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1. Introduction 
 

Viscoelastic (VE) dampers have often been used in civil 

engineering to reduce excessive oscillations of building 

structures due to earthquakes and strong winds. A number 

of applications of VE dampers in civil engineering are listed 

in the book by Christopoulos and Filiatrault (2006). 

Moreover, VE dampers are also used to reduce the 

vibrations of aircrafts, aerospace and machine structures. 

The VE dampers could be divided into fluid and solid VE 

dampers. Silicone oil is used to build the fluid dampers 

while the solid dampers are made of copolymers or glassy 

substances. 

A comparative study on parameter identification for 

fluid viscous dampers was presented by Greco et al. (2014). 

The properties and rheological models of fluids dampers are 

identified on the basis of results of experiments which are 

laborious and expensive. Moreover, such experiments can 

usually be conducted only for low excitation frequencies. 

Some attempts of numerical modelling of the flow of fluids 

in damper cylinder can be found in papers by Hou (2008) 

and by Frings and De La Llero (2011). The results of such 

types of calculation can be used in the identification 

procedure for damper model parameters and are able to 

significantly reduce the number of the required physical 

experiments. Of course, this approach requires the 

knowledge of the properties of the fluid used in the damper. 

However, experiments with the above-mentioned fluids can 

be performed for a wide range of excitation frequencies and 

with control of temperature during the experiments, using  
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rheometers. The fluids used in dampers are usually highly 

viscous and their constitutive equations often contain 

fractional derivatives (see, for example, papers by Tong and 

Liu 2005 and by Yang et al. 2010). 

A good mathematical model of dampers is required for 

the dynamic analysis of structures with VE dampers 

embedded in them. The rheological properties of the 

viscoelastic material dampers are made of and some of the 

geometric parameters of dampers are the main factors 

which determine the dampers dynamic behaviour. In the 

case of fluid dampers, the rheological model of a highly 

viscous fluid used in the damper is also very important. The 

complex modulus concept is widely used to describe the 

dynamic characteristics of VE materials (see, for example 

the book by Jones 2001). Both terms of the complex 

modulus of damping materials, i.e., the storage modulus and 

the loss modulus, depend on the frequency of oscillations, 

and temperature. 

In the past, several rheological models were proposed to 

describe the dynamic behaviour of VE materials and 

dampers. Both the classical and the so-called fractional-

derivative models of dampers and VE materials are 

available. Descriptions of these models are given, among 

others, in papers by Bagley and Torvik (1989), Park (2001), 

Makris and Constantinou (1991), Pritz (1996, 2003), Aprile 

et al. (1997), Indesman et al. (2001), Lewandowski et al. 

(2012) and Xu and Jiang (2016). 

The classical rheological models consisting of springs 

and dashpots are used by Park (2001), Singh and Moreschi 

(2002), Shukla and Datta (1999) and by Palmeri et al. 

(2003) to describe the rheological properties of VE 

dampers. Due to their simplicity, the simple models, such as 

the Kelvin model or the Maxwell model, are used very 

often to describe the dynamic behaviour of VE dampers 

installed on various types of civil engineering structures. 
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For example, the Kelvin model is used in papers by Singh 

and Moreschi (2002), Shukla and Datta (1999), Matsagar 

and Jangid (2005), Lee et al. (2004) and by Park et al. 

(2004), while the Maxwell model is used in papers by Singh 

et al. (2002, 2003), Shukla and Datta (1999) and Hatada et 

al. (2000). However, these simple models are not able to 

correctly describe the dynamic behaviour of VE materials 

or dampers. A correct description of the VE dampers 

requires rheological models which are built of a set of 

appropriately connected springs and dashpots. In this case, 

the dynamic behaviour of a single damper is described by a 

set of differential equations (see papers by Park 2001, 

Palmeri et al. 2003 and by Singh et al. 2009), which 

considerably complicates the dynamic analysis of structures 

with dampers.  

Rheological models of VE dampers and fluids with 

fractional derivatives, which will be referred to in this paper 

as the fractional rheological models, have received 

considerable attention. The reason is their ability to 

correctly describe the behaviour of VE dampers in a wide 

range of excitation frequencies and using a smaller number 

of model elements (and parameters), compared with the 

classic rheological models. A single equation is enough to 

describe the VE damper dynamics, which is an important 

advantage of the discussed models. However, in this case, 

the VE damper equation of motion is the fractional 

differential equation. The fractional rheological models 

have been used in modelling the rheological behaviour of 

VE materials (see papers by Bagley and Torvik 1989, 

Enelund and Olsson 1999 and by Fenander 1996) and 

dampers (see papers by Makris and Constantinou 1991, 

Aprile et al. 1997 and by Lewandowski and Pawlak 2011). 

A very simple model of viscoelastic materials comprising 

only one springpot elements was proposed by Di Paola et 

al. (2011) and used in papers by Pirrotta et al. (2015) and 

by Bucher and Pirrotta (2015) in the static and dynamic 

analysis of beams and structures made of viscoelastic 

materials. 

