
Structural Engineering and Mechanics, Vol. 86, No. 3 (2023) 291-309 

https://doi.org/10.12989/sem.2023.86.3.291                                                                                                                                            291 

Copyright © 2023 Techno-Press, Ltd. 

http://www.techno-press.com/journals/sem&subpage=7                                                                   ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction 
 

In recent years, functionally graded materials (FGMs) 

have been recognized as an enhanced class of composite 

materials that have been attracting considerable interest in a 

large array of applied engineering disciplines, especially in 

aerospace, automotive, nuclear, biomedical, and civil 

engineering structures (Ebrahimi and Zia 2015, Madenci 

and Özütok 2017, Ebrahimi et al. 2018, Madenci 2019, 

Punera and Kant 2019, Madenci and Özütok 2020, Civalek 

and Avcar 2020, Belabed et al. 2021, Slimani et al. 2021, 

Vinyas et al. 2021). The main reason for using FGMs in 

various applications returns to their excellent mechanical 
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properties, such as optimum strength/weight ratio, high 

stiffness, durability, and recent engineering design 

preferences (Chen et al. 2021). A typical FGM is founded 

on a continuous and smooth mixture of both metallic and 

ceramic materials through the thickness coordinate; this 

gradual change in properties eliminates several problems 

over conventional composites, including exceptionally high 

interlaminar stress concentrations and delamination. A 

practical factor associated with functionally graded 

materials is the porosity that can be engendered into the 

microstructure of these materials. Many researchers have 

identified porosity as a valuable parameter for special 

structural performance requirements such as thermal 

conductivity reduction, low cost of FGM manufacturing, 
lightweight structures, noise reduction, and significant 

energy-absorbing capability via impact loads (Smith et al. 

2012, Zhao 2012, He et al. 2017, Liu et al. 2018, Xiao et al. 

2019, Ebrahimi et al. 2019, Hamed et al. 2019, Xu et al. 

2020, Cuong-Le et al. 2020a, Cuong-Le et al. 2020b).  
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Abstract.  This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and 

buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. 

The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring 

any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the 

discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first 

derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of 

FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate 

system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking 

phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity 

distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is 

investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which 

significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions 

are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural 

frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related 

mechanical modeling in aerospace, nuclear, civil, and other structures. 
 

Keywords:  buckling; finite element method; free vibration; functionally graded porous (FGP) beams; shear deformation 

beam theory; two-noded isoparametric finite element 
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Thus, the effect of porosity on mechanical structural 

response has received an increase attention in several recent 
studies. Chen et al. (2015) proposed a parametric study to 

investigate the effect of porosity on elastic buckling and 

static bending of functionally graded porous Timoshenko 

beams. Kitipornchai et al. (2016) applied the Ritz method to 

predict the free vibration and elastic buckling responses of 

functionally graded porous beams reinforced by graphene 

platelets using the Timoshenko beam theory. Chen et al. 

(2016) used the Timoshenko beam theory and the Ritz 

method to investigate the effect of porosity distributions and 

boundary conditions on free and forced vibration analysis of 

porous functionally graded beams. Galeban et al. (2016) 

presented a free vibration study of functionally graded 

beams with porosities based on the Euler-Bernoulli theory. 

To investigate the static behaviour of laminated composite 

beams, Özütok and Madenci (2017) proposed a new mixed 

finite element model based on an efficient higher-order 

shear deformation theory. Mirjavadi et al. (2017) 
investigated the thermal vibration of two-dimensional 

porous, functionally graded nanobeams using the 

Timoshenko beam theory and the generalized differential 

quadrature method. Eltaher et al. (2018) adopted a modified 

porosity model to study the static bending and free vibration 

of porous functionally graded nanobeams according to the 

Euler-Bernoulli beam theory. Mirjavadi et al. (2018) have 

resolved the nonlinear vibration and buckling problems of 

Euler-Bernoulli functionally graded porous nanoscale 

beams by applying the generalized differential quadrature 

method. Fazzolari (2018) formulated various higher-order 

beam theories to study the vibration and stability analysis of 

porous functionally graded sandwich beams resting on 

elastic foundations, and using the Ritz method solution. In 

conjunction with the third-order shear deformation beam 

theory with the Chebyshev collocation approach, 

Wattanasakulpong et al. (2018) modelled the vibrational 
behaviour of functionally graded porous beams with 

different general boundary conditions and porosity 

distributions. Wu et al. (2018) performed a finite element 

analysis on the dynamic analysis of functionally graded 

porous structures by considering both Euler-Bernoulli and 

Timoshenko beam theories. Anirudh et al. (2019) have 

devoted a comprehensive analysis to studying the bending, 

buckling, and vibration behaviours of curved porous 

graphene-reinforced beams by using a higher-order finite 

element beam model. Gao et al. (2019) used Timoshenko’s 

beam theory and the method of differential quadrature to 

investigate the dynamic characteristics of porous 

functionally graded beams with material uncertainties. Liu 

et al. (2019) applied the porosity effects on buckling 

analysis of porous functionally graded beams in thermal 

environments using a high-order sinusoidal shear 

deformation beam theory and the physical neutral concept. 
Bourada et al. (2019) presented a refined higher-order beam 

theory for dynamic investigations of porous functionally 

graded beams. Jamshidi et al. (2019) used the generalized 

differential quadrature method and Timoshenko beam 

theory for porosity optimization of two-dimensional 

functionally graded porous beams. Al-Maliki et al. (2019) 

evaluated a finite element model for free vibration analysis 

of porous metal foam nanobeams based on refined shear 

beam theory. Akbas (2018) presented a twelve-node plane 
finite element to analyze the effects of both material and 

porosity parameters on the forced response of functionally 

graded porous deep beams. To investigate the mechanical 

behaviours of thick functionally graded porous beams, Fang 

et al. (2019) proposed a quasi-3D beam theory with 

isogeometric analysis. Zhao et al. (2019) suggested a 

modified series solution to demonstrate the effect of 

different boundary conditions and porosity coefficients on 

free vibration analysis of both curved and straight 

functionally graded porous Timoshenko beams. Fahsi et al. 

(2019) assessed the implications of porosity and elastic 

foundation parameters on the mechanical response of 

functionally graded porous beams forming a new Quasi-3D 

beam theory. Qin et al. (2020) discussed the effect of 

arbitrary boundary conditions and different types of 

porosity distributions on both the free and forced vibration 

responses of porous functionally graded beams. In this 
research, they have used a higher-order shear deformation 

beam theory in conjunction with the Jacobi-Ritz approach 

to solving the governing equations. Wu et al. (2020) 

presented a comprehensive state of the art on various 

mechanical behaviours of functionally graded porous 

structures. Akbas et al. (2020) considered the viscoelastic 

support effect and proposed a 2D plane finite element 

formulation to determine the dynamic response of 

functionally graded porous multilayer thick beams. An 

overall review of the free vibration behaviour of both 

perfect and imperfect functionally graded beams is 

presented by Zahedinejad et al. (2020). Jena et al. (2020) 

discussed the free vibration analysis of a functionally 

graded porous beam embedded in the Kerr foundation using 

the shifted Chebyshev polynomials, Rayleigh-Ritz method, 

and Navier’s technique. Derikvand et al. (2021) employed a 

refined beam theory to analyze the mechanical buckling of 
functionally graded thick porous core sandwich beams via 

the differential transform method. A dynamic analysis was 

carried out for functionally graded porous beams using the 

complementary functions method based on the Timoshenko 

beam theory by Noori et al. (2021). The investigation by 

Akbas (2021) showed the influence of porosity distribution 

and porosity coefficients on the dynamic responses of 

axially functionally graded porous beams over moving 

loads using the Ritz method. Madenci (2021a) performed a 

vibrational analysis for carbon nanotube-reinforced 

nanocomposite beams using variational approaches. 

Madenci (2021b) developed a mixed finite element model 

to assess both the static and dynamic responses of 

functionally graded beams. Alnujaie et al. (2021) studied 

damped forced vibration of functionally graded beams with 

porosity under sinusoidal harmonic point load using a 

twelve-node 2D plane element.  
Moreover, the commonly used theories proved their 

ability to simulate the mechanical response of FGP beams 

with interesting results. In contrast to Euler-Bernoulli and 

Timoshenko beam theories, the higher-order shear beam 

theories are more accurate and efficient, and the researchers 

conceived them to analyze the mechanical behaviour of 

thick beams. In addition, many advanced methods have 
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been developed to overcome the limitations of analytical 

methods to solve a variety of FGP beam simulations. Rather 
than conventional approximate approaches such as the Ritz 

method, generalized differential quadrature, isogeometric 

analysis, and Chebyshev collocation method, where each 

method ensures different merits regarding implementation, 

a high level of exactness, and stability, the finite element 

method is considered a robust, reliable, and efficient 

method and is generally employed in advanced structural 

design codes. 

In this paper, a higher-order finite element model is 

formulated and evaluated to investigate the porosity 

distribution effects on the free vibration and buckling 

analysis of FGP beams. Unlike other higher-order shear 

deformation beam theories, that generate a host of 

unknowns, the present theory has only three unknowns and 

provides an easily implementable formulation for the finite 

element method (with three degrees of freedom per node). 

The formulated element features two nodes and three 

degrees of freedom per node (𝑢, 𝜙𝑥 , and𝑤) expressed in 

isoparametric coordinates suitable for Gauss quadrature and 

the interelement continuity requirement is satisfied, the 

derived stiffness, geometric and mass matrices result from a 

weak form of the governing equations. This beam element 

is free of shear locking by applying the reduced integration 

technique to evaluate the shear strain energy. A detailed 

numerical comparison is performed to validate and evaluate 

the efficiency and simplicity of the proposed formulation; it 

appears to be in excellent agreement with the above-

mentioned theories, the effect of porosity on the free 
vibration and buckling problems is exploited by using 

various distribution models. Additionally, the present 

element is simple to use, retains important physical 

characteristics, and is more amenable to simulating the 

mechanical behaviour of FGP beams. Finally, researchers 

still focus on the proposed element to investigate other FG 

structures problems (Mehar and Panda 2019, Bendaho et al. 

2019, Wang et al. 2017, Yaylaci et al. 2020, Eltaher et al. 

2020, Selmi 2020, Madenci and Gülcü 2020). 

