3, Nz=5) 
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Fig. 12 Location chart through MDLAC and combinatorial 

method. Detected damage: ∆D1=74.8485%, ∆D5=48.8990% 

 

 

scientific literature still considers nowadays the frequencies as 

a privileged set of modal data. The methods herein dealt with 

need a reliable numerical model of the system in order to 

correlate the natural frequency changes for identifying the 

damaged locations. This allows dealing with any structure 

independently of its geometry and/or material characteristics. 

The approach, based on a combinatorial method, has been 

carried out through multicore computers implementing parallel 

computation along with smart strategies aimed at reducing the 

relevant computational efforts. The parallel computation has 

clearly shown successful performance independently of the 

structures under investigation.  

However, because the combinatorial method alone can, still 

today, become cumbersome for several structures and even 

when a high number of cores are available, the present work 

has introduced two smart filters (or criterions) aimed at 

reducing the computational work. The relative gain of 

computational saving associated to one of the filters has also 

been theoretically proved. The efficiency of these smart filters 

has been tested in relevant simulations and one (Filter 1) can 

even be used alone to single out macro areas within which 

damage can be potentially insulated; this is achieved by using 

very few natural frequency changes. The efficiency of such a 

Filter 1 should be considered highly worthy of mention for two 

reasons: (i) the analyst can focus the attention on a specific 

area, (ii) few elements need to be investigated for damage 

detection, thus making the combinatorial approach feasible for 

many structures and even through few measurements (i.e., 

natural frequencies). 
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