The dynamic analyses of frame structures with dampers 

modelled using the fractional rheological models are also 

presented in papers by Chang and Singh (2002), 

Lewandowski and Pawlak (2011) and by Tsai et al. (2002) 

where either the fractional Maxwell model or the fractional 

Kelvin model are used to describe the dampers dynamic 

behaviour. Moreover, in paper by Okada et al. (2006) the 

rational polynomial approximation modelling is used for 

analysis of structures with VE dampers. The fractional 

derivative model of damping was applied also to description 

of dynamic behaviour of viscoelastic beams (see papers by 

Galucio et al. (2004), Cortes and Elejabarrieta (2007). The 

finite element formulation of fractional viscoelastic 

constitutive equations is presented by Schmidt and Gaul 

(2002). 

An important problem to which the paper relates is the 

estimation of model parameters using experimental data. 

The process of parameter identification is an inverse 

problem which can be ill conditioned (see, for example 

papers by Hansen 2007 and Gerlach and Matzenmiller 

2005) because of noises existing in the experimental data. 

Recently, the identification procedures for the three 

parameters fractional Kelvin-Voigt model and the fractional 

Maxwell model are proposed by Lewandowski and 

Chorążyczewski (2010). The problem of parameters 

identification of rheological models with fractional 

derivatives is also discussed by Makris and Constantinou 

(1991), Pritz (1996, 2003), Gusella and Terenzi (1997), 

Aprile et al. (1997) and by Gupta et al. (1996). Static data 

were used in paper by Welch et al. (1999) to determine the 

parameters of new fractional calculus-based constitutive 

equations of viscoelastic materials. A procedure for the 

calculation of the parameters of two classic models: a 

Kelvin chain and a Maxwell ladder, is presented by Chang 

and Singh (2009). Moreover, for the generalized fractional 

Zener model, Fan et al. (2015) used the Bayesian method 

for estimating the parameters of the considered model. 

A new method for identification of the parameters of the 

fractional model of VE dampers and fluids with different 

numbers of parameters is presented in this paper. The 

results of real dynamic tests are used to identify the 

parameters of a damper model. The identification procedure 

comprises two main steps. Experimental results are 

approximated by a simple harmonic function in the time 

domain in the first step while model parameters are 

determined in the second stage of the identification 

procedure. The particle swarm optimization method is used 

in the second step of the identification procedure. The 

validity, accuracy and effectiveness of the procedures have 

been tested using both artificial and real experimental data. 

The method is rather general because it is possible to 

identify the parameters of different rheological models in a 

unified way. 

The paper is organized as follows: In Section 2, the 

equation of motion of the considered rheological models 

and the steady state solution to this equation is derived. A 

description of the identification procedure is given in 

Section 3. In Section 4, details of the applied particle swarm 

optimization method are described. Various examples are 

studied in Section 5 while the concluding remarks are 

presented in Section 6. 

 

 

2. Description of rheological models and their steady 
state vibration 

 

2.1 Rheological models of VE dampers 
 

Rheological models with three or four parameters are 

considered. First of all, we introduce a fractional element 

called the springpot, shown separately in Fig. 1 and as the 

rhombus in the below-presented figures. The springpot 

element satisfies the following constitutive equation 

)( )( tqDctu t
  (1) 

where c and α, 10  , are the springpot parameters and 

)(tqDt
  is the fractional derivative of the order α of 

consecutive function, here q(t), with respect to time t. There 

are a few definitions of fractional derivatives which 

coincide under certain conditions. Here, symbols such as 

)(tqDt


 denote the Riemann-Liouville fractional  
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Fig. 1 The springpot element 

 

 

Fig. 2 The Kelvin type four-parameter model of 

VE dampers 

 

 

Fig. 3 The Maxwell type four-parameter model of 

VE dampers 

 

 

derivatives with the lower limit at  . Some valuable 

information about fractional calculus can be found in the 

book by Podlubny (1999). The considered fractional 

derivative of function x(t) is defined as 







t

d
t

x

dt

d
txD 





 



)(

)(

)1(

1
)(


 (2) 

where   is the gamma function. The springpot element is 

also known as the Scott-Blair element. The considered 

element can be understood as an interpolation between the 

spring element (α=0) and the dashpot element (α=1). 

The first model, which will be called the Kelvin type 

four-parameter model, is a combination of the spring 

element and the fractional Kelvin element (see Fig. 2). The 

constitutive equations are 

)()( 1 tqktu d  (3) 

for the spring element and 

))()(())()(()( 22 tqtqDctqtqktu dtd  
 (4) 

for the fractional Kelvin element where qd(t) is the so-called 

internal variable which can be understood here as the 

relative displacement of the spring element. 

After eliminating the internal variable from relationships 

(3) and (4), the following equation of motion of the first 

rheological model is obtained 

)()()()( 0 tqDktqktuDtu tt
    (5) 

where  

)/( 21210 kkkkk  , 1kk  , )/( 212 kkc   (6) 

The second model, which will be called the Maxwell 

type four-parameters model, consists of the spring element 

and the fractional Maxwell element connected in parallel 

(see Fig. 3). The behaviour of these elements is described 

by the following equations 

)()()( 21 tututu   ,     )()( 11 tqktu   (7) 

)()()( 22

2

2
2 tqDctuD

k

c
tu tt

   (8) 

After eliminating u1(t) and u2(t) from the above 

relationships again Eq. (5) is obtained, but now 

10 kk  ,  21 kkk  ,  22 / kc  (9) 

In conclusion, the dynamic behaviour of both of the 

considered models is described with the help of Eq. (5).  

