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1. Introduction 
 

With the fast development of technology, a new 

research area is in growth for understanding of nano/micro 

structures, and the carbon nanotubes (CNT) and the 

graphene sheet (GS) are the most prevalent among 

nano/micro structures. Since its invention by Iijima (1991), 

the CNT has been attracted a vast quantity of research effort 

owing to its advance mechanical, chemical, physical, and 

electrical properties (Dai et al. 1996, Kim and Lieber 1999, 

Thostenson et al. 2001, Bachtold et al. 2001). Due to its 

superior feature, the application of CNT was expanded into 

many areas such as nano-electromechanical devices 

(Hierold et al. 2007), actuators (Baughman et al. 1999). 

Obviously, understanding and analyzing the behavior of 

CNT play an important role in research. Therefore, 

experiments as well as discrete atomistic methods such as 

molecular dynamics (MD) simulation (Frankland et al. 

2002, Liew et al. 2004) have been utilized. However, these 

methods are either extremely difficult or highly expensive 

for computational cost. Because of these reasons, the size-

dependent continuum model was developed as another 

alternative theoretical technique. 

It is known that due to the absence of internal material 

length scale in the constitutive equation, the classical theory 

fails to predict the behavior at the nano-scale which was 

reported by Fleck et al. (1994), Stölken and Evans (1998)  
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and Lam et al. (2003). In order to consider the size-

dependent effect, numerous size-dependent continuum 

theories (e.g., nonlocal theory, strain gradient theory, 

surface theory, couple stress theory, and modified couple 

stress theory), which can capture the nano-scale effect, have 

been developed to study the behavior of nano/micro 

structures. In the local (classical) continuum theories based 

on the hyper-elastic constitutive relations, the stress state at 

a reference point is only a function of strain state at that 

point. The nonlocal continuum theory initially developed by 

Eringen (1972), and Eringen and Edelen (1972) indicate 

that the stress state at a reference point is a function of 

every strain state in the continuum body. 

Although the nonlocal continuum theory was first 

introduced by Eringen (1972), the feasibility of the nonlocal 

theory for the analysis of nano/micro structures was initially 

presented in Peddieson et al. (2003). They concluded that 

the nonlocal effect could be useful and significant for 

nanostructures. In their work, the nonlocal effect was 

vanished for a cantilever beam subjected to any 

combination of concentrated loads. Lu et al. (2007) 

investigated the wave and vibration properties of single or 

multi-walled carbon nanotubes by using the nonlocal Euler-

Bernoulli and Timoshenko beam models. They discussed 

some issues on deriving stress resultants, governing 

equations, and boundary conditions of the nonlocal beam 

model. Thai (2012) studied the static, buckling, vibration 

analysis of nonlocal beam using higher order shear 

deformation beam theory. Wang et al. (2008) expressed the 

analytical solutions for deflections, rotations and stress 

resultants for the nonlocal Timoshenko beam subjected to 

transverse distributed load. Pradhan and Murmu (2010) 

investigated the flapwise bending vibration of nonlocal 

Euler-Bernoulli cantilever beam. The governing equation 

was derived and solved by using differential quadrature 

method. Emam (2013) presented the analytical solution for 
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buckling and post-buckling analysis of nonlocal nonlinear 

nanobeams with the classical, first order and higher-order 

shear deformation beam theories. Comprehensive research 

on the static, free vibration, and buckling were reported by 

Reddy and Pang (2008) based on Euler-Bernoulli and 

Timoshenko beam theories. The analytical solutions of the 

simply supported, cantilever, and clamped beams were 

obtained for bending, free vibration, and buckling problems. 

Reddy (2007) reformulated various beam theories including 

the Euler-Bernoulli, Timoshenko, Reddy, and Levinson 

beam theories incorporated with the nonlocal continuum 

theory for the bending, free vibration, and buckling of 

nonlocal beam. In particular, for bending analysis, the point 

load problem for the nonlocal theory was solved by using 

Navier solution which transforms every loading type into 

the distributed load by using Fourier series formulation. 

