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1. Introduction 
 

The analysis of heat conduction involving extremely 

short times or very high frequency has found numerous 

applications in many different areas of mathematical 

physics, applied sciences and engineering. In such 

situations, the classical Fourier‟s heat conduction theory 

becomes inaccurate and the non-Fourier effect becomes 

more reliable in describing the diffusion process and 

predicting the temperature distribution.  

The Fourier‟s law is given as 

.q k T  
                 

(1) 

Eq. (1) assumes that q  and T  appear at the same 

time instant t and consequently implies that thermal signals 

propagate with an infinite speed. It shows that if the 

material is subjected to a thermal disturbance, the effects of 

the disturbance will be felt instantaneously at distances 

infinitely far from its source. This type of phenomenon is 

physically unrealistic.  

The energy balance equation is given by 
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The classical heat conduction equation is given as 
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where / ,Ek C  q
 

is the heat flux vector, k is thermal 

conductivity,   is mass density, CE is specific heat and 
2  is Laplace‟s differential operator. Fourier‟s law is quite 

accurate for most common engineering situations. However, 

for situations involving very short times, temperature near 

absolute zero or extreme thermal gradients, Fourier‟s law 

becomes invalid. The Eq. (3) is a parabolic-type partial 

differential equation that allows an infinite speed for 

thermal signals. The classical Fourier‟s law does not lead to 

the thermal wave behaviour, since the law permits the heat 

flux to respond immediately to changes in temperature 

gradient. 

Despite of the Fourier theory, the non-Fourier or 

hyperbolic theory predicts that heat propagates with wave 

behaviour and finite speed. The non-Fourier heat flux 

equation has been developed by modifying the Fourier‟s 

Law that connects the heat flux to the temperature by 

adding an extra thermal inertia term. 

The first model to remove the above mentioned paradox 

of classical Fourier‟s law was proposed by Cattaneo (1958) 

and Vernotte (1958) as 

0 ,
q

q k T
t




   
              

(4) 

where 0  is thermal relaxation time. The relaxation time 

0  depends on the mechanism of heat transport and 

represents the time lag needed to establish steady state heat 

conduction in an element of volume when a temperature 

gradient is suddenly applied to that element. Here, the time 

derivative term makes the heat propagation speed finite. Eq. 

(4) tells us that the heat flux does not appear 
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instantaneously but it grows gradually with a build-up time 

0 .  

The modified Fourier equation coupled with the energy 

balance equation leads to a hyperbolic heat equation 

2
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(5) 

Eq. (5) describes the heat propagation with a finite 

speed 
0/ v  which diverges only for the unphysical 

assumption of 
0 0.   

Based on this concept, Lord and Shulman (1967) 

derived the generalized thermoelasticity theory referred to 

as L-S theory or extended thermoelasticity theory, in which 

the Maxwell-Cattaneo‟s law replaces the Fourier‟s law of 

heat conduction by introducing a single parameter that acts 

as a relaxation time. The modified heat conduction equation 

in this theory is of the wave type and it ensures the finite 

speeds of propagation of heat and elastic waves. Green and 

Lindsay (1972) also developed another generalized 

thermoelasticity theory termed as G-L theory or the 

temperature-rate dependent theory, that includes the 

temperature-rate among constitutive variables and also 

predicts a finite speed for heat propagation. In addition, this 

theory modifies all the equations of the classical theory of 

thermoelasticity, not only the heat equation and contains 

two constants that act as relaxation times. Contrary to the L-

S theory, the G-L theory does not violate Fourier‟s law of 

heat conduction when the solid has a center of symmetry. 

The L-S theory was further extended to homogeneous 

anisotropic heat conducting materials by Dhaliwal and 

Sherief (1980). As such, heat transport in solids is regarded 

as a wave phenomenon rather than a diffusion phenomenon. 

Extensive literature survey on the subject “generalized 

thermoelasticity” can be found in the review articles by 

Chandrasekharaiah (1986, 1998). Hetnarski and Ignaczak 

(1999) presented a survey article on the modeling of 

thermoelastic waves in a solid body in the context of five 

different theories of generalized thermoelasticity. Sharma et 

al. (2008) studied the dynamical behaviour in generalized 

thermoelastic diffusion medium under Green-Lindsay 

theory using Fourier transform method. Othman and Ahmed 

(2015) investigated the propagation of plane waves in 

generalized piezo-thermoelastic medium under the effect of 

rotation using normal mode analysis. 

Green and Naghdi (1991, 1992, 1993) developed the 

non conventional heat conduction theory by using general 

entropy balance law rather than entropy inequality in an 

alternative way, predicting finite speed of the thermal 

disturbance. This theory is developed with a view to 

produce a rational continuum thermo-dynamical theory of 

solids which is capable of incorporating thermal pulse 

transmissions in a very logical manner. Green and Naghdi 

theory is further subdivided into three different theories 

referred to as GN-I, GN-II and GN-III theories. Under the 

assumption that when the respective theory is linearized, 

GN-I theory encompasses the classical heat conduction 

theory based on Fourier‟s constitutive prescription for the 

heat flux vector. In GN-II theory, the internal rate of 

production of entropy is assumed to be identical to zero i.e., 

there is no dissipation of thermal energy and this theory is 

referred as thermoelasticity without energy dissipation. GN-

III theory includes the previous two models as special cases 

and admits dissipation of energy in general. Kumar et al. 

(2016) investigated the disturbances in a homogeneous 

transversely isotropic thermoelastic rotating medium with 

two temperature and in the presence of the combined effects 

of Hall currents and magnetic field under generalized 

thermoelasticity without energy dissipation. 