If the damper is harmonically excited, i.e., 

q(t)=q0exp(iλt), where i
2
=-1 is the imaginary unit and λ is 

the excitation frequency, the damper force in the case of 

steady state vibration can be described as 

)exp()( 0 tiutu   (10) 

After introducing the above relationships into Eq. (5) and 

taking into account that ) exp()( ) exp( tiitiDt     we 

obtain 

0
0

0  
)(1

)(
q

i

ikk
u












   (11) 

Very often the damper‟s complex stiffness is introduced. 

This quantity is defined as 

 )( 1 )()( )()(  iKKiKK   (12) 

where K’(λ) is the storage modulus, K’’(λ) is the loss 

modulus and η(λ)=K’’(λ)/K’(λ) is the loss factor. After 

introducing the following formula i
α
=cos(απ/2)+isin(απ/2), 

we can write 


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 (15) 

Based on the results presented by Lion (2001), it can be 

easily demonstrated that this model fulfils the second law of 

thermodynamics for 10  , 0   and 00  kk . 

If the damper‟s steady state vibration is analysed using 

real numbers then 

tututu sc  sincos)(  , 

tqtqtq sc  sincos)(   
(16) 

and the parameters uc, us, qc and qs fulfil the following  
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Fig. 4 The three-parameter Kelvin model of VE dampers 

 

 

Fig. 5 The three-parameter Maxwell model of VE dampers 

 

 

relationships 

scc qzqzu )()( 21   , scs qzqzu )()( 12    (17) 

where  

)()(1  Kz  ,    )()(2  Kz   (18) 

and we take into account that 

)2/cos(cos    ttDt  

)2/sin(sin    ttDt  
(19) 

Moreover, two fractional rheological models with three 

parameters, i.e., the fractional Kelvin model and the 

fractional Maxwell model shown in Figs. 4 and 5, 

respectively, are considered. 

The equation of motion of the three-parameter models is 

)()()( tqDktkqtu t
  (20) 

for the Kelvin model and  

)()()( 22 tqDktuDtu tt
    (21) 

for the Maxwell model, where τ
α
=c/k. 

The storage modulus and the loss modulus could be 

determined from the following formulas 

)]2/ cos() (1[)(   kK  

)2/ sin() (  kK   

(22) 

for the Kelvin model and  
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)2/ cos() (2) (1

)2/ sin(
) ()(

2 









 kK  (24) 

for the Maxwell model, respectively.  

The three-parameter models fulfill the second law of 

thermodynamics for 10  , τ>0 and k>0. Moreover, the 

three-parameter fractional models fulfill also Eq. (17). 

In the case of dampers, the model proposed by Di Paola 

(2011) is described by Eq. (1) while the storage and loss 

modulus and the loss factor are given by 

)2/ cos()(  cK  ,  )2/ sin( cK   (25) 

)2/ ()(/)(  tgKK   (26) 

In contrast to the previous models, the loss factor of the 

considered model is independent of excitation frequency. 

 

2.2 Rheological models of highly viscous fluids 
 

The most popular models of highly viscous fluids are 

the fractional model and the fractional Oldroyd-B model. In 

the case of one-dimensional flow, the constitutive equation 

of Maxwell fluids is (see, for example, papers by Yin and 

Zhu 2006 and by Hayat et al. 2004) 

)()()( tDEtDt tt     (27) 

where σ(t) is the shear stress, ε(t) is the shear strain, E is the 

shear modulus, τ
α
=η/E, η is the viscosity constant. 

Moreover, α and β are the fractional parameters fulfilling 

the restriction 10   . Often β=1 and here, it is 

assumed that α=β. It is to be noted that the coefficients η 

has an anomalous dimension which depends on the value of 

α. The unit of η is [Pa∙s
α
]. 

As presented by Khan et al. (2010), the constitutive 

equation for the Oldroyd-B fluids could be written (using a 

little bit different notations) in the following form 

)()()()( 0 tDEtEtDt tt  
  (28) 

where E0 and E∞ are the non-relaxed and relaxed shear 

modulus, respectively. 

A formal similarity between Eqs. (27), (28) and Eqs. 

(21), (5) and all the resulting equations is obvious. In 

particular, the storage modulus and the loss modulus are 

given by 


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for the Maxwell fluids and 
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0

)()2/cos()(21
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


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E  (32) 

for the Oldroyd-B fluids. 

In this paper, a family of fractional rheological models 

are considered in order to describe the behavior of high-

viscosity fluids. It contains the three-parameter Kelvin 

model (see Fig. 6(a)), the three-parameter Maxwell model  
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Fig. 6 Schematic view of fractional rheological 

models, a) three-parameter Kelvin model, b) three-

parameter Maxwell model, c) fourth-parameter 

standard model, d) fourth-parameter Zener model 

 

 

(Fig. 6(b)) and two versions of the four-parameter model, 

i.e., the standard model (Fig. 6(c)) and the Zener model 

(Fig. 6(d)). 

The equation of motion of the three-parameter Kelvin 

model is given by 

)()()( tDEtEt t    (33) 

where τ
α
=η/E (compare Fig. 6(a)), while the equation of 

motion of the three-parameter Maxwell model is described 

by Eq. (27) for α=β. 

The behavior of both versions of the four-parameter 

model is governed by Eq. (28) where now 

)/( 21210 EEEEE  ,    1EE  , 

)/( 212 EE  
 

(34) 

for the standard model and 

10 EE  ,    21 EEE  ,    22 / E    (35) 

for the Zener model. Meaning of symbols E1, E2 and η2 are 

obvious from Fig. 6. 