Reddy (2010) also developed his research for the nonlinear 

bending of classical and shear deformation theories of 

nonlocal beams and nonlocal plates. Aydogdu (2009) 

presented the Navier solution to deal with the point load 

problem for the simply supported beam. In his study, the 

length of beam was changed to investigate the length-scale 

effect. Moreover, in order to deal with the point load 

problem, Wang and Liew (2007) introduced Dirac delta 

function involved with point load in the governing equation 

of static analysis of nonlocal Euler-Bernoulli and 

Timoshenko beams. Owing to the advantage of Dirac delta 

function, the nonlocal effect would be presented for various 

nonlocal nanobeams subjected to the point load. Civalek 

and Demir (2011) also exploited this method to investigate 

the bending analysis of microtubules using nonlocal Euler-

Bernoulli beam theory. The application of differential 

quadrature method was used to obtain the solution for 

different boundary conditions. On the other hand, finite 

element method was used to investigate the behavior of 

nonlocal Euler-Bernoulli beam and nonlocal Timoshenko 

beam by Phadikar and Pradhan (2010) and Pradhan (2012), 

respectively. A nonlocal beam subjected to the point load 

was not investigated in their study due to the fact that the 

nonlocal effect is excluded from the finite element model. 

Single-walled carbon nanotubes (SWCNT) can be 

modeled by the nonlocal beam model (Amara et al. 2010, 

Narendar and Gopalakrishnan 2009, Boumia et al. 2014, 

Wu and Lai 2015) or the nonlocal shell model (Hoseinzadeh 

and Khadem 2014, Khademolhosseini et al. 2010, Hu et al. 

2008). Using the nonlocal beam model, Arash and Ansari 

(2010) studied the vibration characteristics of SWCNT 

subjected to an initial strain. The obtained results were 

compared with the MD simulation to assess the nonlocal 

parameter eoa for clamped and cantilever SWCNT. 

Similarly, Duan et al. (2007) calibrated the parameter eo by 

matching the closed-form solution for the free vibration of 

SWCNT and MD simulation. Their findings indicate that 

the parameter eo varies from 0 to 19 depending on the 

length-to-diameter ratio, boundary conditions, and mode 

shapes of SWCNT. Recently, a lot of works have been done 

to investigate the behavior of SWCNT embedded in 

polymer or matrix as an elastic medium. Li et al. (2008) 

investigated the flexural wave behavior of SWCNT and 

double-walled carbon nanotubes (DWCNTs) embedded in 

an elastic medium by nonlocal theory and Timoshenko 

beam model. Ke et al. (2009) studied the non-linear free 

vibration of DWCNTs based on the nonlocal Timoshenko 

theory. The non-linearity was taken into consideration by 

von-Kármán non-linear strain tensor. Moreover, Mustapha 

and Zhong (2010) presented the free vibration analysis of 

the non-prismatic SWCNT with an axially initial force. The 

SWCNT is idealized as a nonlocal Rayleigh beam and the 

variable governing equation is solved with the Bubnov-

Galerkin method. Aydogdu (2012) examined the axial free 

vibration characteristics of SWCNT embedded in an elastic 

medium. Narendar and Gopalakrishnan (2011) investigated 

the thermal buckling of SWCNT under the nonlocal 

Timoshenko framework. Numerous studies on vibration and 

buckling of CNT were perform by Murmu and his 

colleagues (Murmu and Pradhan 2009a, c, Pradhan and 

Murmu 2009, Murmu and Pradhan 2009b, Murmu and 

Adhikari 2011, Murmu et al. 2012). Recently, Wu and Lai 

(2015) developed the RMVT (Reissner mixed variational 

theorem) based nonlocal Timoshenko beam theory for the 

static behaviors of nanobeams and SWCNTs with four 

different boundary conditions, being embedded in an elastic 

medium. The results showed that the RMVT based nonlocal 

beam was superior to the PVD (principle of virtual 

displacement) based nonlocal one by comparing their 

solutions with the analytical ones available in the literature. 