 

 

2. Theoretical formulation 
 

2.1 Geometrical configuration 
 

Consider a straight beam with uniform thickness h 

referring to a rectangular Cartesian coordinates (x,y and z). 

The both top and bottom faces of the beam are at 𝑧 = ±ℎ/2 

respectively. 

 

2.2 Material properties of FGP beams 
 
The material properties of the FGP beam are assumed to 

vary smoothly and gradually through the beam thickness. 

The imperfection of the pores allows the distribution 
function to be included in the materials constituting the FGP 
beam, there are various porosity distributions used to 

evaluate the mechanical properties of FGP structures. The 
Young's modulus, shear modulus, and mass density vary 

across the beam thickness according to the graded non-
uniform porosity that can be stated in the form: 

Porosity distribution Type-I 

𝐸(𝑧) = 𝐸1 [1 − 𝑒0 cos (
𝜋𝑧

ℎ
)] (1a) 

𝐺(𝑧) = 𝐺1 [1 − 𝑒0 cos (
𝜋𝑧

ℎ
)]

 

(1b) 

𝜌(𝑧) = 𝜌1 [1 − 𝑒𝑚 cos (
𝜋𝑧

ℎ
)]

 

(1c) 

and porosity distribution Type-II 

𝐸(𝑧) = 𝐸1 [1 − 𝑒0 cos (
𝜋𝑧

2ℎ
+
𝜋

4
)] (2a) 

𝐺(𝑧) = 𝐺1 [1 − 𝑒0 cos (
𝜋𝑧

2ℎ
+
𝜋

4
)]

 

(2b) 

𝜌(𝑧) = 𝜌1 [1 − 𝑒𝑚 cos (
𝜋𝑧

2ℎ
+
𝜋

4
)]

 

(2c) 

and 

𝑒𝑚 = 1− √1− 𝑒0
 

(3) 

where (𝐸1 ,𝐺1 and 𝜌1) and (𝐸0,𝐺0 and 𝜌0) are the maximum 

and minimum Young’s modulus, shear modulus, mass 

density of the FGP beam, respectively. 𝑒0  and 𝑒𝑚  present 

the porosity coefficients of the relative Young’s modulus 

and density of FGP beam. 

The volume fraction of inclusions (both ceramic and 

metal) and the porosity parameter are also used to describe 

other porosity distributions. Among those, the effective 

material properties of FG beams accounting for porosities 

are computed by the following models: 
Porosity distribution Type-III 

𝐸(𝑧) = (𝐸𝑐 − 𝐸𝑚)𝑉𝑐(𝑧) + 𝐸𝑚 −
𝑒0
2
(𝐸𝑐 + 𝐸𝑚)

 

(4a) 

𝜌(𝑧) = (𝜌𝑐 − 𝜌𝑚)𝑉𝑐(𝑧) + 𝜌𝑚 −
𝑒0
2
(𝜌𝑐 + 𝜌𝑚)

 

(4b) 

Porosity distribution Type-IV 

𝐸(𝑧) = (𝐸𝑐 − 𝐸𝑚)𝑉𝑐(𝑧) + 𝐸𝑚  

−
𝑒0
2
(𝐸𝑐 + 𝐸𝑚) (1 −

2|𝑧|

ℎ
)

 

(5a) 

𝜌(𝑧) = (𝜌𝑐 − 𝜌𝑚)𝑉𝑐(𝑧) + 𝜌𝑚  

−
𝑒0
2
(𝜌𝑐 + 𝜌𝑚) (1 −

2|𝑧|

ℎ
)

 

(5b) 

The power-law distribution is used to evaluate the 

material properties of FG beams. In this study, the volume 

fraction can be stated in the form: (Avcar 2019, Hadji 2020, 

and Mehala et al. 2018) 

𝑉𝑐(𝑧) = (
2𝑧 + ℎ

2ℎ
)

𝑝

 (6) 

Here; p is the volume fraction index (0 ≤ 𝑝 ≤ +∞), 

which dictates the material variation profile through the 

thickness, and the subscripts m and c represent the metallic 

and ceramic constituents respectively and the related 

Poisson’s ratio is assumed to be constant for convenience.  
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Fig. 1 Porosity distribution patterns in (FGP) beam: (a) 

Type-I (b) Type-II ,(c) Type- III and (d) Type-IV 

 

 

2.3 Higher order shear deformation beam theory 
 

The present theory accounts for shear deformation by a 

sinusoidal variation of all displacements across the 

thickness, and satisfies the stress-free boundary conditions 
on the upper and lower surfaces of the beam without 

requiring any shear correction factor. Moreover, the 

accuracy and efficiency must be improved through the 

obtained computations for general FGP beam problems. 

 

2.3.1 Kinematics 
Since the Euler-Bernoulli beam theory omits the effect 

of shear deformation and Timoshenko beam theory 

appropriates shear correction factors, many higher order 

shear deformation theories are developed and generate a 

host of unknowns. In this formulation, the number of 

unknowns and their related governing equations is reduced 

to three by using the following assumptions: (1) the in-

plane displacements are similar to those given by the Euler-
Bernoulli beam theory additionally a shear component, (2) 

the shear component is treated by the sinusoidal variation 

across the thickness coordinate in a way that transverse 

shear strains and stresses are given rise by this variation 

through the thickness of the beam, (3) the stress-free 

boundary conditions on the top and bottom surfaces of the 

beam can be affirmed without requiring any shear 

correction factors. Based on these assumptions, the 

corresponding displacement field is given and presented as 

follows 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0 − 𝑧
𝜕𝑤0
𝜕𝑥

+ 𝑓(𝑧)𝜙𝑥 (7a) 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤0 (7b) 

where the axial displacement𝑢, the transverse displacement 

𝑤 of a material point located at (x, z) in the beam. 𝑢0, 𝑤0 

represent the displacement unknowns at the neutral axis, the 

unknown 𝜙𝑥 presents the rotation of the cross section of the 

beam. Furthermore, the function f(z) describes nonlinear 

distributions of transverse shear stress through the thickness 

of the beam and is chosen based on the sinusoidal function 

𝑓(𝑧) =
ℎ

𝜋
sin(

𝜋𝑧

ℎ
) (8) 

The related nonzero strains associated with the 

displacement field in Eq. (7) are (Reddy 2004) 

𝜀𝑥 =
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕2𝑤0
𝜕𝑥2

+ 𝑓(𝑧)
𝜕𝜙𝑥
𝜕𝑥

 (9a) 

𝛾𝑥𝑧 = 𝑔(𝑧)𝜙𝑥 (9b) 

By substituting Eq. (7) into Eq. (9) the following strain- 

displacement relationships are obtained for the present 

shear deformation beam theory 

𝜀𝑥 = 𝜀𝑥
0 + 𝑧𝑘𝑥 +𝑓(𝑧)𝜂𝑥 (10a) 

𝛾𝑥𝑧 = 𝑔(𝑧)𝛾𝑥𝑧
0  (10b) 

where 

𝜀𝑥
0 =

𝜕𝑢0

𝜕𝑥
,𝑘𝑥 = −

𝜕2𝑤0

𝜕𝑥2
,𝜂𝑥 =

𝜕𝜙𝑥

𝜕𝑥
,𝛾𝑥𝑧
0 = 𝜙𝑥  (11) 

and 

𝑔(𝑧) =
𝑑𝑓(𝑧)

𝑑𝑧
 (12) 

 

2.3.2 Constitutive relations 
The linear constitutive relations of a FGP beam can be 

written as follows: 

{
𝜎𝑥
𝜏𝑥𝑧
} = [

𝐶11 0
0 𝐶44

] {
𝜀𝑥
𝛾𝑥𝑧
} (13) 

where (𝜎𝑥  and 𝜏𝑥𝑧) and (𝜀𝑥 and 𝛾𝑥𝑧) are the stress and strain 

components, respectively. The stiffness coefficients, 𝐶𝑖𝑗, can 

be expressed as 

),(
11

zEC = 𝐶44 = 𝐺(𝑧) =
𝐸(𝑧)

2(1+𝜈)
 (14) 

(a) 

(b) 

(c) 

(d) 
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2.3.3 Governing equations 
Considering the variational form of Hamilton’s 

principle, the variational governing differential equations of 

equilibrium are derived to formulate the problem. This 

principle can be described in an extended variational form 

as follows 

𝛿 ∫ [𝐾 − (𝑈 + 𝑉)]𝑑𝑡
𝑡2

𝑡1

= 0 (15) 

where (𝑈 + 𝑉) is the total potential energy of the beam; 

which presents the sum of the strain energy and potential 

energy of the applied compression load, K is the kinetic 

energy. The variation of strain energy of the beam is given 

by 

𝛿 𝑈 = ∫[𝜎𝑥𝛿 𝜀𝑥 + 𝜏𝑥𝑧𝛿 𝛾𝑥𝑧] 
𝑉

𝑑𝑉 

       = ∫[𝑁𝑥𝛿 𝜀𝑥
0 +𝑀𝑥𝛿 𝑘𝑥

𝐴

+ 𝑆𝑥𝛿 𝜂𝑥+𝑄𝑥𝑧𝛿 𝛾𝑥𝑧
0 ] dA 

(16) 

Where A is the cross-section and the stress resultants 𝑁𝑥, 
𝑀𝑥, 𝑆𝑥 and 𝑄𝑥𝑧 are defined as 

(𝑁𝑥 ,𝑀𝑥 , 𝑆𝑥) = ∫ (1, 𝑧, 𝑓)(𝜎𝑥)𝑑𝑧
ℎ/2

−ℎ/2

, (17) 

and 

𝑄𝑥𝑧 = ∫ (𝜏𝑥𝑧)𝑔(𝑧)𝑑𝑧,   
ℎ/2

−ℎ/2

 (18) 

Where h/2 and h/2 are the top and bottom z-coordinates 

of FGP beam respectively. By substituting Eqs. (10) and 

(13) into Eq. (17), the final expressions for the stress 

resultants are given as 

𝑁𝑥 = 𝐴11𝜀𝑥
0 + 𝐵11𝑘𝑥 + 𝐵11

𝑠 𝜂𝑥 
𝑀𝑥 = 𝐵11𝜀𝑥

0 + 𝐷11𝑘𝑥 +𝐻11
𝑠 𝜂𝑥 

𝑆𝑥 = 𝐵11
𝑠 𝜀𝑥

0 +𝐻11
𝑠 𝑘𝑥 + 𝐷11

𝑠 𝜂𝑥
 

(19a) 