In modern technology, considerable interest has been 

evinced in the study of the interaction among the strain, 

temperature and electromagnetic field in an elastic solid due 

to its immense applications in various disciplines such as 

geophysics, magnetic structural elements, damping of 

acoustic waves in a magnetic field, emissions of electro-

magnetic radiations from nuclear devices and electrical 

power engineering etc. The interplay of the Maxwell‟s 

electro-magnetic field with the motion of deformable solids 

is largely being undertaken by many authors owing to the 

possibility of its application to geophysical problems and 

certain topics in optics and acoustics. 

The generation of magneto-thermoelastic waves by a 

thermal shock in a perfectly conducting half-space in 

contact with vacuum was investigated by Kaliski and 

Nowacki (1962). In this article, both the media were 

supposed to be permeated by a primary uniform magnetic 

field. Several other problems based on the magneto-

thermoelasticity theory are established by Paria (1962), 

Willson (1963) and Nayfeh and Nemat-Nasser (1972). 

Youssef (2006) formulated a magneto-thermoelasticity 

theory with one relaxation time with variable material 

properties and studied one dimensional problem. Othman 

and Song (2006) investigated the effect of rotation on the 

reflection of magneto-thermoelastic waves under 

generalized thermo-elasticity theory without energy 

dissipation. Deswal and Kalkal (2006) analyzed the 

behaviour of plane harmonic waves in a magneto-thermo-

viscoelastic medium with diffusion by using the 

methodology of normal mode analysis. Das and Kanoria 

(2012) studied the thermoelastic interactions in a magneto-

thermoelastic half-space in the context of GN-II, GN-III 

and three-phase-lag models using Laplace and Fourier 

transform method. Deswal et al. (2013) illustrated a two-

dimensional half-space problem subjected to thermo 

mechanical loading in the context of magneto-

thermoelasticity theory with laser pulse heating. 

With the rapid development of polymer science, plastic 

industry, application of biology and geology in engineering 

as well as the wide use of materials under high temperature, 

the theoretical study and applications in viscoelastic 

materials have become an important task for solid 

mechanics. Ilioushin and Pobedria (1970) established a 

mathematical model of thermo-viscoelasticity theory and 

obtained the solutions of some boundary value problems. 

However, the works of Tanner (1988) and Huilgol and 

Phan-Thien (1997) are devoted to find the solutions of 

boundary value problems for linear viscoelastic materials 

including temperature variations in both quasi-static and 

dynamic problems. El-Karamany and Ezzat (2004) has 

90



 

A magneto-thermo-viscoelastic problem with fractional order strain under GN-II model 

solved a one-dimensional thermal shock problem for a 

thermo-viscoelastic medium under different theories of 

thermoelasticity. Bakshi et al. (2008) studied a thermo-

viscoelastic problem in an infinite isotropic medium in the 

presence of a point heat source by using joint Laplace-

Fourier transform technique and eigen value approach. The 

problems related to the propagation of plane waves in an 

infinite thermo-viscoelastic medium of Kelvin-Voigt type 

are studied in the papers of Kumar and Partap (2011), Ezzat 

et al. (2013), Deswal and Yadav (2014) and Deswal and 

Kalkal (2015). 

Fractional calculus is the branch of mathematics that 

concerns with integrals and derivatives of arbitrary order. 

During last few decades, fractional order differential 

equations have been successfully employed for modeling of 

many different processes and systems, specifically in the 

area of physics, chemistry, engineering, astrophysics, 

chemical mechanics, quantum mechanics, nuclear physics 

and quantum field theory etc. The historical development of 

the subject fractional calculus can be investigated in Ross 

(1977) and Miller and Ross (1993). Caputo and Mainardi 

(1971) and Caputo (1974) employed fractional order 

derivative for the description of viscoelastic materials and 

established the relationship between fractional derivative 

and the theory of linear viscoelasticity. 

Recently, Magin and Royston (2010) applied fractional 

calculus to introduce a fractional order viscoelastic model 

with the idea that it is the order of derivative of strain that 

characterizes the material‟s behaviour. In this model, one-

dimensional fractional order stress-strain relation can be 

expressed as 

 
 * ,

d t
t E

dt








               (6) 

where   t  is stress and   t  is strain as a function of 

time t,   is mechanical relaxation time and   is the 

fractional parameter which takes values between 0 and 1. 

For 0,   the stress-strain relation represents Hooke‟s 

Law with 
* E E  (Young‟s modulus) and for 1,   it 

corresponds to Newtonian fluid with * E  (coefficient 

of viscosity). Viscoelastic material occupies the 

intermediate range with a fractional order   between 0 

and 1. In a similar manner, Meral et al. (2010) also 

developed a fractional order Voigt model and obtained the 

analytical solution of the surface waves on viscoelastic half-

space for a finite circular disk located on the surface and 

oscillating normal to it. Some experimental results of the 

surface waves are also presented in order to compare 

different fractional order models. 

Based on the fractional order strain model (Magin and 

Royston 2010), Youssef (2016) derived a new theory of 

thermoelasticity with fractional order strain which is 

considered as a new modification to Duhamel-Neumann‟s 

stress-strain relation. In this paper, the author postulated a 

new unified system of equations that govern seven different 

models of thermoelasticity in the context of one-

temperature and two-temperature and one dimensional 

problem for an isotropic and homogeneous elastic half-

space. 