 

 

3. Description of identification method 
 

In this Section we assume that, during the experimental 

tests, two output functions ue(t) (function of force in a time 

domain) and qe(t) (function of displacement in a time 

domain) were obtained. During experiments, the damper is 

several times harmonically excited and in each case the 

excitation frequency, denoted here as λi, (i=1,2,…,n), is 

different. The steady state response of the damper is 

measured, which means that the experimental damper 

displacements qei(t) and the experimental damper forces 

uei(t) are known for each excitation frequency λi. It is 

assumed that all experiments are performed at a constant 

ambient temperature and changes of damper‟s temperature 

during the test are negligible.  

The identification procedure consists of two main steps. 

In the first step the experimental results are approximated 

by a simple harmonic function in the time domain while the 

model parameters are determined in the second stage of the 

identification procedure. 

In the first step, experimentally measured displacements 

qe(t) of the damper are approximated using the function 

tqtqtq sc  sin~cos~)(~   (36) 

The least-square method is used to determine parameters 

cq~  and sq~  of function (33). This method requires 

minimization of the following functional 

  



2

1

2

12

1 )(~)(
1

)~,~(

t

t

esc dttqtq
tt

qqJ  (37) 

where the symbols t1 and t2 denote the beginning and the 

end of the time range in which the damper‟s displacements 

were measured. Part of the measuring results relating to a 

steady state vibration is used as data in this step. From the 

stationary conditions of the functional (37), the following 

system of equations is obtained 

cqsscccc IqIqI  ~~  ,    sqssscsc IqIqI  ~~  (38) 

from which the parameters 
cq~  and 

sq~ are obtained and 

where 


2

1

2cos

t

t

cc tdtI  ,    
2

1
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t
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ecq dtttqI  ,   
2

1

  sin)(

t

t

esq dtttqI   (40) 

Similarly, the experimentally measured dampers force 

ue(t) is approximated by 

tututu sc  sin~cos~)(~   (41) 

Proceeding to a description of the second step of the 

identification method, it is assumed that a set of results of 

the above-described first step of the procedure given by 

ciu~ , siu~ , ciq~  and siq~  and relating to the different 

excitation frequencies λi ),...,2,1( ni   is known. If the 

considered rheological model is able to correctly simulate 

the VE damper behaviour then the relationships (17) must 

approximately be fulfilled by the above-mentioned results 

of the first step identification procedure, i.e. 

siiciici qzqzu ~~~~~
21   ,   siiciisi qzqzu ~~~~~

12   , (42) 

where i=1,2,…,n. 

Solving Eq. (15) with respect to iz1
~  and iz2

~  the 
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following is obtained 

221 ~~

~~~~
~

sici

sisicici
i

qq

ququ
z




  ,    

222 ~~

~~~~
~

sici

cisisici
i

qq

ququ
z




  (43) 

Results of experiments are often presented in the form 

of curves or tables where relationships K’(λ), K’’(λ) are 

given. In this case, Eqs. (42) or (43) could be used to 

determine the parameters ciu~  and siu~  after choosing the 

values of parameters ciq~  and siq~ . This procedure 

assumes that rheological models are described with the help 

of linear differential equations (with the ordinary as well as 

the fractional derivatives).  

If the rheological model perfectly fits with the 

experimental data, then 0~
11  ii zz  and 0~

22  ii zz  for 

i=1,2,…,n, where )(11 ii zz  , )(22 ii zz   are 

calculated using formulae for K’(λ) and K’’(λ) or for E‟(λ) 

and E’’(λ), derived above for the respective models. In 

practice, some differences usually do exist and parameters 

of the rheological model are determined as the solution to 

an appropriately defined optimization problem. 

In the paper the above-mentioned optimization problem 

is formulated as follows: 

Find the values of parameters of the considered model 

(i.e., k0, k∞, τ and α for the four-parameter model and k, τ 

and α for the three-parameter models) which minimize the 

functional 

 



n

i

iiii zzzzJ
1

2
22

2
11 )~()~(  (44) 

and fulfil the following constraints 

10  ,   0  ,    00  kk  , (45) 

10  ,   0  ,    0k  , (46) 

10  ,    0c   (47) 

for the four-parameter models, for the three-parameter 

models and for the two-parameter model, respectively. 

The above optimization problem is solved with the help 

of the particle swarm optimization method described, for 

example in paper by Perez and Behdinan (2007), and, 

briefly, in the next Section. The fractional version of the 

particle swarm optimization is described in the very recent 

book by Couceiro and Ghamisi (2016). 

 

 

4. Description of the adopted version of the particle 
swarm optimization method 

 

The particle swarm optimization (PSO), developed by 

Kennedy and Eberhardt (1995), is based on the observation 

of the social behavior of animals, such as bird flocking, fish 

schooling and the swarm theory. Bird flocks, fish schools, 

and other populations‟ swarms are capable of finding 

optimum locations upon relying on their distributed 

intelligence. PSO has memory. The knowledge of good 

solutions is retained by all particles. In PSO, there exists a 

constructive cooperation between the particles that share 

information.  