𝑄𝑥𝑦 = 𝐴44
𝑠 𝛾𝑥𝑧

0

 

(19b) 

The constitutive components for membrane, bending, 

coupling and transverse shear are defined by 

(𝐴11, 𝐵11 , 𝐷11 , 𝐵11
𝑠 , 𝐻11

𝑠 , 𝐷11
𝑠 ) 

= ∫ 𝐶11(1,𝑧, 𝑧
2, 𝑓, 𝑧𝑓, 𝑓2)𝑑𝑧,

ℎ/2

−ℎ/2

 
(20a) 

𝐴44
𝑠 = ∫ 𝐶44[𝑔(𝑧)]

2𝑑𝑧
ℎ/2

−ℎ/2

,

 

(20b) 

The variation of the potential energy of the applied 
compression load can be given by 

𝛿 𝑉 =
1

2
∫ 
𝑉

[𝑃0𝑥 (
𝛿𝜕𝑤

𝜕𝑥
)(
𝜕𝑤

𝜕𝑥
)]𝑑𝑉  (21) 

The variation of the kinetic energy of the mass system 

can be written as 

𝛿 𝐾 = ∫[𝑢̇𝛿 𝑢̇ + 𝑤̇𝛿 𝑤̇] 𝜌(𝑧)𝑑𝑉
𝑉

 

= ∫{(𝐼1𝑢̇0𝛿𝑢̇0 + 𝐼1𝑤̇0𝛿𝑤̇0)
𝐴

 

 

Fig. 2 Geometry and nodal degrees of freedom for two-

noded isoparametric element 

 

 

−𝐼2 (𝑢̇0
𝜕𝛿𝑤̇0
𝜕𝑥

+
𝜕𝑤̇0
𝜕𝑥

𝛿 𝑢̇0) + 𝐼3 (
𝜕𝑤̇0
𝜕𝑥

𝜕𝛿 𝑤̇0
𝜕𝑥

) 

+𝐼4(𝜙̇𝛿 𝑢̇0 + 𝑢̇0𝛿 𝜙̇) − 𝐼5 (𝜙̇
𝜕𝛿 𝑤̇0
𝜕𝑥

+
𝜕𝑤̇0
𝜕𝑥

𝛿 𝜙̇) 

+𝐼6(𝜙̇𝛿 𝜙̇)}𝑑𝐴  

(22) 

𝜌(𝑧) is the mass density; and (𝐼1 , 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6) are 

mass inertias defined by 

(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5 , 𝐼6) = ∫ (1,𝑧, 𝑧2, 𝑓, 𝑧 𝑓, 𝑓2)𝜌(𝑧)𝑑𝑧
ℎ/2

−ℎ/2

 (23) 

Substituting Eqs. (22), (21), and (16) into Eq. (15), 

taking the variations of 𝛿𝑈 , 𝛿𝑉  and 𝛿𝐾 , integrating by 

parts, and setting each of the virtual displacements of 𝛿 𝑢0, 
𝛿 𝑤0  and 𝛿 𝜙𝑥 , the following weak form of  governing 

equations of the bema are written as 

 ∫ [⟨𝛿 𝜀𝑥
0⟩𝐴11{𝜀𝑥

0} + ⟨𝛿 𝜀𝑥
0⟩𝐵11{𝑘𝑥} + ⟨𝛿 𝜀𝑥

0⟩𝐵11
𝑠 {𝜂𝑥} +𝐿

 ⟨𝛿 𝑘𝑥⟩𝐵11{𝜀𝑥
0} + ⟨𝛿𝑘𝑥⟩𝐷11{𝑘𝑥} + ⟨𝛿 𝑘𝑥⟩𝐻11

𝑠 {𝜂𝑥} +
⟨𝛿 𝜂𝑥⟩𝐵11{𝜀𝑥

0} + ⟨𝛿𝜂𝑥⟩𝐷11{𝑘𝑥} + ⟨𝛿 𝜂𝑥⟩𝐻11
𝑠 {𝜂𝑥} +

⟨𝛿 𝛾𝑥𝑧
0 ⟩𝐴44

𝑠 𝛿𝛾𝑥𝑧
0  + 𝑃0 ⟨

𝛿𝜕𝑤

𝜕𝑥
⟩ {

𝜕𝑤

𝜕𝑥
} + ⟨𝛿𝑢0⟩𝐼1⟨𝑢̈0⟩ +

⟨𝛿𝑤0⟩𝐼1⟨𝑤̈0⟩ − ⟨𝛿𝑤0⟩𝐼2 ⟨
𝜕𝑢̈0

𝜕𝑥
⟩ − ⟨𝛿𝑢0⟩𝐼2 ⟨

𝜕𝑤̈0

𝜕𝑥
⟩ +

⟨𝛿𝑤0⟩𝐼3 ⟨
𝜕2𝑤̈0

𝜕𝑥2
⟩ + ⟨𝛿𝑢0⟩𝐼4⟨𝜙̈𝑥⟩ + ⟨𝛿𝜙𝑥⟩𝐼4⟨𝑢̈0⟩ −

⟨𝛿𝑤0⟩𝐼5 ⟨
𝜕𝜙̈𝑥

𝜕𝑥
⟩ − ⟨𝛿𝜙𝑥⟩𝐼5 ⟨

𝜕𝑤̈0

𝜕𝑥
⟩ + ⟨𝛿𝜙𝑥⟩𝐼6⟨𝜙̈𝑥⟩]𝑑𝑥 = 0 

(24) 

 

 

3. Finite element formulation 
 

In this formulation, a two-noded finite element is 

developed. Consider a straight beam with length L and 

uniform width b and thickness h. The isoparametric 

transformation is often employed to derive the elementary 

matrices. To apply this transformation, both element 

geometry and displacement fields of the developed element 

are interpolated through the natural coordinates (Dhatt et al. 

2012).  

For the present two-noded isoparametric element, the 

shape functions 𝑁𝑖 and 𝑁̄𝑖 are expressed as 

{𝑁𝑖} = {
𝑁1
𝑁2
} = {

1

2
(1 − 𝜉)

1

2
(1 + 𝜉)

}  
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{𝑁̄𝑖} =

{
 
 

 
 𝑁̄1
𝑁̄2
𝑁̄3
𝑁̄4}
 
 

 
 

=
1

4

{
 
 

 
 2 − 3𝜉 + 𝜉2

1 − 𝜉 − 𝜉2 + 𝜉3

2 + 3𝜉 − 𝜉2

−1 − 𝜉 + 𝜉2 + 𝜉3}
 
 

 
 

 
(25) 

As previously discussed, it is clear that the above-

mentioned functions guarantee the continuity requirements 

of displacement field: C0 continuity for both axial 

displacement 𝑢0  and rotation 𝜙𝑥 , C1 continuity for the 

transverse displacement 𝑤0and its first derivative. 

After a transformation of coordinates by using the 

natural coordinate system 𝜉 ∈ [−1,1] 

𝑥(𝜉) = ∑ 𝑁𝑖
2
𝑖=1 (𝜉)𝑥𝑖 =

1−𝜉

2
𝑥1 +

1+𝜉

2
𝑥2  (26) 

The Jacobian transformation operator relates the natural 

and global coordinates. The derivative with respect to the 

global coordinates can be determined as 

𝜕𝑥(𝜉)

𝜕𝜉
=

1

𝐿
(𝑥2− 𝑥1) =

𝑙𝑒

2
= 𝐽 ⇒ 𝐽−1 = (

𝜕𝑥

𝜕𝜉
)
−1

=
2

𝑙𝑒
  (27) 

The displacement variables at any points of the element 

are interpolated via the shape functions as following 

𝑢0(𝜉) = ∑ 𝑁𝑖
2
𝑖=1 (𝜉)𝑢0

𝑖   

𝜙𝑥(𝜉) = ∑ 𝑁𝑖
2
𝑖=1 (𝜉)𝜙𝑥

𝑖   

𝑤0(𝜉) = ∑ 𝑁̄𝑖
4
𝑖=1 (𝜉)𝑤0

𝑖   

(28) 

where 

{𝑢𝑖} = {
𝑢0(𝜉)

𝜙𝑥(𝜉)
} = ∑ ⟨𝑁1

𝑖(𝜉) 𝑁2
𝑖(𝜉)⟩ {

𝑢0
𝑖

𝜙𝑥
𝑖
}2

1   

{𝑤𝑖} = {
𝑤0
𝑖(𝜉)

𝑤0,𝑥
𝑖 (𝜉)

} =

∑ ⟨𝑁̄1
𝑖(𝜉) 𝑁̄2

𝑖(𝜉) 𝑁̄3
𝑖(𝜉) 𝑁̄4

𝑖(𝜉)⟩ {
𝑤0
𝑖

𝑤0,𝑥
𝑖 }

2
1   

(29) 

Accordingly, strain-displacement relations are written as 

{𝜀𝑥
0} = [𝐵]𝑚{𝑢0

𝑖 } 

{𝑘𝑥} = [𝐵]𝑓{𝑤0
𝑖} 

{𝜂𝑥} = [𝐵]𝑠{𝜙𝑥
𝑖 } 

{𝛾𝑥𝑧
0 } = [𝐵̄]𝑠{𝜙𝑥

𝑖 } 

(30) 

where [𝐵]  presents the strain-displacement derivative 

matrix, [𝐵]𝑚 , [𝐵]𝑓 ,  sB [𝐵̄]𝑠  and [𝐵]0  are the membrane, 

bending, shear, higher-order shear and geometric derivative 
operator matrices given by 

[𝐵]𝑚 = ∑ ⟨𝑁1 0 0 0 𝑁2 0 0 0⟩𝑖
2
1 ;  

[𝐵]𝑓 =

∑ ⟨0 0 −𝑁̄1,𝑥𝑥 −𝑁̄1,𝑥𝑥 0 0 −𝑁̄2,𝑥𝑥 −𝑁̄2,𝑥𝑥⟩𝑖
2
1 ;  

[𝐵]𝑠 = ∑ ⟨0 𝑁1,𝑥 0 0 0 𝑁2,𝑥 0 0⟩𝑖
2
1 ;  