From the previously cited references, it is worth noting 

that in spite of the fact that extensive researches on nonlocal 

beam problems for SWCNT have been carried out, to the 

best of authors’ knowledge, very little attention is given to 

the static analysis of the nonlocal nanobeams subjected to a 

point load. Navier solution of Reddy (2007) and Aydogdu 

(2009), and the Dirac delta function from Wang and Liew 

(2007), Civalek and Demir (2011) were derived to address 

the concentrated loading problem of nonlocal beam. 

However, such analytical solutions cannot generally handle 

arbitrary complicated geometries, material properties, 

loading types, and boundary conditions whereas finite 

element method by Phadikar and Pradhan (2010), Pradhan 

(2012) cannot take the point load problem of nonlocal beam 

into account.  

Motivated by these reasons, this paper, which is an 

expansion of an earlier paper by Nguyen et al. (2015), 

presents the mixed finite element method for the static 

analysis of the nonlocal SWCNT embedded in an elastic 

medium under an initial axial force. The novelty and 

efficiency of this model are addressed and verified, 

especially for the concentrated load problem. The outline of 

this paper is as follows: The nonlocal elasticity theory is 

presented in Section 2. The mixed finite element model is 

formulated and derived in Section 3. The numerical results 

are carried out in Section 4. The accuracy and reliability of 

this study are presented and demonstrated by comparing the 

results with published works. Finally, concluding remarks 

are drawn. 

 

 

2. Nonlocal continuum theory 
 

It is known that in contrast to the constitutive equation 
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in the classical elasticity, the nonlocal elasticity theory by 

Eringen (1983) states that the stress at a point x  in an 

elastic continuum body depends not only on the strain at 

point x  but also on those at all other points of the body. 

Therefore, the nonlocal stress tensor σ  at point x  is 

expressed as Reddy (2007) and Pradhan (2012) 

 , ( )ij ij
V

t d      x x x x           (1) 

where ( )ijt x  are the components of the classical 

macroscopic stress tensor at point x ; the kernel function 

 ,  x x is the nonlocal modulus or the attenuation 

function specifying the nonlocal effect at a reference point 

x  produced by the local strain at the source 

,  x x x being the distance (in Euclidean distance);   is 

a material constant that depends on the internal and external 

characteristic lengths (such as the lattice spacing and wave 

length, respectively). The integration is taken for total 

volume V  of elastic body. The macroscopic stress t at a 

point x  in a Hookean solid is related to the strain ε at the 

point by the generalized Hookes law as follows 

ij ijkl kl( ) ( ) : ( ) or t =C t x C x ε x         (2) 

where ( )C x  is the fourth-order elasticity tensor and the 

colon denotes the double-dot product. The integral 

constitutive relation in Eq. (1) makes the elasticity problems 

difficult to solve, in addition to possible lack of 

determinism. Therefore, Eringen (1983) discussed in detail 

properties of the nonlocal kernel  ,  x x  and proved 

that when a kernel takes a Greens function of the linear 

differential operator 

   aL     x x x x            (3) 

The nonlocal constitutive relation in Eq. (1) is reduced to 

the following differential equation 

a ij ijL t                    (4) 

Thus, Eringen (1983) proposed a nonlocal model with the 

linear differential operator La by matching the dispersion 

curves with lattice models as follows 

 
2 21a oL e a                 (5) 

where 
2  is the Laplace operator; oe  is a parameter to 

adjust the model to match the reliable results by 

experiments or other models; a is an internal characteristics 

length (e.g., granular distance, lattice parameter); oe a  

denotes the nonlocal parameter which reveals the small 

scale effect on the response of structure for nanosize. 

Eringen (1983) proposed the 2( 4) / 2 0.39oe      and 

1 12 2 / 0. 88oe    was given by Wang (2005). For a beam 

type structure, the nonlocal behavior can be neglected in the 

thickness direction. Thus, the constitutive relation for the 

nonlocal elasticity can be represented by following form 

 
2

2

2

xx
xx o xxe a E

x


 


 


           (6) 

where xx  and xx  are the axial normal stress and the 

axial strain, respectively, and E is the elasticity modulus. 

When the nonlocal parameter is taken as 0e a , the 

constitutive relation of the local theory is obtained. 