PSO is an evolutionary computation technique through 

individual improvement in addition to population 

cooperation and competition. In PSO, multiple candidate 

solutions coexist and collaborate simultaneously. Each 

solution (called a particle) moves in the exploration space 

of the optimization problem and searching the optimal 

position. As time passes through its quest, a particle adapts 

to adjust its position according to its own „experience‟ as 

well as the experiences of its neighboring particles. With 

tracking and memorizing the best position encountered, the 

experiences of particles are accumulated as exploration 

proceeds. Thus, PSO possesses memory, i.e., every particle 

remembers the best position it reached in the past. At the 

same time, PSO combines the local search scheme through 

self-experience with the global search scheme through 

neighboring experience so that the best solution is obtained 

at the end.  

Each particle is characterized by the vector of particle 

position and the vector of particle velocity. The position 

vector pj and the velocity vector vj of the j-th particle each 

contain the parameters of the considered fractional 

rheological models, i.e.  

),,,( ,4,3,20,1    jjjjj ppkpkpcolp  (48) 

)  ,  ,( ,3,2,1   jjjj ppkpcolp  (49) 

for the four- and three-parameters models, respectively. The 

search for optimal solutions is performed by updating the 

subsequent positions of particles. Moreover, each particle 

keeps record of its best fitness achieved so far as the vector 

bj and the best fitness and corresponding solution achieved 

in the particle‟s neighborhood as the vector gj. It was shown 

that using global neighborhood (all particles are fully aware 

of other particles‟ fitness) minimizes the median number of 

iterations needed to converge. On the other hand, the 

neighborhood of size two gives the highest resistance to 

local minima. 

At each time instances i of the PSO, the velocities of the 

particles are changed (accelerated) towards the bj(i) and the 

gj(i) and the particles are moved to new positions according 

to the following formulas taken from the paper by Wilke et 

al. (2007) 

 

  tiii
t

c

iii
t

c
iiwi

jj

jjjj









/)()()(                  

)()()()()()1(

2
2

1
1

pgR

pbRvv
 (50) 

tiii jjj )1()()1(  vpp  (51) 

where Δt=1, R1(i), R2(i) are the diagonal matrices of 

independent random numbers uniformly distributed in the 

range [0, 1]; vj(i) and pj(i) are the velocity and the position 

vectors at the i-th instance of time, respectively; w(i) )(iw  is 

the inertia factor providing balance between exploration and 

exploitation, c1 is the individuality constant, and c2 is the 
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sociality constant. To speed up convergence, the inertia 

weight was linearly reduced from wmax to wmin, i.e.  

maxminmaxmax / )()1( iiwwwiw   (52) 

Where imax is the maximal number of time instances. 

Zero vectors are chosen as the initial values of velocity 

vectors vj(0). The initial values of parameters τ and α, i.e., 

elements vectors pj(0), are chosen as random, uniformly 

distributed numbers taken from the range [0, 1]. The initial 

values of stiffness parameters k0 and k∞ or k are chosen as 

the random numbers uniformly distributed in the range [0, 

1] multiplied by some constant k , which means that, for 

example, the initial values of k0 are calculated from the 

formula krk  0  . The values of k  are chosen of the order 

of the expected values of stiffness parameters k∞ or k. The 

above choices assure all assumed initial approximations of 

dampers parameters, i.e., vectors pj(0) and vj(0) fulfil the 

optimization constraints (45), (46) or (47). 

An important part of the PSO algorithm is the way of 

handling the constraints, introduced by the considered 

optimization problem. The value of each component in vj(i) 

is clamped to the range [vmin, vmax] to control the excessive 

roaming of particles outside the search space. The values 

vmin=-0.1 and vmax=0.1 are chosen for the parameters τ and α 

and kv 1.0min  , kv 1.0max   for the remaining model 

parameters. Taking into account the physical meaning of the 

parameter τ, the constraint τ>0 is modified to the following 

one 0<τ<1 without introducing any significant errors. If this 

constraint or the constraint 0<α<1 is violated then the 

appropriate element of the velocity vector vj(k) is calculated 

from the formula (50) but with the first term omitted, and 

divided by 2.0. If the constrain is still violated, then the 

value of the objective function (44) is artificially multiplied 

by a number of the order 10
5
. The objective function is also 

artificially multiplied when the constrains k∞>0, k0>0 or 

k>0 are not fulfilled. In the case of violation of the constrain 

k∞>k0, a new value of k∞ equal to 1.01k0 is introduced. 

 

 

5. Results of calculation 
 

5.1 Results of typical calculation - the artificial data 
 

A typical calculation is performed using artificially 

generated data. At the beginning, the artificial data without 

noises for all the considered models are calculated using 

formula (16) and assuming that: the number of excitation 

frequencies n=14; the parameters of the considered models 

are k1=600.0 kN/m, k2=400.0 kN/m, k=400.0 kN/m, 

c=150.0 kNs
α
/m, α=0.6 depending on the model which is 

considered and the following values of the dampers 

displacement amplitudes qsi=0.01 m, qci=0.005 m. The 

chosen values of the excitation frequency are taken from the 

range 0.5-13.5 Hz with the frequency increment Δλ=1.0 Hz. 

In our experiments we have used 20 particles. The 

maximum number of time instances was imax=400 and 

c1=c2=2.0. A size 3 neighbourhood was used as a trade-off 

between fast convergence and resistance to local minima. 

The PSO algorithm was applied 5 times with the final 

results presented in Table 1. It is evident that in the 

considered case and after using the presented identification 

method, the almost exact values of models parameters are 

obtained for all the considered models of dampers. 