[𝐵̄]𝑠 = ∑ ⟨0 𝑁1 0 0 0 𝑁2 0 0⟩𝑖
2
1 ;  

[𝐵]0 = ∑ ⟨0 0 𝑁̄1,𝑥 0 0 0 𝑁̄1,𝑥 0⟩2
1 ;  

(31) 

Introducing Eq. (31) into Eq. (24) yields the nodal 

contributions to the element stiffness, geometric and mass 

matrices and takes the form 

⟨𝛿𝑢𝑖⟩ [∫ (𝐵𝑚
𝑇𝐴11𝐵𝑚 + 𝐵𝑚

𝑇𝐵11𝐵𝑏 + 𝐵𝑚
𝑇𝐵11

𝑠 𝐵𝑠

1

−1

+ 𝐵𝑠
𝑇𝐵11𝐵𝑚 

 

+𝐵𝑏
𝑇𝐷11𝐵𝑏 +𝐵𝑏

𝑇𝐻11
𝑠 𝐵𝑠 + 𝐵𝑠

𝑇𝐵11𝐵𝑚 + 𝐵𝑠
𝑇𝐷11𝐵𝑏 +

𝐵𝑠
𝑇𝐻11

𝑠 𝐵𝑠 + 𝐵̄𝑠
𝑇𝐴44

𝑠 𝐵̄𝑠 + 𝑃0𝐵0
𝑇𝐵0 +𝑁

𝑇𝐼1𝑁 + 𝑁̄
𝑇𝐼1𝑁̄ −

𝑁̄𝑇𝐼2𝑁,𝑥 −𝑁
𝑇𝐼2𝑁̄,𝑥 + 𝑁̄

𝑇𝐼3𝑁̄,𝑥𝑥 +𝑁
𝑇𝐼4𝑁 +𝑁

𝑇𝐼4𝑁 −

𝑁̄𝑇𝐼5𝑁,𝑥 −𝑁
𝑇𝐼5𝑁̄,𝑥 +𝑁

𝑇𝐼6𝑁)𝐽𝑑𝜉]{𝑢𝑖} = 0  

(32) 

Eq. (32) takes following form to conduct buckling 

eigenvalue analysis 

([𝐾]𝑔 − 𝑃0 [𝐺]𝑔){𝑢𝑖} = 0 (33) 

After rewriting Eq. (32), the free vibration eigenvalue 

analysis is obtained in the form 

([𝐾]𝑔 − 𝑃0 [𝐺]𝑔 −𝜔
2[𝑀]𝑔){𝑢𝑖} = 0 (34) 

where 𝑃0 and 𝜔  present the critical buckling load and 
angular frequency respectively. 

The global form of the stiffness, geometric and mass 

matrices are given by 

[𝐾]𝑔 = ∑ ([𝐾]𝑚𝑒 + [𝐾]𝑚𝑏 + [𝐾]𝑚𝑠 + [𝐾]𝑏𝑚 +

[𝐾]𝑏 + [𝐾]𝑏𝑠 + [𝐾]𝑠𝑚 + [𝐾]𝑠𝑏 + [𝐾]𝑠 + [𝐾̄]𝑠)  
(35a) 

[𝐺]𝑔 = ∑ [𝐾]0𝑒   (35b) 

[𝑀]𝑔 = ∑ ([𝑀]𝑚𝑒 + [𝑀]𝑏 + [𝑀]𝑏𝑚
1 + [𝑀]𝑚𝑏

1 +

[𝑀]𝑏
2 + [𝑀]𝑏𝑠 + [𝑀]𝑠𝑚 + [𝑀]𝑏𝑠

1 + [𝑀]𝑠𝑏
1 + [𝑀]𝑠)  

(35c) 

These matrices are assembled by the element stiffness 
matrix, the element geometric matrix and the element mass 

matrix. In which, they are evaluated numerically by using 

Gauss quadrature rule as following formulae 

[𝐾]𝑚 = ∫ (𝐵𝑚
𝑇𝐴11𝐵𝑚)

1

−1

𝐽𝑑𝜉  ; 

 [𝐾]𝑚𝑏 = ∫ (𝐵𝑚
𝑇𝐵11𝐵𝑏)

1

−1

𝐽𝑑𝜉 

[𝐾]𝑚𝑠 = ∫ (𝐵𝑚
𝑇𝐵11

𝑠 𝐵𝑠)
1

−1

𝐽𝑑𝜉  ; 

[𝐾]𝑏𝑚 = ∫ (𝐵𝑠
𝑇𝐵11𝐵𝑚)

1

−1

𝐽𝑑𝜉 

[𝐾]𝑏 = ∫ (𝐵𝑏
𝑇𝐷11𝐵𝑏)

1

−1

𝐽𝑑𝜉  ;   

[𝐾]𝑏𝑠 = ∫ (𝐵𝑏
𝑇𝐻11

𝑠 𝐵𝑠)
1

−1

𝐽𝑑𝜉 

[𝐾]𝑠𝑚 = ∫ (𝐵𝑠
𝑇𝐵11𝐵𝑚)

1

−1

𝐽𝑑𝜉  ; 

 [𝐾]𝑠𝑏 = ∫ (𝐵𝑠
𝑇𝐷11𝐵𝑏)

1

−1

𝐽𝑑𝜉 

[𝐾]𝑠 = ∫ (𝐵𝑠
𝑇𝐻11

𝑠 𝐵𝑠)
1

−1

𝐽𝑑𝜉  ;   

[𝐾̄]𝑠 = ∫ (𝐵̄𝑠
𝑇𝐴44

𝑠 𝐵̄𝑠)
1

−1

𝐽𝑑𝜉 

(36) 

and 

[𝐺] = ∫ (𝐵0
𝑇𝐵0)

1

−1

𝐽𝑑𝜉 (37) 
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Table 1 Material properties used in the FGP beams 

Properties Metal Ceramic 

Al-Al2O3 

𝐸 (GPa) 70 380 

𝜐 0.30 0.30 

𝜌 (kg/m3) 2702 3960 

open-cell 
steel foam 

𝐸1 (GPa) 200 / 

𝜐 1/3 / 

𝜌1 (kg/m3) 7850 / 

 

 

and 

[𝑀]𝑚 = ∫ (𝑁𝑇𝐼1𝑁)
1

−1

𝐽𝑑𝜉   ; 

 [𝑀]𝑏 = ∫ (𝑁̄𝑇𝐼1𝑁̄)
1

−1

𝐽𝑑𝜉 

[𝑀]𝑏𝑚
1 = −∫ (𝑁𝑇𝐼2𝑁̄,𝑥)

1

−1

𝐽𝑑𝜉   ; 

 [𝑀]𝑚𝑏
1 = −∫ (𝑁̄𝑇𝐼2𝑁,𝑥)

1

−1

𝐽𝑑𝜉 

[𝑀]𝑏
2 = ∫ (𝑁̄𝑇𝐼3𝑁̄,𝑥𝑥)

1

−1

𝐽𝑑𝜉   ; 

[𝑀]𝑏𝑠 = ∫ (𝑁𝑇𝐼4𝑁)
1

−1

𝐽𝑑𝜉 

[𝑀]𝑏𝑠 = ∫ (𝑁̄𝑇𝐼5𝑁,𝑥)
1

−1

𝐽𝑑𝜉   ; 

 

 

 [𝑀]𝑠𝑚 = −∫ (𝑁̄𝑇𝐼5𝑁,𝑥)
1

−1

𝐽𝑑𝜉 

[𝑀]𝑏𝑠
1 = −∫ (𝑁𝑇𝐼5𝑁̄,𝑥)

1

−1

𝐽𝑑𝜉   ; [𝑀]𝑠 = (𝑁
𝑇𝐼6𝑁)𝐽𝑑𝜉 

(38) 

Recall that the element stiffness, geometric, and mass 

matrices are exactly evaluated at sampling two points in the 

Gauss quadrature, except element shear stiffness is 

computed by using one point in Gauss quadrature to avoid 

shear-locking phenomenon (the reduced integration 

technique in Dhatt et al. 2012). 

 

 

4. Numerical results and discussion 
 

The free vibration and buckling analysis of FGP beams 

are investigated in this section; and the material properties 

used in the present study are illustrated in Table 1. 

Dimensionless buckling loads and natural fundamental 

frequencies are utilized as follow: 

- For porosity distribution patterns I and II (to compare 
with Chen et al. 2016) 

𝜔̑ = 𝜔𝐿√
𝐼1
𝐴11

  ;   𝑃̑cr =
𝑃cr

𝐴11
; 

 

(39a) 

- For porosity distribution patterns III and IV 

 

 
 
 

 
 
 
 
 

Table 2 Comparison of dimensionless natural frequency 𝜔̄  of perfect FG Al2O3 beams with various boundary 

conditions, material index p and length-to-thickness ratio (L/h) 

BCs L/h Theories 
p 

0 0.5 1 2 5 10 

S-S 

5 

TBT(a) 5.1525 4.4075 3.9902 3.6344 3.4312 3.3135 

Nguyan et al. (2015) 5.1528 4.4102 3.9904 3.6264 3.4009 3.2815 

TSBT(b) 5.1527 4.4107 3.9904 3.6264 3.4012 3.2816 

Present 5.1531 4.4019 3.9713 3.5971 3.3722 3.2644 

20 

TBT(a) 5.4603 4.6514 4.2051 3.8368 3.6509 3.5416 

Nguyan et al. (2015) 5.4603 4.6506 4.2051 3.8361 3.6485 3.5390 

TSBT(b) 5.4603 4.6516 4.2050 3.8361 3.6485 3.5390 

Present 5.4603 4.6505 4.2037 3.8340 3.6463 3.5377 

CC 

5 

TBT(a) 10.0705 8.7467 7.9503 7.1767 6.4935 6.1652 

Nguyan et al. (2015) 10.0726 8.7463 7.9518 7.1776 6.4929 6.1658 

TSBT(b) 10.0699 8.7463 7.9499 7.1766 6.4940 6.1652 

Present 10.0771 8.7510 7.9550 7.1794 6.4893 6.1669 

20 

TBT(a) 12.2235 10.4263 9.4314 8.6040 8.1699 7.9128 

Nguyan et al. (2015) 12.2243 10.4269 9.4319 8.5977 8.1446 7.8860 

TSBT(b) 12.2238 10.4287 9.4316 8.5975 8.1448 7.8859 

Present 12.2225 10.4268 9.4309 8.5966 8.1423 7.8840 

CF 

5 

TBT(a) 1.8948 1.6174 1.4630 1.3338 1.2645 1.2240 

Nguyan et al. (2015) 1.8957 1.6182 1.4636 1.3328 1.2594 1.2187 

TSBT(b) 1.8952 1.6182 1.4633 1.3325 1.2592 1.2183 

Present 1.8954 1.6181 1.4634 1.3326 1.2590 1.2183 

20 

TBT(a) 1.9496 1.6604 1.5010 1.3697 1.3038 1.2650 

Nguyan et al. (2015) 1.9496 1.6602 1.5011 1.3696 1.3696 1.2646 

TSBT(b) 1.9495 1.6605 1.5011 1.3696 1.3033 1.2645 

Present 1.9496 1.6603 1.5010 1.3696 1.3033 1.2645 

(a) Timoshenko beam theory by Simsek (2010). 