Integrating Eq. (6) over the area of cross-section, we can 

obtain the moment-curvature relation as follows 

 
2

2

2o xx

A

d M
M e a zE dA

dx
           (7) 

where xM  and A  are the bending moment and the area 

of the cross-section, respectively. 

It is worth noting that the bending moment in Eq. (7) is 

defined from the nonlocal constitutive law. It is so-called as 

the nonlocal bending moment which is associated to the 

nonlocal theory. 

 

 

3. Beam formulation 
 

Let consider a SWCNT assumed to be modeled as an 

Euler-Bernoulli beam embedded in an elastic medium and 

subjected to an initial axial force in Fig. 1. The kinematic 

relations according to the Euler-Bernoulli beam theory is 

given as 

 
( )

, odw x
u x z z

dx
               (8) 

   , ow x z w x                (9) 

where u  and w  are the axial and transverse 

displacements, respectively, at any general point in the 

deformed state; ow  is the transverse displacement 

calculated at the mid-plane. The definition of the axial 

strain is written by 

2

2

o
xx

d wdu
z

dx dx
                (10) 

Substituting Eq. (10) into Eq. (7), the moment-curvature 

relation of the nonlocal Euler-Bernoulli beam theory can be 

obtained as follows 

 
22

2

2 2

o
o

d wd M
M e a EI

dx dx
           (11) 

 

 

 
Fig. 1 Schematic of SWCNT embedded in an elastic 

medium and subjected to an initial axial force 
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where I is the moment inertia of the cross-section. 

Now consider a SWCNT subjected to the initial axial 

force No, transverse distributed load q and embedded in an 

elastic medium of elastic modulus kw, using the principle of 

virtual work, the following equilibrium equation is obtained 

as given by Murmu and Pradhan (2009a), Pradhan and 

Reddy (2011) 

22

2 2

E

o
o w o

d wd M
N k w q

dx dx
          (12) 

where the notation M
E
 stands for the equilibrium bending 

moment which is not dependent on the nonlocal or local 

constitutive laws. 

According to Reddy (2005), the weak-form finite 

element method requires the Hermite cubic interpolation for 

w0. In order to reduce the differentiability requirements on 

w0 and include the bending moment as a nodal degree of 

freedom, two governing equations for the mixed finite 

element method are derived from Eqs. (11) and (12) as 

follows 

22

2 2
0

E

o
o w o

d wd M
N k w q

dx dx
          (13) 

 
22

2

2 2

o
o

d wd M
M e a EI

dx dx
           (14) 

It is important to note that M  denotes the nonlocal 

bending moment which depends on the nonlocal theory. In 

order to develop the mixed finite element model, the 

element  1,e e ex x    which only includes two nodes per 

element is divided from the domain. The weak forms of two 

above equations are 

1 2 2

1 2 2
0

e

e

x E

o
o w o

x

d w d M
v N k w q

dx dx

  
    

 
    (15) 

 1
22 2

2 2 2
0

e

e

x

oo

x

e ad w M d M
v

dx EI EI dx

  
    
 
 

     (16) 

where v1 and v2 are weight functions which have the 

interpolation of the virtual deflection δwo and the virtual 

equilibrium bending moment δM
E
, respectively. We 

integrate by part Eqs. (15) and (16) and obtain the following 

equations 

   
1

1 1
1 1 1 1 1 1 2 0

e

e

x E
e eo

o w o e e

x

dwdv dv dM
N k v w v q dx v x Q v x Q

dx dx dx dx





 
       
 


 
(17) 

 
   

  11
2 2

2 2 2
2 2 1 2 1 2 2 0

ee

ee

xx

o oo
e e

xx

e a e adwdv v M dv dM dM
v v x v x v

dx dx EI EI dx dx EI dx
 





   
           


 
(18) 

where 

1

1

1 2

1 2

;

;

e e

e e

E E
e eo o

o o

x x x x

o o

x x x x

dw dwdM dM
Q N Q N

dx dx dx dx

dw dw

dx dx
 





 

 

   
       

   

   
      
   

 
(19) 