Moreover, the PSO procedure was applied to artificial 

data with artificially introduced noises. Random noises are 

added to the artificial data using the formulas 

ciici uru ~ )~1(ˆ
1   ,  siisi uru ~ )~1(ˆ

2   , 

ciici qrq ~ )~1(ˆ
3   ,  siisi qrq ~ )~1(ˆ

4    
(53) 

where ε is the noise level, 
ir1

~ , 
ir2

~ , 
ir3

~  and 
ir4

~  are 

random numbers taken from the range from 0 to 1. The PSO 

algorithm was applied 20 times. Results of the calculation 

performed for different noise levels and different 

rheological models of dampers are presented in Table 2. 

Results presented in Table 2 indicate that the relative errors 

of values of α, k and c parameters are of the order of the 

noises introduced. The worst results are obtained for the 

Maxwell type four-parameter model which seems to be 

more sensitive to measurement errors than others.  

In practice we are confronted with two kinds of errors. 

The first one is the measurements errors discussed above 

while the second one is the modelling errors. The modelling 

error occurs when the adopted rheological model of damper 

is, for example, to simple to be able to correctly describe all 

properties of the real VE damper. In order to illustrate the 

behaviours of the presented identification procedure we 

identify the parameters of one model on the basis of 

artificially generated data resulting from the other model. 

Firstly, the artificial data generated using the Kelvin type 

four-parameter model is approximated by the three-

parameter Kelvin model. The obtained identification results 

are unacceptable. In the opposite case, i.e., when artificial 

data are generated for the three-parameter model and the 

four-parameter model is used in the identification 

procedure, the results are acceptable. 

 

5.2 Results of typical calculation for real experimental 
data - viscoelastic damper 
 

The identification procedure is also applied to identify 

parameters of liquid viscous damper investigated in papers 

by Makris (1992) and Makris and Constantinou (1991). The 

data given in paper by Makris (1992) are used to identify 

the parameters of all the considered rheological models.  

In mentioned above papers dampers are modelled by the 

Maxwell type fractional rheological model described by the 

following equation 

)()()( 0 tuDCtPDtP M
q

MM
r

MM    (54) 

where PM(t) denotes the damper force, uM(t) is now the 

damper displacement and λM, C0M, r and q are the model 

parameters. The values of parameters of the above model 

identified by Makris (1992) are: λM=0.3s
0.6

, C0M=15.0 

kNs/m, r=0.6, q=1.0. Please note that the above model has 

four parameters and is significantly different from the 

Maxwell type four-parameter model discussed in this paper 

and as described by Eq. (5). Except for the existence of two 

187



 

Roman Lewandowski, Mieczysław Słowik and Maciej Przychodzki 

Table 1 Results of identification procedure - artificial data 

without noises 

Exact model 

parameters 

k1
 

]/[ mkN  

k2 or k  

]/[ mkN  

c 

]/[ mkNs  

  

][  

600.0 400.0 150.0 0.6000 

The three-

parameter Kelvin 

model 

- 399.6 150.1 0.5999 

The three-

parameter 

Maxwell model 

- 400.0 150.0 0.6000 

The Kelvin type 

four-parameter 

model 

595.7 405.0 147.8 0.6094 

The Maxwell 

type four-

parameter model 

599.9 400.3 150.4 0.5989 

 

Table 2 Results of identification procedure - artificial data 

with noises 

Exact model 

parameters 

k1
 

]/[ mkN  
2k  or k  

]/[ mkN  

c 

]/[ mkNs  

  

][  

600.0 400.0 150.0 0.6000 

The three-

parameter 

Kelvin model 

1.0% - 390.5 152.8 0.5962 

2.0% - 405.1 149.9 0.5999 

The three-

parameter 

Maxwell 

model 

1.0% - 398.2 150.6 0.6027 

2.0% - 401.9 150.8 0.5962 

The Kelvin 

type four-

parameter 

model 

1.0% 606.8 391.0 156.2 0.5815 

2.0% 596.5 404.3 151.4 0.6039 

The Maxwell 

type four-

parameter 

model 

1.0% 590.9 412.3 165.7 0.5818 

2.0% 605.7 392.7 137.9 0.6101 

 

Table 3 Results of identification procedure - data taken 

from Makris [1992] 

Parameter 
k1

 

]/[ mkN  

k2 or k  

]/[ mkN  

c 

]/[ mkNs  

  

][  

Values of parameters 

taken from Makris 
- - 15.0 kNs/m 0.6000 

The three-parameter 

Kelvin model 
- 23.098 23.098 0.5110 

The three-parameter 

Maxwell model 
- 1402.79 20.663 0.5822 

The Kelvin type four-

parameter model 
1196.2 0.5337 19.022 0.6049 

The Maxwell type four-

parameter model 
0.04804 1364.19 20.402 0.5856 

 

 

fractional derivatives of a different order, Eq. (54) exhibits 

some similarities with Eq. (21) which describes the 

dynamical behaviour of the three parameters Maxwell 

model. 

The results obtained with the help of our identification 

procedure are presented in Table 3 and in Figs. 7-10 for all 

of the considered rheological models. In Fig. 7 the storage 

modulus versus excitation frequency is shown. The results 

obtained in the experiment are shown as small crosses and 

compared with the storage modulus obtained with the help 

of the three- and four-parameter Kelvin models. The results 

obtained from the three-parameter model are shown as the 

solid line with small rhombuses while the results obtained 

from the four-parameter model are shown as the solid line. 