(b) Third-order shear beam theory by Simsek (2010). 
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𝜔̄ = 𝜔 (
𝐿2

ℎ
)√

𝜌𝑚
𝐸𝑚

  ;   𝑃̄cr = 𝑃cr

12𝐿2

𝐸𝑚ℎ3
; 

 
(39b) 

 

4.1 Evaluation and validation. 
 

In this section, the formulated element is tested against 

 

 

 

earlier studies in the published data. For this purpose, the 

free vibration and buckling analyses of perfect FG beams 

are investigated to make a bridge to FG beams with porosity 

cases treated in the next sections. The first example aims to 

examine the convergence and validity of the formulated 

beam element. Fig. 3 represents the obtained adimensional 
fundamental frequencies and critical buckling loads of FG 

beams with different boundary conditions and the number  

   

Fig. 3 Convergence of the adimensional fundamental frequency and critical buckling load of FG beams (The magnitude of 

convergence is represented by values in parentheses) 

Table 3 Comparison of dimensionless critical buckling load 𝑃̄𝑐𝑟 of perfect FG  Al2O3 beams with various boundary condi

tions, material index p and length-to-thickness ratio (L/h) 

BCs L/h Theories 
p 

0 0.5 1 2 5 10 

S-S 

5 

TBT(a) 48.8350 31.9670 24.6870 19.2450 16.0240 14.4270 

Nguyan et al. (2015) 48.8406 32.0013 24.6894 19.1577 15.7355 14.1448 

TSBT(b) 48.8401 32.0094 24.6911 19.1605 15.7400 14.1468 

Present 48.8474 32.0129 24.6925 19.1571 15.7251 14.1412 

10 

TBT(a) 52.3090 33.9960 26.1710 20.4160 17.1920 15.6120 

Nguyan et al. (2015) 52.3083 34.0002 26.1707 20.3909 17.1091 15.5278 

TSBT(b) 52.3082 34.0087 26.1727 20.3936 17.1118 15.5291 

Present 52.3100 34.0087 26.1716 20.3908 17.1060 15.5266 

CC 

5 

TBT(a) 154.3500 103.2200 80.4980 62.6140 50.3840 44.2670 

Nguyan et al. (2015) 154.5610 103.7167 80.5940 61.7666 47.7174 41.7885 

TSBT(b) 154.5500 103.7490 80.6087 61.7925 47.7562 41.8042 

Present 154.5545 103.8030 80.6375 61.7707 47.6356 41.7705 

10 

TBT(a) 195.3400 127.8700 98.7490 76. 6538 62.9580 56.5926 

Nguyan et al. (2015) 195.3623 128.0053 98.7885 76.6538 62.9580 56.5926 

TSBT(b) 195.3610 128.0500 98.7868 76.6677 62.9786 56.5971 

Present 195.3615 128.0513 98.7705 76.6291 62.9007 56.5647 

CF 

5 

TBT(a) 13.2130 8.5782 6.6002 5.1495 4.3445 3.9501 

Nguyan et al. (2015) 13.0771 8.5000 6.5427 5.0977 4.2772 3.8820 

TSBT(b) 13.0771 8.5020 6.5428 5.0979 4.2776 3.8821 

Present 13.0775 8.5022 6.5429 5.0977 4.2765 3.8816 

10 

TBT(a) 13.2130 8.5666 6.6570 5.1944 4.3903 3.9969 

Nguyan et al. (2015) 13.3741 8.6694 6.6678 5.2025 4.3974 4.0045 

TSBT(b) 13.3742 8.6714 6.6680 5.2027 4.3976 4.0046 

Present 13.3138 8.6370 6.6425 5.1812 4.3726 3.9793 

(a) Timoshenko beam theory by Li and Batra (2013). 

(b) Third-order shear beam theory by Vo et al. (2014). 
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of elements for the span-to-height ratio (L/h=5) and the 

power-law index (p=1). For the given problem, the 

formulated finite element model has a perfect convergence 

 

 

 

rate. Furthermore, as the mesh is refined and the number of 

degrees of freedom increases, the solution error decreases at 

a constant rate. The convergence diagram depicts a straight  

Table 4 Comparison of dimensionless natural frequency 𝜔̑  of imperfect FG beams with various boundary 

conditions and length-to-thickness ratio (L/h) with e0=0.50 

BCs L/h 
Porosity distribution I Porosity distribution II 

Chen et al. (2016) ANSYS Present Chen et al. (2016) ANSYS Present 

S-S 

10 0.2798 0.2778 0.2791 0.2599 0.2549 0.2548 

20 0.1422 0.1419 0.1421 0.1318 0.1296 0.1292 

50 0.0571 0.0571 0.0571 0.0529 0.0521 0.0519 

C-C 

10 0.5944 0.6101 0.5897 0.5475 0.5600 0.5476 

20 0.3166 0.3176 0.3158 0.2888 0.2941 0.2887 

50 0.1291 0.1289 0.1291 0.1174 0.1183 0.1174 

C-F 

10 0.1008 0.1007 0.1007 0.0917 0.0920 0.0917 

20 0.0508 0.0508 0.0508 0.0462 0.0463 0.0462 

50 0.0204 0.0204 0.0204 0.0185 0.0186 0.0185 

Table 5 Comparison of first six dimensionless natural frequencies 𝜔̑ of imperfect FG Clamped-Free beams with v

arious length-to-thickness ratio (L/h) and porosity coefficients (e0) 

Porosity model L/h e0 Theories 
Mode 

1 2 3 4 5 6 

Porosity distribu

tion I 

10 

0.20 
Chen et al. (2016) 0.1003 0.5966 1.5193 1.5549 2.7936 4.2217 

Present 0.1003 0.5962 1.5193 1.5536 2.7920 4.2164 

0.50 
Chen et al. (2016) 0.1008 0.5963 1.4379 1.5439 2.7555 4.1400 

Present 0.1007 0.5929 1.4379 1.5278 2.7151 4.0614 

0.80 
Chen et al. (2016) 0.1050 0.6149 1.3668 1.5746 2.7800 4.1005 

Present 0.1046 0.6012 1.3668 1.5110 2.6232 3.8506 

20 

0.20 
Chen et al. (2016) 0.0505 0.3121 0.8555 1.5193 1.6282 2.6066 

Present 0.0505 0.3120 0.8549 1.5193 1.6264 2.5950 

0.50 
Chen et al. (2016) 0.0508 0.3134 0.8572 1.4379 1.6266 2.5950 

Present 0.0508 0.3129 0.8539 1.4379 1.6159 2.5634 

0.80 
Chen et al. (2016) 0.0530 0.3260 0.8879 1.3668 1.6761 2.6583 

Present 0.0529 0.3238 0.8748 1.3668 1.6351 2.5600 

50 

0.20 
Chen et al. (2016) 0.0202 0.1265 0.3530 0.6882 1.1360 1.5193 

Present 0.0202 0.1265 0.3530 0.6880 1.1296 1.5193 

0.50 
Chen et al. (2016) 0.0204 0.1273 0.3550 0.6916 1.1406 1.4379 

Present 0.0204 0.1272 0.3547 0.6906 1.1324 1.4379 

0.80 
Chen et al. (2016) 0.0212 0.1327 0.3699 0.7200 1.1857 1.3668 

Present 0.0212 0.1326 0.3689 0.7164 1.1708 1.3668 

Porosity distribu

tion II 

10 

0.20 
Chen et al. (2016) 0.0977 0.5825 1.5187 1.5229 2.7424 4.1544 

Present 0.0977 0.5828 1.5189 1.5252 2.7512 4.1693 

0.50 
Chen et al. (2016) 0.0917 0.5471 1.4283 1.4403 2.5791 3.9080 

Present 0.0917 0.5471 1.4288 1.4404 2.5825 3.9126 

0.80 
Chen et al. (2016) 0.0808 0.4841 1.2730 1.3680 2.3122 3.5232 

Present 0.0807 0.4838 1.2715 1.3679 2.3093 3.5151 

20 

0.20 
Chen et al. (2016) 0.0492 0.3041 0.8344 1.5193 1.5900 2.5491 

Present 0.0492 0.3041 0.8346 1.5193 1.5905 2.5428 

0.50 
Chen et al. (2016) 0.0462 0.2856 0.7836 1.4377 1.4938 2.3953 

Present 0.0462 0.2855 0.7835 1.4377 1.4933 2.3870 

0.80 
Chen et al. (2016) 0.0406 0.2516 0.6919 1.3213 1.3681 2.1277 

Present 0.0406 0.2515 0.6914 1.3198 1.3680 2.1174 

50 

0.20 
Chen et al. (2016) 0.0197 0.1232 0.3439 0.6705 1.1072 1.5193 

Present 0.0197 0.1232 0.3439 0.6705 1.1014 1.5193 

0.50 
Chen et al. (2016) 0.0185 0.1157 0.3229 0.6296 1.0396 1.4379 

Present 0.0185 0.1157 0.3228 0.6295 1.0340 1.4379 

0.80 
Chen et al. (2016) 0.0163 0.1018 0.2842 0.5544 0.9163 1.3656 

Present 0.0163 0.1018 0.2841 0.5543 0.9110 1.3510 
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line after using a few numbers of elements, which indicates 

that the solution error decreases proportionally to the mesh 

size. 