In the present paper, we consider a two-dimensional 

problem of generalized thermoelasticity theory without 

energy dissipation with fractional order strain. The transient 

responses of an isotropic, homogeneous and perfectly 

conducting magneto-thermo-viscoelastic half-space 

subjected to an inclined load are investigated. The solution 

of the problem is obtained in the Laplace-Fourier transform 

domain and a numerical inversion method of the Laplace-

Fourier transforms is used to obtain the displacement, 

temperature, strain and stress fields in the physical domain. 

Finally, the effect of fractional order parameter, mechanical 

relaxation time, magnetic field, viscosity and time on the 

physical fields is illustrated in the figures. To the best of the 

authors‟ knowledge, the proposed mathematical model with 

fractional order strain is rather new and such a dynamical 

problem has not been considered previously. 

 

 

2. Basic governing equations 
 

In this section, we have formulated the basic governing 

equations for an isotropic, homogeneous magneto-thermo-

viscoelastic solid of Kelvin-Voigt type under fractional 

order strain theory of generalized thermoelasticity without 

energy dissipation. In the absence of body forces, following 

Youssef (2016), the system of basic field equations and 

constitutive equations is obtained as under: 

(i) the stress-strain-temperature relations for a 

viscoelastic material with fractional order strain are 

   * *

12 1 1ij t ij t kk ij ijD e D e               ,
 
(7) 

where *

01e
t

  
 

  
 

,      *

11e
t

  
 

  
 

, 

1 01e
t

  
 

  
 

,       3 2e e e t     , 

 0 0 13 2 / .e e t e         

In this article we use the Caputo fractional derivative 


tD  of order   with respect to time t, which is defined as 

 
 

 
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1
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1
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 



 
  
   








  

(ii) the strain-displacement relations are 

 , ,

1

2
 ij i j j ie u u ,              (8) 

(iii) the equations of motion for a perfectly conducting 

homogeneous elastic solid under uniform magnetic field are 

,ji j i iF u   ,               (9) 

where 0 ,F J H   
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(iv) heat conduction equation without heat source is 

 *

, 1 0 1         ii E t ij ijk C T D e .      (10) 

The variations of electric and magnetic fields inside the 

medium are given by the Maxwell‟s equations as follows 

curl 0


 


E
h J

t
,             (11) 

curl 0


 


h
E

t
,              (12) 

0
 

   
 

u
E H

t
,             (13) 

div 0h ,                 (14) 

 curl h u H ,               (15) 

where iu  are the components of displacement vector ,u

0 ,T T    T is the absolute temperature and 0T  is 

reference temperature, which are assumed to obey the 

inequality 
0/ 1,  ijT  are the components of the stress 

tensor, 
ije  are the components of strain tensor,  ij

 is the 

Kronecker delta function, kke e  is the cubical dilatation, 

  is the density of the medium, 
 * 2

4

 
 e e EC

k  is the 

material constant,  t  is the coefficient of linear thermal 

expansion, e  and e  are the Lame‟s constants, 0  

and 1  are viscoelastic relaxation times,   is the 

mechanical relaxation time, iF  are the components of 

Lorentz‟s body force vector ,F 0  is the magnetic 

permeability, 0  is the electric permittivity, H  is the 

applied magnetic field, J  is the current density vector, a 

comma followed by a suffix denotes material derivative and 

a superposed dot denotes the derivative with respect to time 

t. 

 

 

3. Formulation and solution of problem 
 

We consider a homogeneous, isotropic, thermally and 

electrically conducting generalized magneto-thermo-

viscoelastic solid to study the dynamical interactions in the 

context of fractional order strain thermoelasticity theory 

without energy dissipation. We take the cartesian coordinate 

system (x, y, z) with z-axis pointing vertically into the 

medium and the half-space occupies the region 0.z   

Now, we restrict our analysis to a two dimensional problem 

in xz-plane. Hence, all the considered functions will depend 

only on the space variables x, z and time t. The half-space is 

placed in a magnetic field with constant intensity 

 00, , 0 .H H  The bounding surface of the half-space is 

assumed to be thermally insulated and subjected to a 

mechanical type inclined load 0  with an inclination   

to z-axis. The geometry of the problem is given in Fig. 1. 

 
Fig. 1 Geometry of the problem 

 

 

The components of displacement vector  , ,u u v w  

assume the form 

   , , , 0, , ,  u u x z t v w w x z t .      (16) 

The strain-displacement relation (8) gives 

 
  

 
kk

u w
e e

x z
.            (17) 

The initial and regularity conditions for the 

thermoelastic half-space are given as 

   , ,0 , ,0 0 u x z u x z , 

   , ,0 , ,0 0 w x z w x z , 

   , ,0 , ,0 0  x z x z , 

(18) 

for 0, ,z x    and 

     , , , , , , 0  u x z t w x z t x z t ,        (19) 

for t > 0 when .z   

The electric intensity E  is normal to both the magnetic 

intensity and the displacement vectors and the induced 

magnetic field h  is normal to the electric intensity .E  

Hence, the Eqs. (12) and (13) give rise to the following 

expressions 

 0 0 0,0, , 0, ,0
w u

E H h H e
t t


  

    
  

,    (20) 

Since the current density J  is parallel to the electric 

intensity ,E  it follows from the relations (11) and (20) that 

the electric current density J  will have two component in 

x and z-direction, given by 

2 2 2

0 0 0 02 2
 

   
   

    
x

u w w
J H H

x z z t
, (21) 

  

ϑ 

z 

x 
Ф𝟐 O 

Generalized magneto-thermo- 

viscoelastic half-space with 

fractional order strain 

Ф𝟎 Ф𝟏 
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0yJ , 

2 2 2

0 0 0 02 2
 

   
    

    
z

u w u
J H H

x x z t
. 