In which the last term in Eq. (18) denotes the nonlocal 

boundary conditions. It is worthy to note that the mixed 

finite element formulation for the nonlocal theory leads to 

nonlocal boundary conditions which are associated with the 

first derivative of the nonlocal bending moment dM dx  

and the equilibrium bending moment EM  as shown in 

Eq. (19). For local theory ( 0oe a  ) we do not have this 

term in mixed finite element formulation. However, it is 

clear from Eqs. (17) and (18) that there are three variables 

including wo, M and M
E
 in mixed finite element model but 

we only have two equations, thus some assumptions need to 

be supposed. Now it is assumed that the nonlocal bending 

moment is equivalent to the equilibrium bending moment 

except for the natural and essential boundary conditions 

where the equilibrium bending moment is modified by the 

coefficient α1 and α2, respectively 

1

2

for entire domain

for essential boundary conditions

for natural boundary conditions

E

E

E

M M

M M

M M











  (20) 

Herein, the essential boundary conditions are known as the 

specified geometric constraints and natural boundary 

conditions are known as the specified concentrated applied 

load. In this study, it is supposed that the modified 

coefficients 1  and 2  are taken in the range [0, 1].  

From Eqs. (17) and (18), we suggest that both deflection 

and bending moment could be interpolated by linear 

Lagrange interpolation function 

2 2

1 1

0 , E

i i i i

i i

w w M M w 
 

          (21) 

where ϕi and ψi are linear Lagrange interpolation functions 

for wo and M, M
E
, respectively. It is well-known that the 

regular finite element method for Euler-Bernoulli beam 

requires Hermite cubic interpolation function with C
1
 

continuity to properly represent the displacement field. 

However, for the mixed finite element method, Lagrange 

linear interpolation functions (C
0
 continuity) is sufficient to 

obtain accurate solution. 

Substituting Eq. (21) into Eqs. (17) and (18), we obtain 

the mixed finite element model as follows 

 
0

e e
e e e

T e e ee e

K K w F Q

MK G 

       
        

        

    (22) 

where
     

2 2 2

1 2, ,
o o oe e e e

e a e a e a
Q Q Q

EI EI EI
 

  
     

  

are 

used for the arbitrary nodes, the essential boundary 

conditions, and the natural boundary conditions, 

respectively, and 

 

   

1 1

1 1

2

1

0

1
;

; ; 1

e e

e e

e e

e e

x x

je ei
ij ij o i j

x x

x x
e ij e e ei

o i j ij i i ii

x x

wj

dd
K dx G e a dx

dx dx EI

dd
K N k dx F q dx

dx dx


 


   

 

 


   
 

 
      

 

 

 

 
(23) 
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From the studies of Phadikar and Pradhan (2010) and 

Pradhan (2012) using the regular finite element method, one 

can see that the nonlocal parameter is directly associated 

with the transverse distributed load in force vector. As a 

result, the regular finite element model can only capture the 

nonlocal effect for the nonlocal beam subjected to 

distributed load. For a nonlocal beam subjected to the point 

load, it is easy to see that the regular finite element method 

cannot take the influence of the nonlocality into 

consideration. In the other words, the regular finite element 

solutions for the nonlocal beam subjected to point load 

would be identical with the local theory solution in this case. 

As aforementioned discussion, in order to overcome the 

problem of applied point load, some techniques are 

exploited such as Navier solution from Reddy (2007), 

Aydogdu (2009) and Dirac delta function from Wang and 

Liew (2007), Civalek and Demir (2011). On the contrary, 

for the mixed finite element model, the nonlocal parameter 

eoa exists inside the stiffness matrix as given in Eq. (23), 

regardless of force vector. Therefore, the mixed finite 

element model has the capacity to capture the nonlocal 

effect for arbitrary loading types. The efficiency and 

accuracy of the present method will be addressed in next 

Section. 

 

 

4. Numerical results 
 

In this section, various numerical examples are 

performed to investigate the nonlocal behavior of SWCNT 

in conjunction with the elastic medium effect and the initial 

axial force. For this purpose, the deflection of midpoint is 

calculated for clamped-free (CF), simply supported (SS), 

clamped-simply supported (CS), and clamped-clamped 

(CC) boundary conditions. In addition, the parametric 

studies are carried out by investigating the total strain 

energy as 

1

2

TU  u Ku                (24) 

where u  and K  are displacement vector and stiffness 

matrix, respectively. The following normalized definitions 

are used in the examples 

* 100;o
o

cr

N
N

P
   

 

2

2cr

EI
P

KL


        (25a) 

4
* w
w

k L
k

EI
                (25b) 

*

max4

100EI
w w

qL
             (25c) 

*

max3

100EI
w w

PL
             (25d) 

where K is effective length factor. 