Next, the fundamental natural frequencies and critical 
buckling loads obtained by the present element are studied 

and compared with other FG beam theories. In Table 2, the 

 

 

 

fundamental frequencies of FG beam are presented with 

various values of material index p and length-to-thickness 

ratio (L/h) and supported by many general boundary 

conditions. The present computed dimensionless 
fundamental frequencies are compared to those of other 

shear beam theories such as the Timoshenko beam theory of  

Table 6 Comparison of first five dimensionless natural frequencies 𝜔̄ of imperfect FG Clamped-Clamped beams 

with various length-to-thickness ratio (L/h) with e0=0.50 

Porosity model L/h Theories 
Mode 

1 2 3 4 5 

Porosity 
distribution I 

5 

EBT(a) 6.3393 14.3794 16.5216 28.7624 30.0004 

Wu et al. (2018) 5.0185 11.2724 14.3794 18.6110 26.4276 

Noori et al. (2021) 5.0184 11.2715 14.3789 18.6071 26.4166 

Present 4.9467 11.1247 14.3794 18.4461 26.2926 

20 

EBT(a) 6.4716 17.7708 34.6311 56.7868 57.5187 

Wu et al. (2018) 6.3476 17.0542 32.3755 51.5447 57.5178 

Noori et al. (2021) 6.3476 17.0537 32.3734 51.5379 57.5154 

Present 6.3326 16.9736 32.1384 51.0291 57.5178 

50 

EBT(a) 6.4792 17.8492 34.9578 57.7105 86.0649 

Wu et al. (2018) 6.4588 17.7265 34.5502 56.6999 83.9717 

Noori et al. (2021) 6.4588 17.7262 34.5490 56.6964 83.9634 

Present 6.4561 17.7102 34.4967 56.5683 83.7011 

Porosity 

distribution II 

5 

EBT(a) 5.7687 14.3658 15.1039 27.4569 28.8300 

Wu et al. (2018) 4.7216 10.7878 14.3780 17.9640 25.6576 

Noori et al. (2021) 4.7215 10.7869 14.3732 17.9603 25.6471 

Present 4.7445 10.9278 14.3734 18.3320 26.3433 

20 

EBT(a) 5.8807 16.1529 31.4917 51.6680 57.5170 

Wu et al. (2018) 5.7872 15.6088 29.7656 47.6214 57.5161 

Noori et al. (2021) 5.7872 15.6083 29.7636 47.6149 57.5138 

Present 5.7864 15.6060 29.7604 47.6151 57.5160 

50 

EBT(a) 5.8872 16.2191 31.7679 52.4504 78.2314 

Wu et al. (2018) 5.8718 16.1267 31.4604 51.6863 76.6454 

Noori et al. (2021) 5.8718 16.1263 31.4590 51.6826 76.6366 

Present 5.8716 16.1253 31.4559 51.6750 76.6209 

(a) Euler-Bernoulli beam theory by Wu et al. (2018). 

Table 7 Comparison of dimensionless natural frequency 𝜔̄ of imperfect Clamped-Clamped FG AI2O3 beams with 

various length-to-thickness ratio (L/h), material index p and porosity coefficients e0 

Type of 

porosity 
e0 Theories p 

L/h 

5 10 15 20 50 

/ 0 

Fazzolari (2018) 
0.20 

9.510418 10.902077 11.230206 11.349936 11.478317 

Present 9.470002 10.893399 11.248740 11.383257 11.535506 

Fazzolari (2018) 
1 

8.058737 9.157737 9.412606 9.504972 9.603410 

Present 7.955046 9.057966 9.328770 9.430800 9.5459588 

Fazzolari (2018) 
5 

6.550907 7.730205 8.011787 8.115440 8.230252 

Present 6.489312 7.695104 8.017731 8.142493 8.285674 

Porosity 

distribution 
III 

0.20 

Fazzolari (2018) 
0.20 

9.699950 11.065078 11.387708 11.506416 11.636060 

Present 9.663921 11.102034 11.460112 11.595557 11.748783 

Fazzolari (2018) 
1 

7.738870 8.680612 8.896207 8.974618 9.059443 

Present 7.634211 8.607706 8.842584 8.930633 9.029711 

Fazzolari (2018) 
5 

5.274587 6.169857 6.401280 6.489091 6.587350 

Present 5.238701 6.127511 6.361369 6.451452 6.554576 

Porosity 

distribution 

VI 

0.20 

Fazzolari (2018) 
0.20 

9.722932 11.175035 11.521018 11.647945 11.785007 

Present 9.649402 11.162933 11.545350 11.69065 11.855480 

Fazzolari (2018) 
1 

8.098449 9.232496 9.499400 9.596846 9.701639 

Present 7.974245 9.129961 9.417318 9.526001 9.648962 

Fazzolari (2018) 
5 

6.113225 7.380488 7.667772 7.773786 7.891232 

Present 6.091594 7.413306 7.787405 7.934963 8.106414 
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Simsek (2010), higher-order shear deformation beam theory 

used by Nguyan et al. (2015), and the third-order shear 

deformation beam theory of Vo et al. (2014). A similar 
investigation is performed for the buckling analysis of FG 

beams.  

The computed dimensionless critical buckling loads are 

presented in Table 3. It is seen that the obtained results 

present a closer agreement with those given by using other 

shear beam theories for both free vibration and buckling 

analysis. As should be noted, the Timoshenko beam theory 

needs an appropriate shear correction factor to exactly 

evaluate the shear stress; this factor is dependent on various 

parameters such as geometry, material properties, and 

imposed boundary conditions. Thus, more supplementary 

operations are required. The computations given by Nguyan 

et al. (2015) are founded on higher-order shear deformation 

beam theory via analytical solutions, the sensitivity of given 

solutions is concerned with the number of terms relative to 

opted admissible functions and used boundary conditions 

that are complicated in computer implantation. The results 

given by Vo et al. (2014) are derived using the classical 
finite element method, which is cumbersome and 

computationally expensive. In this spirit, the formulated 

element is typically faster to simulate than its finite element 

counterparts by including the isoparametric concept, and the 

obtained results achieve the same efficiency and precision. 

 

4.2 Free vibration analysis of imperfect FG beams 
 

In this subsection, various numerical studies on the free 

vibration analysis of imperfect FG beams are presented with 

many distributions of porosities. Table 4 presents a 

comparative study of the obtained results with those 

reported by Chen et al. (2016). A closer inspection of Table 

4 confirms the validity and precision of the obtained results. 

Moreover, it should be noted that the results given by Chen 

 

 

et al. (2016) are derived using Ritz solutions of the 

Timoshenko beam theory, which include the shear 

correction factor, and the ANSYS results are obtained using 
the four-node element SHELL181. The effect of porosity 

patterns has a significant impact on computed 

dimensionless frequencies; a high difference arises in an 

important length-to-thickness ratio (L/h) and decreases in 

thin beam cases, this observation emerges in the clamped-

clamped boundary condition. As expected, the porosity 

pattern could be attributed to reducing the resulting stiffness 

and mass matrices and the porosity distribution type-II is 

more concerning. 

In Table 5, the influence of the length-to-thickness ratio 

(L/h) and porosity parameter on the first six dimensionless 

natural frequencies is investigated for imperfect FG beams, 

this example presents an additional test to ensure the 

accuracy of obtained results, it is clear that the effect of 

length-to-thickness ratio is more remarkable than porosity 

parameter and the dimensionless fundamental frequencies 

increase as the increase of the porosity parameter, the 

length-to-thickness ratio (L/h) contributes to reducing 
slightly the difference of dimensionless frequencies from 

thick to thin imperfect FG beams, this observation is 

validated for the obtained first six dimensionless natural 

frequencies. 

Next, the comparison of the first five dimensionless 

natural frequencies of clamped-clamped imperfect beams 

versus other theories is illustrated in Table 6. Again, the 

obtained results agree closely with those obtained by 

applying the Timoshenko and Euler-Bernoulli beam 

theories. It should be noted that those beam theories slightly 

overpredict the frequencies of thick beams; this may be 

explained by the presence of the shear deformation effect. 

On other hand, this effect must be treated with more 

detailed information, such as the appropriate shear 

correction factor and the shear-locking phenomenon. The  

Table 8 Comparisons of dimensionless natural frequency 𝜔̄ of imperfect Clamped-Free FG AI2O3 beams with 

various length-to-thickness ratio (L/h), material index p and porosity coefficients e0 

Type of 
porosity 

e0 Theories p 
L/h 

5 10 15 20 50 

 0 

Fazzolari (2018) 
0.20 

1.764354 1.795134 1.800197 1.801716 1.802894 

Present 1.766027 1.804055 1.811487 1.814122 1.816990 

Fazzolari (2018) 
1 

1.477720 1.502145 1.506082 1.507242 1.508116 

Present 1.463376 1.493174 1.498986 1.501046 1.503288 

Fazzolari (2018) 
5 

1.260205 1.286396 1.290818 1.292230 1.293647 

Present 1.258958 1.293921 1.300856 1.303324 1.306016 

Porosity 

distribution 
III 

0.20 

Fazzolari (2018) 
0.20 

1.788152 1.820249 1.825900 1.827737 1.829459 

Present 1.799126 1.837484 1.844977 1.847633 1.850524 

Fazzolari (2018) 
1 

1.395065 1.417595 1.421474 1.422714 1.423856 

Present 1.386211 1.412687 1.417838 1.419662 1.421647 

Fazzolari (2018) 
5 

1.003448 1.028710 1.033336 1.034873 1.036384 

Present 0.996532 1.023469 1.028815 1.0307183 1.032794 

Porosity 

distribution 

VI 

0.20 

Fazzolari (2018) 
0.20 

1.809381 1.842829 1.848496 1.850252 1.851722 

Present 1.812583 1.853621 1.861662 1.864514 1.867620 

Fazzolari (2018) 
1 

1.490613 1.517196 1.521649 1.523015 1.524150 

Present 1.477017 1.508818 1.515039 1.517245 1.519646 

Fazzolari (2018) 
5 

1.205732 1.100163 1.237786 1.239359 1.240955 

Present 1.223388 1.264299 1.272518 1.275452 1.278658 
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developed element demonstrates that the same effect can be 

efficiently viewed using an advanced finite element 

formulation that is free of numerical problems.  