Inserting expressions (21) in the relation 
0 ,F J H   

we get the components of Lorentz‟s force as 

2
2

0 0 0 0 2x

e u
F H

x t
  

  
  

  
, 

0yF  , 

2
2

0 0 0 0 2z

e w
F H

z t
  

  
  

  
. 

(22) 

To make the field equations simpler, we introduce the 

following dimensionless transformations 

   0 0, , , , , ,    x z u w c x z u w , 

   2

0 1 0 0 0 0 1 0, , , , , , , ,             t c t , 

0 0

,
ij

ij

eT T

 
 


   , 

(23) 

where 
3

2 0
0 0 * * *

2
, ,

   
 




  e e EE

C cC
c

k k h
 and *h  is 

a fixed length. 

In terms of the non-dimensional quantities defined in 

Eq. (23), the governing Eqs. (7)-(10) in xz-plane reduce to 

(dropping the dashes for convenience) 

 *

0 0 01 1 1zz t

u w
D

t x t z

     
      

       
      

01
t

 
 

  
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, 

(24) 

 1 11 1     
     

      
     

zx t

u w
D

t z x
,      (25) 

 
2

2

2 1 1 02
1 1 1t

u
D u

t t xt

  
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      
        

      

 2 1 11 1 t

e
D

t x

    
    

     
   

, 

(26) 

 
2

2

2 1 1 02
1 1 1t

w
D w

t t zt

  
    

      
        

        

 2 1 11 1 t

e
D

t z

    
    

     
   

,

 

(27) 

 
2 2

2

3 4 02 2
1 1  

    
   

     
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t

e
D

t t t
,

 

(28) 

where  
*

* * * 0

0 0 0 0 0 1 1

1
, 1 , ,

2 2

e

e e

 
      

 


    


 

* * 2

0 0 0 1 1 0 0

2 1 1

2

1
, , ,

2 2e e

H    
  

  

 
  


 

2 2 2

0 0 0 0

2 3 4* *
1 , ,e e e

E

H T
C

k k

    
  

 

 
    

 
. 

To simplify the above system of equations, we introduce 

displacement potential functions through the relations 

 , 0, ,0u        , which lead to (dimensionless 

form) 

,
      

   
   

u w
x z z x

,         (29) 

where 

2 2
2

2 2

 
  

 x z
 and the potential functions   and 

 represent the dilatational and rotational parts 

respectively of displacement vector .u  

It follows from Eqs. (17) and (29) that 

2e .                 (30) 

Now, we define the Laplace transform of the function 

 , ,f x z t  with respect to variable t as 

     
0

, , , , , ,


    
stL f x z t f x z s f x z t e dt ,   (31) 

and the Fourier transform of the function  , ,f x z s  with 

respect to variable x as 

     
1ˆ, , , , , ,
2

xF f x z s f z s f x z s e dx






      ,(32) 

where s and   are the Laplace and Fourier transform 

parameters respectively. 

The operational properties of the Fourier exponential 

transform are 

 
 

, , ˆ , ,
f x z s

F f z s
x

 
 

 
  

,         (33) 

 
 

2

2

2

, , ˆ , ,
f x z s

F f z s
x

 
 

  
  

,        (34) 

and the Laplace transform rule for the fractional order 

derivative 
tD  under initial conditions is given by 

     tL D f t s L f t  .         (35) 

Introducing Laplace and Fourier transforms into Eqs. 

(26)-(28), after using Eqs. (29), (33)-(35) simultaneously, 

we get the following set of differential equations 

  0ˆ ,ˆ
2

2

4

4









 θM

dz

d
L

dz

d
 ,        (36) 

and 
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2
2

32
ˆ 0

d

dz
 

 
  

 
,            (37) 

where   
 2 2 2

0 2 3 0 4 4 3

0

2
,

a a a a s
L

a

     
   

4 2 2 2 2 2 2 2 4

0 2 3 0 4 2 4 2 3

0

,
a s s a a a s s

M
a

           
  

2
2 2 2
3

1 1 2

s

a a


 


  , 0 1 1 2 2 3 2 1a a a a a     , 

1 11 ,a s 
2 1 ,a s     3 11a s  ,  4 01 .a s   

Now, Eq. (36) can be factorized as 

  0ˆ ,ˆ2

22

2
2

12

2


















 θλ

dz

d
λ

dz

d
 ,       (38) 

where  

2
2

1

4

2

L L M


  
 , 

and 

2
2

2

4

2

L L M


  
 . 

Following the regularity conditions given in Eq. (19), 

the solution of Eqs. (37) and (38) can be expressed as 

1 2

1 2
ˆ z z

Ae A e
   

  ,             (39) 

1 2

1 2
ˆ z z

B e B e
   

  ,             (40) 

3

3
ˆ z

A e
 

 ,                (41) 

where  , 1,2i iA B i  and 3A  are the unknown 

coefficients dependent on s and   such that i i iB b A
 

with 
2 2

4 2 4 2 2 2

3

i
i

i

b a a
s

 


  

 
  

  
 1,2i  . 