In Fig. 8 the loss modulus is compared in a similar way. 

Figs. 9 and 10 give a comparison of experimental results 

with results obtained in the help of the three and four-

parameter Maxwell models. Also in these figures, the 

results obtained from the three-parameter model are shown 

as the solid line with small rhombuses while the results 

obtained from the four-parameter model are shown as the 

solid line. 

Some remarks can be formulated after a careful 

examination of the results, presented in Table 3 and Figs. 7-

10.  

• Parameter k2 in the Kelvin type four-parameter model 

and the parameter k1 of the Maxwell type four-parameter 

model are equal to zero in approximation. 

• This means that for the considered liquid viscous 

damper the four-parameter models are essentially 

reduced to the three-parameter Maxwell model. The 

essential properties of the mentioned damper are 

incorporated in the three-parameters Maxwell model. 

• However, a careful examination of the results 

presented in Figs. 7-10 suggests that the storage 

modulus and the loss modulus resulting from 

experiments are a little bit better approximated by the 

four-parameter models. 

• In spite of some qualitative differences between Eqs. 

(54) and (21), the values of the fractional parameter and 

those of the damping factor of the two compared models 

are in good agreements where the liquid viscous damper 

parameters are identified. 

• Despite the fact that the Maxwell models seems to be a 

better choice than the Kelvin models, the results 

obtained with the help of the Kelvin models can also be 

acceptable.  

 

5.3 Results of typical calculation for real experimental 
data-viscoelastic fluids 
 

Polydimethylsiloxane (C2H6OSi) is a highly viscous 

fluid, used in the experiments. Its rheological properties 

were investigated using the Physica MCR 101 dynamic 

shear rheometer. A system containing two parallel circular 

plates, 25 mm in diameter, was used in the experiments. 

The fluid was inserted in a 1.0 mm interstice between the 

plates. Its temperatures were 20
o
C and 50

o
C and were kept 

constant with a tolerance of 1.0 o
C. The fluid was excited 

to a harmonic motion by rotating the movements of one 

plate. The amplitudes of angular motion were: 0.01 mrad; 1 

mrad; 20 mrad and 100 mrad. For a given temperature and 

amplitude of motion, the experiments were performed for 

different excitation frequencies taken from the range 10
-1

-

10
2
 Hz. The storage modulus E’(λ) and the loss modulus 

E’’(λ) were obtained from measurements. 
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Fig. 7 Comparison of the experimentally obtained storage 

modulus (small crosses) with ones obtained using the 

three-parameter Kelvin model (solid line with 

rhombuses) and using the four-parameter Kelvin model 

(solid line) 
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Fig. 8 Comparison of the experimentally obtained loss 

modulus (small crosses) with ones obtained using the 

three-parameter Kelvin model (solid line with 

rhombuses) and using the four-parameter Kelvin model 

(solid line 
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Fig. 9 Comparison of the experimentally obtained storage 

modulus (small crosses) with ones obtained using the 

three-parameter Maxwell model (solid line with 

rhombuses) and using the four-parameter Maxwell model 

(solid line) 

 

 

Typical results obtained from the identification 

procedure are presented in Figs. 11 and 12. Moduli E’(λ) 

and E’’(λ) are shown in relationship to the excitation 
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Fig. 10 Comparison of the experimentally obtained loss 

modulus (small crosses) with ones obtained using the 

three-parameter Maxwell model (solid line with 

rhombus) and using the four-parameter Maxwell model 

(solid line) 

 

Table 4 Values of parameters of different models of fluids 

Model 
E  or 1E  

[Pa] 

  or 2   

[ sPa  ] 
2E  [Pa]   [-] 

Maxwell 85931.0 2060.9 - 0.7500 

Standard 92931.0 2129.4 0.0 0.7369 

Zener 0.0 2067.8 88898.4 0.7301 

 

Table 5 Dependence of parameter values on amplitudes of 

torsion vibration of rheometer 

Amplitude 

[mrad] 

Maxwell model Standard model 

E  

[Pa] 

   

[Pa∙s
α
] 

  

[-] 
1E  

[Pa] 

2E  

[Pa] 

  

[Pa∙s
α
] 

  

[-] 

0.10 80614.7 2038.84 0.7544 80362.8 168.4 1999.2 0.7595 

1.00 87876.0 2095.16 0.7470 96591.5 187.4 2172.0 0.7325 

10.0 85931.0 2060.90 0.7500 92931.0 0.0 2129.4 0.7369 

 

 

frequency λ. Results are for an amplitude of torsional 

motion equal to 10.0 mrad, the temperature during 

experiment was 20
o
C and the experimental data were taken 

from the range of 0.3-63.0 Hz.  

The experimental data are shown by small crosses, 

while moduli resulting from identification procedure are 

presented by rhombi (Kelvin model), triangles (Maxwell 

model), squares (standard model) and by circles (Zener 

model). The results show that the properties of the 

investigated fluid cannot be described correctly by means of 

the three-parameter Kelvin model, therefore, the results 

obtained using this model will not be discussed in future. 

The values of parameters of the remaining models are 

presented in Table 4. The values of dynamic viscosity (η or 

η2) in all the models are almost equal (differences are about 

3%). Moreover, E2=0 in the standard model and E1=0 in the 

Zener model. This means that the four-parameter models 

are reduced to the three-parameter Maxwell model. 