 

4.1 Verification 

In order to show the accuracy of present methodology, 

the normalized deflections of SWCNT embedded in an 

elastic medium and subjected to an initial axial force, 

separately, are presented in Table 1 and Table 2 for eoa=0 

nm, respectively. It is obvious to see that the present results 

are in good agreement with those of Wang et al. (1998) and 

Chen (1987). The results are not affected by the nonlocal 

coefficients α1 and α2 since eoa=0 nm. 

The nonlocal static behavior of SWCNT without elastic 

medium and initial force effects is investigated. The 

comparison of normalized deflections of simply supported 

(SS) SWCNT subjected to uniform load and a point load at 

midpoint are tabulated in Table 3 and Table 4, respectively. 

It notes that the nonlocal coefficients α1 and α2 have no 

effects on the solution of SS boundary condition with 

 

 

Table 1 Comparison of the normalized deflections for 

SWCNT embedded in an elastic medium under uniform 

load 

BCs 
*

wk  
Wang et al. 

(1998) 
This study 

SS 

0 

10 

100 

1.3033 

1.1814 

0.6403 

1.3021 

1.1809 

0.6413 

CC 

0 

10 

100 

0.2616 

0.2565  

0.2174 

0.2604 

0.2553 

0.2167 

 

Table 2 Comparison of the normalized deflections for SS 

SWCNT subjected to a compressive axial force and uniform 

load 

*

0N  Chen (1987) This study 

0 

10 

20 

30 

40 

50 

1.3021 

1.4473 

1.6287 

1.8621 

2.1732 

2.6089 

1.3021 

1.4469 

1.6279 

1.8605 

2.1703 

2.6035 

 

Table 3 Comparison of the normalized deflections for SS 

SWCNT subjected to uniform load (L/h=10) 

2)( aeo  
Reddy and 

Pang  

(2008) 

Wang  

et al. 

(2008) 

Pradhan 

(2012) 

Şimşek and 

Yurtcu 

(2013) 

This study 

0 

1 

2 

3 

4 

1.3021 

1.4271 

1.5521 

1.6771 

1.8021 

1.3021 

1.4271 

1.5521 

1.6771 

1.8021 

1.3021 

1.4271 

1.5521 

- 

- 

1.3020 

1.4270 

1.5520 

1.6770 

1.8020 

1.3021 

1.4271 

1.5521 

1.6771 

1.8021 

 

Table 4 Comparison of the normalized deflections for SS 

SWCNT subjected to a point load P at midpoint (L/h=10) 

Methods 

2)( aeo  

0 1 2 3 4 

Wang and 

Liew (2007) 
2.0833 2.3333 2.5833 2.8333 3.0833 

This study 2.0833 2.3333 2.5833 2.8333 3.0833 
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Fig. 2 The effect of elastic medium on nonlocal behavior 

for SS SWCNT subjected to uniform load ( *

0 0N  ) 

 

 

uniform load case due to the absence of the equilibrium 

bending moment M
E
 and the natural boundary conditions. 

The obtained results also agree very well with those from 

the literature in Table 3. In Table 4, the obtained results 

with α2=0 coincide with the analytical solutions by Wang 

and Liew (2007). Therefore, it implies that for SS beams, 

the nonlocal coefficient α2=0 gives the appropriate solution 

for the mixed finite element method with the nonlocal 

theory. 

The normalized deflection of SWCNT with respect to 

various values of coefficients α1 and α2 for CF and CC 

boundary conditions are tabulated in Table 5. The nonlocal 

parameter and the length of SWCNT are set as e0a=2 nm 

and L=10 nm, respectively. In general, the mixed finite 

element results with α1=1, α2=0 exactly match the analytical 

solutions from Wang and Liew (2007) for CF and CC 

boundary conditions under uniform load case and a point 

load case. Consequently, it indicates that the coefficients 

α1=1, α2=0 provide the proper solution for the present 

method with the typical boundary conditions. To this end, 

the coefficients α1=1, α2=0 are utilized in the following 

examples. 