 

 

4. Application 
 

We have considered an isotropic, homogeneous 

magneto-thermo-viscoelastic half-space 0z   with 

fractional order strain. The bounding surface 0z   is 

assumed to be thermally insulated and is subjected to a 

mechanical type inclined load 0  with an inclination   

to z-axis as given in Fig. 1. Hence, the normal line load 1  

and tangential line load 2  are expressed as 1 0    

cos  and 2 0 sin    respectively. In order to solve 

the problem, we assume that the initial conditions of the 

problem are taken to be homogeneous, while the boundary 

conditions at the surface z = 0 are expressed as 

     1 1, ,zz x z t x t    ,          (42) 

     2 2, ,zx x z t x t    ,         (43) 

 , ,
0

x z t

t





,              (44) 

where  1 x  and  2 x  are normal and horizontal load 

functions respectively and  t  is the Dirac delta 

function. 

Now, we further assume that the load is linearly 

distributed over a strip of width 2d (as shown in Fig. 2), 

which is expressed in terms of load functions  1 x  and 

 2 x  by relation 

    1 2

1 if 
,

0 if 

x
x d

x x d

x d

 


 

 
 

.     (45) 

The Fourier transform of expression (45) is given by 

    
  

dξ

ξd
ξψξψ

221

cos12
ˆ,ˆ


 .      (46) 

Introducing Eqs. (24), (25) and (29) along with the 

relations  
0

1,2i
i

e

i
T


    into the Eqs. (42)-(44) 

(dropping the primes) and applying Laplace-Fourier 

transforms along with the use of Eqs. (39)-(41) and (46) in 

the resulting expressions, we obtain 

1 1 2 2 3 3P A P A P A P   ,             (47) 

1 1 2 2 3 3Q A Q A Q A Q   ,            (48) 

1 1 2 2 0R A R A  ,               (49) 

where 2 * 2

2 5 0 6 4i i iP a a a a b     , 1 1 22 ,i iQ a a 
  

 1,2 ,i i iR b i  
 

 *

3 3 0 6 2 5P a a a   ,  

 2 2

3 1 1 2 3Q a a    , 

 

 

 
Fig. 2 Linearly distributed load 
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  0

2

2 cos 1 cos d
P

d

 



 
  , 

  0

2

2 sin 1 cos
,

d
Q

d

 



 
 

 

5 0 6 01 , 1 .a s a s      

Solution of Eqs. (47)-(49) is given by 

1
1A





, 2
2A





, 3
3A





,         (50) 

where    1 2 3 2 3 2 1 3 1 3 ,R P Q Q P R PQ Q P       

 1 2 3 3R PQ QP    ,       2 1 3 3R PQ QP   , 

   3 1 2 2 2 1 1R QP PQ R PQ Q P     . 

By virtue of expressions in Eq. (50), Eqs. (39)-(41) can 

be rewritten as 

 1 2

1 2

1ˆ z z
e e

   
  


,           (51) 

 1 2

1 1 2 2

1ˆ z z
b e b e

   
   


,          (52) 

33ˆ z
e

 



.                (53) 

Substitution of Eqs. (51)-(53) into Eqs. (24)-(25) and 

(29)-(30) after applying Laplace and Fourier transforms, 

leads to the following expressions of physical fields in the 

transform domain 

  31 2

1 2 3 3

1
ˆ zz z
u e e e

          
 

,   (54) 

  12 2

1 1

1
ˆ z
w e

     


 

  322 2

2 2 3

zz
e e

        


,
 

(55) 

1 2

1 1 2 2

1
ˆ z z
e e e

        
,          (56) 

31 2

1 1 2 2 3 3

1
ˆ zz z

zz C e C e C e
          

,     (57) 

31 2

1 1 2 2 3 3

1
ˆ zz z

D e D e D e
          

,      (58) 

where     * 2

2 5 0 6 4i i iC a a a a b     , 

 1 1 22 1,2i iD a a i   ,  *

3 0 6 2 5 3C a a a    , 

 2 2

3 1 1 2 3D a a    . 

 

 

5. Special cases 
 

Case I: Without viscous and magnetic effects 

If we assume that the thermal and mechanical fields are 

independent of the viscosity, then the results obtained from 

the present analysis remain for magneto-thermo-elastic 

medium. This can be done by setting 0 1 0,   which 

leads to the following relations *

e  , * ,e  0 0 

and 1 .e   In addition, if we assume that the material 

properties are independent of the magnetic field (i.e., 

0 0),H   then the present problem reduces to the fractional 

order strain theory of generalized thermoelasticity without 

energy dissipation. Furthermore, for one dimensional case, 

the relevant problem coincides with Youssef (2016) with 

appropriate change in the boundary conditions. 

Case II: Without fractional order strain 

To discuss the wave phenomena for generalized theory 

of magneto-thermo-viscoelasticity without energy 

dissipation, we substitute 0   with 0   in the basic 

governing equations, which leads to 2 1.a   The 

corresponding expressions for the physical variables 

considered in the problem for this case can be procured 

from Eqs. (52) and (54)-(58). 

 

 

6. Inversion of integral transforms 
 

It is difficult to find the analytical inversion of Laplace 

and Fourier transforms for displacement, strain, temperature 

and stress fields in the space-time domain. But this can be 

conveniently managed through numerical evaluations of the 

inversion integrals. The fields in the Laplace-Fourier 

transform domain are the functions of the form  ˆ , ,f z s . 

First, we invert the Fourier‟s transform, which gives us the 

Laplace transform expression  , ,f x z s for the function 

 , , tf x z  as 

   1 ˆ , , , ,F f z s f x z s   
 

 

 
1 ˆ , ,
2

xf z s e d 





  . 