Differences between the values of E are about 8% while 

differences in the values of the parameter α (the order of 

fractional derivative) are not greater than 3%. All of this 
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justifies the effectiveness of the proposed method of 

identification. 

In Table 5, the values of parameters of the Maxwell 

model and the standard model are presented for three 

different amplitudes of torsional vibration of rheometer. In 

the considered range of amplitudes, the values of model 

parameters are approximately constant. 

 

 

 
Fig. 11 Comparison of identification results - modulus E’ 
vs. excitation frequency, experimental results (  ), 

Kelvin model (), Maxwell model (), standard 

 
 

 
Fig. 12 Comparison of identification results – modulus E   

vs. excitation frequency, experimental results (  ), Kelvin 

model (), Maxwell model (), stand ), 

Zener model (○)  

 

 
Fig. 13 Course of function )(E   for different values of 

parameters of the Maxwell model 
 

 
Fig. 14 Course of function E’’(λ) for different values of 

parameters of the Maxwell model 

 

Table 6 Dependence of parameter values on a range of 

excitation frequencies 

Number 

of data 

Range of 

frequencies 

[Hz] 

Maxwell model 

E  
[Pa] 

  

[Pa∙s
α
] 

  

[-] 

1 0.3-63.0 80614.7 2038.8 0.7544 

2 0.3-50.0 75925.2 1992.2 0.7676 

3 0.3-43.0 68786.9 1941.9 0.8009 

4 0.3-28.0 60248.8 1885.1 0.8033 

5 0.3-20.0 52960.2 1843.2 0.8229 

6 0.3-10.0 40452.7 1793.3 0.8602 

7 0.3-5.0 30474.4 1781.8 0.8937 

 

 

In Table 6, the influence of a range of experimental data 

on the results of identification of model parameters is 

presented for the Maxwell model. The observed influence is 

highly significant. The values of the parameters E  and   

considerably decrease with an increase in the range of 

excitation frequencies while the values of the parameter   

increase. The maximum differences are: 62.1% for E , 

12.6% for   and 18.5% for  . Figs. 13 and 14 illustrate 

how these effects influence the storage modulus and the 

loss modulus, respectively. In the figures, the solid line 

shows a modulus obtained from the experimental data while 

the dashed line and the dotted line are obtained when 

parameters from the first and the last line of Table 6 are 

used, respectively. Differences in predicting the loss 

modulus are not only quantitative but also qualitative 

because function E’’(λ) has its minimum when data from 

the last line of Table 6 are used. Such results seem to 

indicate that the results of identification are valid 

approximately only in a range of frequencies for which the 

experimental data are available.  

Partial explanation of the inability to correctly predict 

the modules E’(λ) and E’’(λ) outside the range of available 

experimental data is feasible on the basis of sensitivity 

analysis. The formulae for the needed sensitivities 

EE  /)( ,    /)(E ,    /)(E ,  EE  /)( , 

  /)(E  a n d    /)(E  h a v e  b e e n  o b t a i n e d 

performing symbolic differentiations with the help of 
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MATLAB. It is easy to conclude that such sensitivities 

depend on the current values of the model parameters (E, η 

and α) and the excitation frequency λ. Only the sensitivities 

EE  /)( ,    /)(E  and    /)(E ,  t r ea t ed  a s 

functions of λ, are presented in Figs. 15-17. These functions 

are shown for different values of model parameters taken 

from Table 6 and the diagrams are numbered as the 

corresponding model parameters in Table 6. The shapes of 

the functions are highly various. In all the figures, it can be 

seen that, for low frequencies, the values of sensitivity 

functions are very similar and have significantly or 

completely different values for high frequencies. The region 

where sensitivities are similar is strongly related to the 

range of frequencies from which the experimental data are 

taken. For a larger range of experimental data, we can see a 

larger range of excitation frequencies where values of 

sensitivities are similar. For small ranges of experimental  

 

 

 
Fig. 15 Sensitivites EE  /)(  for different values 

of parameters of the Maxwell model 

 

 
Fig. 16 Sensitivites   /)(E  for different values 

of parameters of the Maxwell model 

 

 
Fig. 17 Sensitivites   /)(E  for different values 

of parameters of the Maxwell model 

data, the different values of sensitivity functions are 

completely different, in comparison with the corresponding 

values of sensitivity functions obtained for the large ranges 

of experimental data. Similar conclusions result from the 

analysis of sensitivities EE  /)( ,   /)(E  and 

  /)(E . 

 

 

6. Conclusions 
 

The proposed identification method can be used 

effectively for determining the parameters of a group of 

rheological models with fractional derivatives. Its 

effectiveness has successfully been tested using both 

artificial data and data for a real damper taken from 

literature, as well as the authors‟ own data concerning a 

highly viscous fluid. The data taken from the dynamical 

experiments are used to identify the parameters of the 

rheological models. The identification procedure proposed 

in this paper seems to be quite general and applicable to 

determination of the parameters of other rheological models 

with fractional derivatives. The above-mentioned 

rheological models can be used to modelling the dynamic 

behaviour of VE dampers and highly viscous fluids. The 

identification problem is reduced to the nonlinear 

optimization problem which is solved by means of the 

particle swarm optimization method. Based on calculation 

presented in this paper for the artificially generated data, it 

was found that the proposed method is not sensitive to 

noises introduced during the measurements.  
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