To further verify the effect of porosity on free vibration 

analysis of FGP beams, two other porosity distribution 

models are considered. Dimensionless natural frequencies 

 

 

 

are computed and compared to those given by Fazzolari 

(2018) for various length-to-thickness ratios (L/h), material 

index p, and porosity coefficients (e0). The obtained results 

are presented for clamped-clamped and clamped-free 

boundary conditions in Tables 7 and 8, respectively.  

The obtained dimensionless natural frequencies are in  

Table 9 Comparisons of dimensionless critical buckling load 𝑃̄𝑐𝑟 of imperfect Clamped-Clamped FG AI2O3 beams 

with various length-to-thickness ratio (L/h), material index p and porosity coefficients e0 

Type of 

porosity 
e0 Theories p 

L/h 

5 10 15 20 50 

 0 

Fazzolari (2018) 
0.50 

10.393947 11.240275 11.470924 11.513742 11.528689 

Present 10.623640 11.322995 11.512715 11.548559 11.561159 

Fazzolari (2018) 
1 

8.060210 8.711658 8.889274 8.922276 8.933803 

Present 8.195891 8.714282 8.854492 8.880962 8.890265 

Fazzolari (2018) 
5 

5.053081 5.567317 5.711452 5.739002 5.748738 

Present 5.209947 5.692777 5.828080 5.853858 5.862935 

Porosity 

distribution 

III 

0.1 

Fazzolari (2018) 
0.50 

9.367377 10.116714 10.321983 10.360305 10.373706 

Present 9.597628 10.217570 10.385511 10.417211 10.428359 

Fazzolari (2018) 
1 

6.943418 7.488209 7.637307 7.665153 7.674896 

Present 7.075855 7.503988 7.619406 7.641177 7.648828 

Fazzolari (2018) 
5 

3.881263 4.321306 4.448823 4.473115 4.481662 

Present 3.962531 4.323427 4.424388 4.443615 4.450141 

0.2 

Fazzolari (2018) 
0.50 

8.330615 8.983116 9.162496 9.196134 9.207915 

Present 8.558145 9.097673 9.097673 9.271083 9.280759 

Fazzolari (2018) 
1 

5.787381 6.223798 6.343400 6.365822 6.373678 

Present 5.913237 6.248399 6.338340 6.355286 6.361238 

Fazzolari (2018) 
5 

2.468453 2.743841 2.824293 2.839707 2.845140 

Present 2.547066 2.755594 2.813318 2.824280 2.828137 

Porosity 

distribution 
VI 

0.1 

Fazzolari (2018) 
0.50 

10.103839 10.937603 11.165691 11.208124 11.222944 

Present 10.324135 11.021781 11.211439 11.247291 11.259894 

Fazzolari (2018) 
1 

7.725177 8.360591 8.534645 8.567062 8.578391 

Present 7.854629 8.364556 8.502759 8.528864 8.538039 

Fazzolari (2018) 
5 

4.571055 5.048363 5.182247 5.207807 5.216830 

Present 4.778540 5.264372 5.401985 5.428277 5.437540 

0.2 

Fazzolari (2018) 
0.50 

9.810828 10.632613 10.858304 10.900382 10.915087 

Present 10.020446 10.717010 10.906819 10.942721 10.955344 

Fazzolari (2018) 
1 

7.381259 8.000770 8.171313 8.203155 8.214290 

Present 7.503984 8.005131 8.141264 8.166993 8.176038 

Fazzolari (2018) 
5 

4.083984 4.528771 4.653653 4.677474 4.685878 

Present 4.305361 4.797350 4.938805 4.965937 4.975505 

  

Fig. 4 Variation of dimensionless fundamental frequency 𝜔̄  versus the length-to-thickness ratio (L/h) with various 

boundary conditions: (a) FGP Al2O3 beams (e0=0.20 and p=5), (b) FGP Al2O3 beams (e0=0.20 and p=0.50) 
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good agreement with compared computations except for a 

slight difference marked in very thick clamped-clamped 

beam cases. Moreover, it should be noted that the 
dimensionless natural frequencies explored by Fazzolari 

(2018) are derived by using refined hierarchical kinematic 

quasi-3D beam theories and Ritz solutions, which generate 

even greater numbers of unknowns. In contrast to the used 

porosity distributions mentioned above, the porosity 

distribution type III and IV contribute to an increase in the 

 

 

 

dimensionless frequencies as the FG beam enters a ceramic-

rich phase and decreases when the FG beam tends to 

transform a fully metallic state for the same porosity 
parameter. It is indicated that the porosity parameter 

produces a high magnitude of dimensionless frequencies 

compared to those of perfect beams; this inconsistency may 

be due to material property reduction in imperfect FG 

beams.  

The effects of the thickness ratio (L/h) on the  

Table 10 Benchmark results for first three dimensionless natural frequencies 𝜔̄of imperfect FG AI2O3 beams with 

various boundary conditions, material index p and porosity coefficients e0.(L/h=5) 

BCs e0 p 
Porosity III Porosity VI 

1 2 3 1 2 3 

CC 

0.20 

0.5 8.7558 20.4822 27.6714 8.8736 20.5906 27.4421 

1 7.6341 17.9668 25.2530 7.9742 18.5358 25.2746 

5 5.2385 11.9203 17.5024 6.0915 13.5450 18.8242 

0.30 

0.5 8.7461 20.5065 27.9558 8.9395 20.6847 27.5491 

1 7.3333 17.3732 25.2123 7.9765 18.4859 25.2589 

5 3.2178 7.6908 13.1476 5.7616 12.6524 18.1348 

0.40 

0.5 8.7176 20.5049 28.3209 9.0087 20.7799 27.6677 

1 6.8088 16.3099 25.1428 7.9716 18.4139 25.2387 

5 3.4186 6.9485 10.3563 5.2557 11.3522 17.1426 

S-S 

0.20 

0.5 4.3802 13.4501 15.7363 4.4872 13.4455 15.8848 

1 3.7579 11.6599 14.1080 3.9977 12.0089 14.5011 

5 2.6403 7.5808 9.9979 3.2421 8.8424 11.2582 

0.30 

0.5 4.3576 13.4774 15.7892 4.5344 13.4837 16.0130 

1 3.5660 11.2195 13.8393 4.0085 11.9531 14.5328 

5 1.4574 4.4137 6.9252 3.1279 8.4313 10.7454 

0.40 

0.5 4.3196 13.4835 15.8503 4.5850 13.5258 16.1485 

1 3.2473 10.4093 13.3923 4.0166 11.8866 14.5560 

5 3.9229 4.3029 6.4586 2.9492 7.8721 9.9349 

C-F 

0.20 

0.5 1.6103 8.8279 13.8674 1.6525 8.9743 13.7486 

1 1.3862 7.6337 12.7159 1.4770 8.0247 12.7114 

5 0.9965 5.2412 9.0697 1.2234 6.2417 9.6172 

0.30 

0.5 1.6021 8.8039 14.0163 1.6717 9.0457 13.8051 

1 1.3166 7.2937 12.7211 1.4834 8.0275 12.7143 

5 0.5559 3.0579 7.3406 1.1904 5.9362 9.3561 

0.40 

0.5 1.5883 8.7563 14.2075 1.6924 9.1209 13.8679 

1 1.2006 6.7150 12.7219 1.4891 8.0227 12.7174 

5 0.8271 2.9610 5.6679 1.1372 5.4712 9.0168 

  

Fig. 5 Variation of dimensionless fundamental frequency 𝜔̄ versus the material index (k) with various boundary conditions 

(a)FGP Al2O3 beams (e0=0.10 and L/h=10), (b)  FGP Al2O3 beams (e0=0.20 and  L/h=10) 
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dimensionless natural fundamental frequencies 𝜔̄ of FGP 

Al2O3 beams with various boundary conditions have been 

depicted in Fig. 4. Fig. 5 illustrates the curves of the 

variation of dimensionless natural fundamental frequencies 

𝜔̄ versus the material index p of FGP Al2O3 with various 

boundary conditions. As shown in Fig. 4. The 
dimensionless fundamental frequencies increase when the 

thickness ratio (L/h) has increased too. The effect of the 

material composition is also a significant parameter; the 

ceramic material is considered stiffer than metallic material, 

and therefore the dimensionless frequencies provide a 

higher magnitude in FGP beams as the amount of ceramic 

increases.  

For the same porosity coefficient and boundary 

condition, it is also marked that the margin of difference 

between obtained dimensionless frequencies for both used 

porosity distributions slightly increases with the increasing 

value of thickness ratio in FGP beams as the amount of 

ceramic increases and this margin has grown up when FGP 

beams are metallic-rich phase. It has been conclusively 

shown that the porosity provides greater impact when the 

beam tends to become more metallic. For additional 

evidence, this observation is clearly displayed in Fig. 5.  

 

 

 

The effect of the porosity parameter and thickness ratio 

is shown in Fig. 6. for both porosity distributions (Type I 
and Type II). The thickness ratio (L/h) contributes to an 

increase in dimensionless frequencies from thick to thin 

FGP beams, as observed. The porosity parameter is a non-

trivial factor; this parameter shows the significant decreases 

in dimensionless frequencies of porosity distribution Type-I 

as the porosity parameter increases and this outcome is 

contrary to that of porosity distribution Type II. It seems 

possible that this inconsistency is due to the material 

property reduction in resulting stiffness and mass matrices, 

which involves a marked depletion in the FGP beam inertia 

compared to the FGP beam stiffness.  

 

4.3 Buckling analysis of imperfect FG beams. 
 

Continuously, the dimensionless critical buckling loads 

of imperfect Aluminum-Alumina FG beams with porosity 

distributions Type-III and Type-IV are examined and 
compared to those obtained by Fazzolari (2018) for various 

length-to-thickness ratios, material index p, and porosity 

coefficients. The numerical results are presented in Table 9. 