(59) 

The inversion formula of the Laplace transform for the 

function  , ,f x z s  is defined as 

   1 , , , ,L f x z s f x z t      

 
1

, ,
2

c
s

c
e f x z s ds






 

 
  , 

(60) 

where c is an arbitrary real number larger than the real parts 

of all the singularities of  , , .f x z s  

Taking s c w  , the preceding integral takes the form 

   , , , ,
2

c
wte

f x z t f x z c w e dw








  .     (61) 

Expanding the function    , , , ,ch x z t e f x z t  in a 

Fourier series in the interval  10,2t , we obtain the 

approximate formula (Honig and Hirdes 1984) 

   , , , , Df x z t f x z t E  ,          (62) 

where 
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  0 1

1

1
, , , 0 2

2
k

k

f x z t c c t t






   
       

(63) 

and 

1

1 1

, ,

k tct
t

k

e k t
c e f x z c

t t

 
   

   
   

.         (64) 

The discretization error 
DE  can be made arbitrarily 

small by choosing c large enough (Honig and Hirdes 1984). 

Since the infinite series in Eq. (63) can be summed upto a 

finite number of terms N, the approximate value of 

 , ,f x z t  becomes 

  0 1

1

1
, , , 0 2

2

N

N k

k

f x z t c c t t


    .       (65) 

Using the preceding formula to evaluate  , , ,f x z t we 

introduce a truncation error 
1t

E  that must be added to the 

discretization error to produce the total approximation error. 

Two methods are used to reduce the total error. First, the 

„Korrektur‟ method is applied to reduce the discretization 

error. Next, the  -algorithm is used to accelerate 

convergence (Honig and Hirdes 1984). 

The Korrektur method uses the following formula to 

evaluate the function  , ,f x z t  

     12

1, , , , , ,2
ct

Df x z t f x z t e f x z t t E


 
    ,  (66) 

where the discretization error 
D DE E  . Thus, the 

approximate value of  , ,f x z t  becomes 

     12

1, , , , , ,2
ct

NK N Nf x z t f x z t e f x z t t


   ,   (67) 

where N   is an integer such that .N N   

We shall now describe the  -algorithm that is used to 

accelerate the convergence of the series in Eq. (65). Let 

2 1,N q   where q is a natural number and 
1

m

m k

k

s c


  is 

the sequence of the partial sum of the series in Eq. (65). 

We define the  -sequence by 

0, 0m  , 
1,m ms  ,             (68) 

and 

1, 1, 1

, 1 ,

1
, 1,2,3,...p m p m

p m p m

p 
 

  



  


    (69) 

It can be shown that [Honig and Hirdes (1984)] the 

sequence 
1,1 , 

3,1 , 
5,1 , …,

,1N , … converges to 

  0, ,
2

D

c
f x z t E   faster than the sequence of partial sums 

ms , 1,2,3,...m  

The actual procedure used to invert the Laplace 

transform consists of using Eq. (67) together with the ε-

algorithm. The values of c and 1t  are chosen according to 

the criteria outlined by Honig and Hirdes (1984). 

Simultaneous computations of the inversion of the 

Fourier transform are performed by evaluating the infinite 

integral (59) numerically by seven-point Gaussian 

quadrature formula for several prescribed values of the 

variables x and z (Rakshit and Mukhopadhyay 2007). 

 

 

7. Numerical discussion 
 

To validate the results of the present study, numerical 

results for homogeneous, isotropic, perfectly conducting 

thermo-viscoelastic medium under a uniform magnetic field 

are obtained within the framework of GN-II generalized 

thermoelasticity theory with fractional order strain. A 

linearly distributed inclined load is applied on the bounding 

surface of half-space with insulated boundary as described 

in Figures 1 and 2. 

In the present work, copper material is considered for 

the purpose of numerical illustrations. The values of the 

material properties (i.e. Lame‟s constants, coefficients of 

heat conduction and thermal expansion, magnetic field 

parameters and viscosity constants) of copper are assumed 

to be 

 10 1 27.76 10e kgm s    , 10 1 23.86 10e kgm s    , 

 0 293T K , 1 1383.1EC Jkg K  , 5 11.78 10t K    , 

 
38954kgm  , 7 1

0 4 10 Hm     , 0 0.06s  , 

 
 9 1

0 10 /36 Fm   ,  7 1

0 10 / 4H Am  , 1 0.09 .s   

The other numerical constants related to fractional order 

strain model and mechanical load are assumed as: 

0.02,   45 ,    0 10,   d = 2, * 10.h   

Considering the above physical data, we have evaluated 

the numerical values of the field quantities with the help of 

a computer program and the results are displayed 

graphically. 

The effect of fractional order parameter   and 

mechanical relaxation time   on the thermoelastic 

responses (i.e., normal displacement w, strain e, temperature 

 , normal stress zz  and tangential stress )zx  is 

analyzed in Figs. 3-7 at x=1.0 and t=0.02. In these figures, 

the case 0, 0    corresponds to generalized 

thermoelasticity theory without energy dissipation in the 

absence of fractional order derivative. The effects of 

magnetic field and viscosity on the physical fields under 

generalized thermoelasticity theory of fractional order strain 

without energy dissipation are presented in Figs. 8-12 at 

0.1,  1.0x   and 0.02.t   In these figures, we use 

the following abbreviations: 

(i) GTFOSMV-Generalized thermoelasticity theory of 

fractional order strain with magnetic field and viscosity, (ii) 

GTFOSV-Generalized thermoelasticity theory of fractional 

order strain with viscosity and (iii) GTFOSM-Generalized 

thermoelasticity theory of fractional order strain with 

magnetic field. The wave phenomena of the studied 

physical fields in a thermoelastic half space depending upon 

various values of time t (0.01, 0.015, 0.02) are illustrated in 

Figs. 13-17 at 0.1   and x=1.0. 
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Fig. 3 Dependence of displacement field w on   and 

  at t=0.02 

 

 

Fig. 3 shows the variations of normal displacement field 

w versus z to study the effects of fractional parameter   

and mechanical relaxation time .  It is indicated that the 

response of the displacement field is similar for all the 

values of fractional parameter   and mechanical 

relaxation time .  Figure also reveals that the increase in 

the fractional parameter   is accompanied by the 

enlargement in the field values in the range 0 0.5z  and 

reduction in the range 0.5 4.5.z   Moreover, the effect 

of   and   is noticed to be quite prominent on this field. 