 

4.2 Parametric study 
 

The influences of nonlocality on the static behavior of 

SWCNT are investigated in conjunction with the elastic  

 

 
Fig. 3 The effect of initial force on nonlocal behavior for 

SS SWCNT subjected to uniform load ( * 0wk  ) 

 

 

medium effect and the initial axial load. For this purpose, 

the effect of nonlocal parameter e0a on the variation of the 

total strain energy is defined as 

1 0

0

100
U U

U
U


               (26) 

where U1 is the total strain energy with eoa=0.5, 1, 1.5 and 2 

nm, respectively, and U0 is the total strain energy with 

eoa=0 nm. 

One can see that ΔU shows the variation of the total 

strain energy of nonlocal SWCNT with respect to the local 

total strain energy. The effect of elastic medium and initial 

axial force on the variation of total strain energy is plotted 

in Fig. 2 and Fig. 3, respectively, for SS SWCNT subjected 

to uniform load. It can be seen that the total strain energy is 

regardless of the elastic medium and the initial axial load 

proximately increases to 4.8, 21.0, 50.9, 98.9% with 

eoa=0.5, 1, 1.5, 2 nm, respectively. On the other words, the 

nonlocal effect reduces the rigidity of SWCNT. With the 

appearance of the elastic medium effect, the variation of 

total strain energy gradually decreases whereas the variation 

of total strain energy increases with the increase of initial 

axial force as shown in Fig. 3. It means that the elastic 

medium lessens the effect of nonlocality on total strain 

energy. Meanwhile, the initial axial force intensifies the 

effect of nonlocality. 

Table 5 Comparison of the normalized deflections for SWCNT with different BCs and loading 

BCs- Loading x L  Local solution 
Wang and 

Liew (2007) 

This study 
1 2( , )   

(1, 1) (1, 0) (0, 1) (0, 0) (0.5, 0.5) 

CF-q 

0.5 

0.75 

1 

4.4270 

8.3495 

12.5001 

3.9270 

7.2247 

10.5000 

3.9270 

7.2247 

10.5000 

3.9270 

7.2247 

10.5000 

5.9272 

10.2245 

14.4998 

5.9272 

10.2245 

14.4998 

4.9271 

8.7248 

12.5001 

CF-P 

0.5 

0.75 

1 

4.1667 

7.2916 

10.4165 

4.1667 

6.2915 

8.4168 

4.1667 

7.2916 

10.4165 

4.1667 

6.2915 

8.4168 

6.1669 

10.2919 

14.4169 

6.1669 

9.2918 

12.4167 

5.1668 

8.2917 

11.4166 

CC-P 

0.25 

0.5 

0.75 

0.2604 

0.5209 

0.2604 

0.3854 

1.0208 

0.3854 

0.2604 

0.5209 

0.2604 

0.3854 

1.0208 

0.3854 

0.6354 

1.0208 

0.6354 

0.7604 

1.5208 

0.7604 

0.5104 

1.0208 

0.5104 
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Fig. 4 The effect of elastic medium on nonlocal 

behavior for SS SWCNT subjected to a point load at 

midpoint ( *

0 0N  ) 

 

 
Fig. 5 The effect of initial force on nonlocal behavior 

for SS SWCNT subjected to a point load at midpoint 

( * 0wk  ) 

 

 
Fig. 6 The effect of elastic medium on nonlocal 

behavior for CS SWCNT subjected to uniform load 

(eoa=2 nm) 

 

 

 
Fig. 7 The effect of initial force on nonlocal behavior 

for CS SWCNT subjected to uniform load (eoa=2 nm) 

 

 
Fig. 8 The effect of elastic medium on nonlocal 

behavior for CS SWCNT subjected to a point load at 

midpoint (eoa=2 nm) 

 