The obtained results are in good agreement with those given  

Table 11 Benchmark results for first three dimensionless natural frequencies 𝜔̄  of imperfect FG beams with 

various boundary conditions and porosity coefficients e0 (L/h=5) 

B Cs e 0  
Porosity I Porosity II 

1  2  3  1  2  3  

C C 

0.20 5.0523 11.6373 15.1934 5.1167 11.7081 15.1940 

0.40 4.8587 11.1862 14.6507 5.0075 11.3382 14.6539 

0.60 4.6131 10.6388 14.0994 4.8798 10.8842 14.1099 

0.80 4.2613 9.9156 13.6402 4.7176 10.2833 13.6688 

S -S 

0.20 2.5949 7.5883 8.9825 2.6539 7.5968 9.1105 

0.40 2.4949 7.2824 8.6604 2.6398 7.3267 8.9469 

0.60 2.3576 6.9118 8.2773 2.6386 7.0547 8.7653 

0.80 2.1392 6.4007 7.8080 2.6687 6.8342 8.5498 

C -F 

0.20 0.9555 5.1482 7.5970 0.9791 5.2314 7.5968 

0.40 0.9194 4.9502 7.3281 0.9775 5.1484 7.3267 

0.60 0.8700 4.6918 7.0586 0.9828 5.0612 7.0547 

0.80 0.7912 4.3078 6.8422 1.0055 4.9690 6.8342 

  

Fig. 6 Variation of dimensionless fundamental frequency 𝜔̄ FGP  beams with various boundary conditions (a) versus  porosity

coefficient (e0) and L/h=10, (b) versus length-to-thickness ratio (L/h) and e0=0.50 
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by Fazzolari (2018). As previously stated, the compared 

results are based on refined hierarchical kinematics quasi-

3D beam theories using the Ritz approximation, which, 

unlike the finite element method, has a limit on the number 
of admissible function terms to avoid numerical instability. 

The number of generated unknowns turns the Ritz method 

unstable due to round-off errors. 

Again, this example demonstrates the efficiency and 

accuracy of the developed element in buckling analysis of 

imperfect FG beams. As observed, the metallic-rich FG 

beams are more susceptible to buckling than ceramic-rich 

FG beams, and the porosity coefficient contributes to 

decreasing the critical buckling loads. Fig. 7. illustrates the 

effect of length-to-thickness ratio on dimensionless critical 

buckling loads with various boundary conditions. It is clear 

that the porosity contributes to reduction in the resulting 

stiffness matrix, and this leads to decrease the 

dimensionless critical buckling loads for all used boundary 

conditions. The difference between obtained buckling loads 

by using both porosity distributions is more significant with 

important value of porosity parameter, and this difference 
increases when the FGP beams becomes thinner. It is 

evidence that the boundary conditions play a crucial role in 

 

 

 

predicting critical buckling loads, the higher values of 

dimensionless critical buckling loads are observed in 

clamped-clamped FGP beams and the lower magnitudes for 

clamped-free FGP beams. As expected, the metallic-rich 
FG beams are more susceptible to buckling than ceramic-

rich FG beams, and this is clearly presented in Fig. 8. To 

highlight the role of porosity and thickness ratio, the 

dimensionless buckling loads are presented for imperfect 

FG beams with various boundary conditions in Fig. 9.  

A closer inspection of the figure shows that the 

thickness ratio inhibits the margin between dimensionless 

critical buckling loads obtained by using porosity 

distributions, and dimensionless critical buckling loads 

decrease when the porosity parameter increases. 

 

4.4 Parametric study 
 

In order to assess the effect of porosity on the free 

vibration and buckling analysis of imperfect FG beams, 

various porosity distributions are considered. Tables 10-11 

present benchmark results for the first three dimensionless 
natural frequencies of imperfect FG beams with various 

boundary conditions, and material distributions through the  

  

Fig. 7 Variation of dimensionless critical buckling loads 𝑃̄𝑐𝑟 versus the length-to-thickness ratio (L/h) with various boundary 

conditions: (a) FGP Al2O3 beams (e0=0.10 and p=0.50), (b) FGP Al2O3 beams (e0=0.20 and p=5) 

  

Fig. 8 Variation of  dimensionless critical buckling loads 𝑃̄𝑐𝑟 versus the material index (k) with various boundary conditions 

(a) FGP Al2O3 beams (e0=0.10 and L/h=10), (b)  FGP Al2O3 beams (e0=0.20 and L/h=10) 
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thickness and porosity parameters. As it is observed, the 

porosity parameter contributes to the increase in 

dimensionless frequencies in FGP beams as the amount of 

ceramic increases except for the first mode in porosity 

distribution type III and this parameter shows the significant 

decreases in dimensionless frequencies in FGP beams as the 

amount of metal increases. Tables 12-13 display the first 

three dimensionless critical buckling loads of imperfect FG 

beams with various boundary conditions and porosity 

 

 

 
parameters. This parameter has a significant role in 

predicting buckling responses, the higher values are 

observed in the ceramic-rich material and decreased to 

lower magnitudes in the metallic-rich beams, and this 

difference has grown for higher modes of buckling. 

As expected, the FG beams with an increased amount of 

metal are more susceptible to buckling than ceramic-rich 

beams, and the porosity parameter contributes to decreasing 

the dimensionless critical buckling loads as this parameter  

  

Fig.  9 Variation of  dimensionless critical buckling loads 𝑃̑𝑐𝑟 FGP beams with various boundary conditions (a) versus length-

to-thickness ratio (L/h) and e0=0.50, (b) versus porosity coefficient (e0) and L/h=10 

Table 12 Benchmark results for first three  dimensionless critical buckling loads 𝑃̄𝑐𝑟 of imperfect FG AI2O3beams 

with various boundary conditions, material index p and porosity coefficients e0 (L/h=5) 

B Cs e 0  p  
Porosity III Porosity IV 

1 2 3 1 2 3 

CC 

0.20 

0.5 6.9239 10.8028 15.8334 7.9624 12.2115 17.6562 

1 4.8734 7.7499 11.5440 6.0087 9.2869 13.5154 

5 1.9597 2.9257 4.1510 3.0622 4.2883 5.8054 

0.30 

0.5 6.1036 9.5793 14.1106 7.6716 11.7009 16.8453 

1 3.9284 6.3586 9.6180 5.6862 8.7413 12.6678 

5 0.6292 1.0963 1.7791 2.5733 3.5023 4.6529 

0.40 

0.5 5.2636 8.3249 12.3400 7.3747 11.1800 16.0201 

1 2.8955 4.8267 7.4948 5.3533 8.1808 11.8013 

5 0.6318 0.6488 0.6655 2.0032 2.6179 3.3911 

S-S 

0.20 

0.5 2.1395 6.9242 11.8495 2.5051 7.9624 13.3862 

1 1.4783 4.8735 8.5029 1.8759 6.0087 10.1812 

5 0.6367 1.9597 3.2034 1.0763 3.0622 4.6837 

0.30 

0.5 1.8752 6.1036 10.5066 2.4280 7.6716 12.8245 

1 1.1719 3.9284 6.9775 1.7855 5.6862 9.5815 

5 0.1763 0.6292 1.2039 0.9429 2.5733 3.8187 

0.40 

0.5 1.6046 5.2637 9.1338 2.3495 7.3747 12.2514 

1 0.8410 2.8954 5.2991 1.6919 5.3533 8.9655 

5 0.6107 0.6320 0.6493 0.7853 2.0032 2.8453 

C-F 

0.20 

0.5 0.5686 4.3821 9.4723 0.6698 5.0872 10.7912 

1 0.3905 3.0540 6.7337 0.5003 3.8234 8.1766 

5 0.1722 1.2730 2.6157 0.2998 2.0699 3.9427 

0.30 

0.5 0.4974 3.8510 8.3752 0.6505 4.9167 10.3661 

1 0.3079 2.4398 5.4779 0.4771 3.6291 7.7152 

5 0.0455 0.3776 0.9105 0.2672 1.7751 3.2573 

0.40 

0.5 0.4245 3.3073 7.2529 0.6309 4.7427 9.9317 

1 0.2192 1.7724 4.0992 0.4531 3.4282 7.2399 

5 0.6086 0.6258 0.6792 0.2294 1.4267 2.4726 
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increases for distribution pattern type I. In contrast to 

distribution pattern type II, the dimensionless critical 

buckling loads increase when the porosity parameter 

increases and provides more resistance. 

 

 

5. Conclusions 
 

A numerical study of the effect of various porosity 
distributions on the free vibration and buckling analysis of 

FGP beams is carried out. The accuracy and efficiency of 

the formulated two-noded finite element are demonstrated 

for various porosity distributions, boundary conditions, and 

material configurations. Based on higher order shear 

deformation beam theory, the C0 and C1 continuities are 

used to derive the stiffness, geometric, and mass matrices 

from Hamilton’s principle. The present element has only 

three degrees of freedom per node, and is therefore easier to 

use than alternate models available in the scientific 

literature. The shear locking phenomenon is avoided by 

using the reduced integration technique and without 

requiring any shear correction factor. The present results 

have revealed the emergence of several useful conclusions: 

• The formulated finite element model captures the 

effect of porosity distribution on free vibration and 

buckling using an efficient shear deformation beam 

theory with only three unknowns. This theory takes into 
account shear deformation, which beam models 

frequently ignore or underestimate. This helps us 

understand complex porosity distribution structures. 

• The present element is simple, easy to numerically 

implement, and free from shear locking. 

• Unlike other numerical procedures, the formulated 

element is more stable with respect to the resulting 

stiffness, geometric, and mass matrices and offers a 

guideline to develop sets of other finite element models.  

• This investigation tested four porosity distribution 

patterns on free vibration and buckling responses of 

FGP beams. Complex porosity distributions are 

becoming more common in engineering applications, 

and researchers are attempting to make this a major 

focus. This research helps design more efficient and 

 

 

robust structures by revealing their behaviour. 

• The porosity effect has a variable impact on the 

computed frequencies, depending on the used porosity 

distributions. In buckling analysis, the porosity shows a 

clear trend of decreasing critical buckling loads.  

• In addition, the material index is more prominent than 

the porosity parameter in predicting the critical buckling 

loads. 

• The limit of the porosity parameter must be 
experimentally defined to establish the optimum choice 

for imperfect functionally graded structural problems.  

• The used approach is precise and efficient, and it 

assesses large structures with complex porosity 

distributions. This outperforms methods that ignore 

shear deformation or are computationally expensive. 

Finally, the current study can establish a good pathway 

for future research, including various mechanical 

behaviours of imperfect FG beams.  
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