The response of strain field e for three different cases 

0.1  , 0.02  ; 1.0  , 0.02   and 0  , 0   

is predicted in Figure 4. As can be seen, the strain field has 

maximum amplitude on the point of application of source 

which is a physically plausible situation and as we move 

away from the source, it shows a decreasing trend for all the 

three cases. However, the fractional parameter   and 

mechanical relaxation time   have both increasing and 

decreasing effects on the amplitude of this field. 

 

 

 
Fig. 4 Dependence of strain distribution e on   and   

at t=0.02 
 

 
Fig. 5 Dependence of temperature   on   and   at 

t=0.02 

 

 
Fig. 6 Dependence of normal stress zz  on   and   
at t=0.02 

 

 
Fig. 7 Dependence of tangential stress zx  on   and 

  at t=0.02 

 

 

Fig. 5 illustrates the variations of temperature field   

with respect to distance z corresponding to three different 

cases of the values of   and .  For all the cases, the 

temperature profile is experiencing an increasing pattern in 

the range 0 0.5z   and decreasing pattern in the range 
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0.5 5z   and thereafter it diminishes to zero. Hence, all 

the variations are restricted to a limited region which 

confirms the wave nature of heat propagation, whereas, this 

type of wave phenomenon is absent in classical theories of 

thermoelasticity. Additionally, increase in the value of   

reduces the values of temperature field. 

The normal stress 
zz  and tangential stress 

zx  are 

plotted with respect to distance z in Figs. 6 and 7 

respectively. It is evident from these figures that the stress 

fields are tensile near the application of source with 

maximum intensity at z=0, which is followed by the 

mechanical boundary conditions applied. However, these 

stress fields become compressive after some distance from 

the source with a sufficient peak value and then 

continuously increase in the compressive region to reach to 

the steady state and finally diminish to zero. The reason for 

this is that due to the application of mechanical load, the 

region near the source experiences a reaction force with 

compressive nature. It is also worthy to mention here that 

these fields are significantly affected by the fractional 

parameter   and mechanical relaxation time .  
Fig. 8 is drawn to represent the response of normal 

displacement w versus distance z for three different cases 

GTFOSMV, GTFOSV and GTFOSM. It is noted that all the 

curves of displacement field show similar pattern and all 

restrained in a finite region. There are significant 

differences between the variations predicted by different 

cases. Absence of magnetic field decreases the values of 

this field, whereas viscosity has reverse effect. 

Figure 9 is illustrated to show the effect of magnetic 

field and viscosity on the profile of the strain field e versus 

distance z. It is interesting to note that the curves 

corresponding to GTFOSMV and GTFOSV show similar 

trends but for the case GTFOSM, it behaves distinctly, 

which clearly shows the dominance of viscosity on the 

strain field. It should be mentioned that the magnetic field 

acts to decrease the strain field. This is mainly due to the 

fact that the magnetic field corresponds to a term signifying 

a positive force, which tends to accelerate the solid 

particles. 

 

 

 
Fig. 8 Effect of magnetic field and viscosity on 

displacement field w at  =0.1 and t=0.02 
 

 
Fig. 9 Effect of magnetic field and viscosity on strain 

distribution e at 0.1   and t=0.02 

 

 
Fig. 10 Effect of magnetic field and viscosity on 

temperature   at 0.1   and t=0.02 

 

 

The effects of magnetic field and viscosity on the 

response of temperature field   versus the distance z are 

illustrated in Fig. 10. As can be seen, the profiles of 

temperature field are alike for GTFOSMV and GTFOSV 

while it is quite different for GTFOSM. It shows apparently 

that the variations are limited in a finite region, which is in 

accordance with the second sound effect. Furthermore, the 

effect of viscosity is much pronounced on temperature field. 

Also, the absence of magnetic field causes to increase the 

field values but viscosity has both increasing and decreasing 

effects. 

Figure 11 describes the behaviour of normal stress zz  

versus distance z for the three different cases namely 

GTFOSMV, GTFOSV and GTFOSM. It is shown in figure 

that the curves of the stress field zz  vary from positive to 

negative and increase continuously to reach to the zero 

value beyond the heat wave front. Also, the stress 

distribution has non-zero values only in a bounded region of 

space. Outside this region, the values vanish identically 

which is in agreement with the experimental results. It is  
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Fig. 11 Effect of magnetic field and viscosity on normal 

stress zz  at 0.1   and t=0.02 

 

 
Fig. 12 Effect of magnetic field and viscosity on 

tangential stress zx  at 0.1   and t=0.02 

 

 

further observed that the effect of viscosity is more 

pronounced on this field, however, in the absence of 

magnetic field, the amplitude of stress field decreases. 