 
Fig. 9 The effect of initial force on nonlocal behavior 

for CS SWCNT subjected to a point load at midpoint 

(eoa=2 nm) 
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Fig. 10 The effect of elastic medium on nonlocal 

behavior for CC SWCNT subjected to a point load at 

midpoint ( *

0 0N  ) 

 

 
Fig. 11 The effect of initial force on nonlocal behavior 

for CC SWCNT subjected to a point load at midpoint 

( * 0wk  ) 

 

 

Fig. 4 and Fig. 5 show the behavior of simply supported 

SWCNT under a point load at midpoint. In contrast to the 

phenomenon of uniform load case, the variation of total 

strain energy almost does not change with respect to the 

elastic medium modulus in Fig. 4. It means that there is no 

interactive effect between nonlocal effect and elastic 

medium. On the other hand, the variation of total strain 

energy slightly decreases with respect to the first increase of 

initial axial force, then the variation increases when the 

normalized initial axial force 
*

oN  is roughly beyond 30 for 

eoa=2.0 nm. For eoa=0.5, 1, 1.5 nm, the influence of the 

initial force on variation is nearly negligible. Moreover, it is 

interesting to observe that the increase of total strain energy 

with * *

o wN k  0 for a point load case is larger than 

uniform load case’s. It implies that the point load case is 

more sensitive to nonlocal effect. 

Fig. 6 to Fig. 9 show the influences of elastic medium 

and initial force on ΔU for the clamped-simply (CS) 

supported SWCNT under uniform load and a point load 

cases, respectively, when eoa is set as 2 nm. Similarly, the 

consistent variations of total strain energy can be pointed 

out in Fig. 6 to Fig. 9. It is easy to see that the variation of 

total strain energy decreases with respect to the elastic 

medium modulus in Fig. 6 for uniform load case. Whereas 

the initial axial force plays an inverse proportion behavior 

in Fig. 7. In compliance with SS SWCNT under a point 

load, the elastic medium has no effect on the variation of 

total strain energy for CS SWCNT under a point load case 

(
*

oN 0) which is expressed by dot line in Fig. 8. However, 

it is valuable notice that for a point load case, the increases 

of total strain energy become much more significant than 

those of uniform load case. For instant, the total strain 

energy for a point load case raises to 315% ( * *

o wN k  0), 

approximately, in comparison with 70% for uniform load 

case. In Fig. 9, owing to the interaction between the elastic 

medium effect and the initial axial force, ΔU initially 

decreases with respect to *

oN  and gradually increases as 

*

oN  is approximately larger than 30. 

Finally, the variations of total strain energy of CC 

SWCNT subjected to a point load are plotted in Fig. 10 and 

Fig. 11 corresponding to the effect of the elastic medium 

and the initial axial force, respectively. As would be 

expected, the elastic medium do not influence on the change 

of total strain energy. On the contrary, the initial axial force 

induces the remarkable increasing effect of nonlocality with 

eoa=1.5 nm due to the buckling behavior. Indeed, the 

critical buckling load of clamped boundary condition 

greatly reduces with nonlocal effect according to Reddy and 

Pang (2008). 

 

 

5. Conclusions 
 

The mixed finite element method is presented in this 

paper to study the behavior of SWCNT embedded in an 

elastic medium incorporated with the initial axial force 

based on the nonlocal continuum theory. The Euler-

Bernoulli beam theory was used in the analysis. The 

numerical examples indicate that the coefficients α1=1, α2=0 

for the nonlocal boundary conditions give the accurate 

solution in comparison with the valid literature. Moreover, 

the total strain energy is evaluated to investigate the effect 

of the elastic medium and the initial axial force on the 

nonlocal behavior. From results of the parametric study, the 

prominent observations are drawn as follows: 

• In general, the nonlocal effect reduces the total rigidity 

of SWCNT due to the increase of the total strain energy. 

• For uniform load case, the elastic medium reduces the 

effect of nonlocality while the initial axial force 

intensifies the nonlocal behavior. 

• For a point load case, there is no interactive influence 

between elastic medium and nonlocal effect. 

Additionally, the total strain energy of a point load case 

is more delicate than uniform load case’s under the 

nonlocal effect. 
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