The effects of magnetic field and viscosity on the 

tangential stress zx  are displayed in Fig. 12. We have 

observed that the values of the stress field are maximum at 

the boundary surface for all the three cases GTFOSMV, 

GTFOSV and GTFOSM, which supports the mechanical 

boundary conditions. In addition, the magnitude of 

tangential stress zx  is pronouncedly reduced as the 

magnetic and viscous properties of the material are 

neglected (i.e., for GTFOSV and GTFOSM). However, all 

the curves are experiencing similar pattern. 

The responses of normal displacement field w versus 

variable z for three different times (t = 0.01, 0.015, 0.02) are 

illustrated in Figure 13. It is clear that the displacement is 

maximum at the origin and decreases with the distance z for 

all the values of time t. Also, displacement field decreases 

with the increase of time t and the difference is more 

significant near the boundary surface. 

The profile of strain e against distance z for three 

different values of times (t = 0.01, 0.015, 0.02) is presented 

 
Fig. 13 Profile of displacement field w for t=0.01, 0.015, 

0.02 at 0.1   

 

 
Fig. 14 Profile of strain distribution e for t=0.01, 0.015, 

0.02 at 0.1   

 

 
Fig. 15 Profile of temperature   for t=0.01, 0.015, 0.02 

at 0.1  . 

 

 

in Fig. 14. We have noted that the strain field follows 

similar pattern for all the values of time having difference in 

magnitude. This difference is maximum at the boundary of 

half-space and is lessening with the increase in distance.  
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Fig. 16 Profile of normal stress zz  for t=0.01, 0.015, 

0.02 at 0.1   

 

 
Fig. 17 Profile of tangential stress zx  for t=0.01, 0.015, 

0.02 at 0.1   

 

 

Moreover, figure also suggests that time t has decreasing 

effect on the strain field. 

The distribution of temperature   against distance z 

for three different times (t = 0.01, 0.015, 0.02) is depicted in 

Fig. 15. For all the values of time, the profiles of   firstly 

increase rapidly in the range 0 0.5z   to attain 

maximum values, then decrease smoothly in the range 

0.5 5z   and afterwards vanish to zero value. It can be 

further inferred that the position at which the temperature 

field vanishes corresponds to the heat wave front, which is 

in support of previous findings that the heat wave traverses 

at finite speed. Finally, it is demonstrated that the profiles of 

temperature distribution decrease due to the increment in 

time t. 

The dynamical variations of normal stress zz  and 

tangential stress zx  versus distance z for three different 

times (t = 0.01, 0.015, 0.02) are described in Figs. 16 and 

17 respectively. It is clear from these figures that the curves 

corresponding to different times are experiencing 

qualitatively similar behaviour. As expected, the stress 

fields have maximum strength at the boundary surface 

which is consistent to the physical boundary conditions. 

Initially stress fields are in tensile mode, thereafter these 

fields become compressive with the passage of time. It is 

also pertinent to mention here that the increase in time t 

causes to decrease the magnitude of these stresses. 

 

 

8. Conclusions 
 

The dynamical interactions of a magneto-thermo-

viscoelastic half-space have been investigated in the context 

of the fractional order strain theory of generalized thermo-

elasticity without energy dissipation. In the present model, 

the Duhamel-Neumann‟s stress-strain relation is modified 

by introducing fractional order differential operator of the 

strain. Utilizing the fractional order strain model, we are 

able to characterize the material properties more flexibly 

contrary to classical formulation. However, from the 

analysis of the results obtained in this study, we can 

conclude the following remarks: 

• The thermoelastic responses in the solid half-space are 

restricted to a limited region and outside this region, the 

responses vanish identically. This confirms that second 

sound wave phenomenon is manifested in all the figures. 

• The fractional order strain parameter   (for fixed 

0.02)  has significant effect on the response of the 

physical quantities which clearly shows its importance 

in describing the behaviour of these physical quantities. 

However, the fractional parameter   and mechanical 

relaxation time   have both increasing and decreasing 

effects on the physical fields. 

• In fractional order strain theory, the characteristics of a 

material depend on the order of fractional order strain 

operator, hence, the fractional parameter   is a new 

indicator to provide knowledge about the time history of 

the deformation of the materials. 

• The effect of the viscosity is found to be very much 

prominent on the physical fields. Moreover, as 

viscoelastic properties of the material are neglected from 

the medium then the variations of strain e, temperature 

  and normal stress zz  behave distinctly from 

others. 

• We can deduce from the figures that the nature of 

variations of all the physical quantities are very much 

similar in the presence and absence of magnetic field. It 

is observed that as the magnetic field is neglected from 

the medium then the magnitude of the thermoelastic 

fields w, e, zz  and zx  is pronouncedly reduced 

while it increases the magnitude of temperature .  

• Stress fields have maximum absolute values near the 

surface of the body, which is consistent to the physical 

boundary conditions. 

• All the physical fields show qualitatively similar 

pattern for different values of time t with a significant 

difference in magnitude. Although, the numerical values 

of all the fields decrease with increase in the values of 

time t. 

The use of fractional order strain model in the study of 

the wave phenomenon in thermoelastic solid is rather 

limited. To address this issue, here, we have performed a 
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two-dimensional study to find the dynamical behaviour of 

an infinite magneto-thermo-viscoelastic medium constituted 

by fractional order material. The fractional order strain 

problem studied herein may be applicable in the fields of 

biomechanics, biomedical problems and skin tissues where 

knowledge of such changes would enable early diagnostic 

monitoring for the onset of disease and better assessment of 

the effectiveness of new drugs or therapies. 
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