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1. Introduction 
 

Concrete box girders have been widely used in modern 

bridges due to their large bending and torsional stiffness. 

However, excessive mid-span deflections and cracking, 

which can seriously affect the structural safety and 

serviceability, have been commonly observed in numerous 

concrete box girder bridges around the world (Takacs 2002, 

Yang 2007a, Wen 2011, Sousa et al. 2012). The unexpected 

phenomena and even structural collapse may result from 

many factors, for instance, concrete creep and shrinkage, 

shear lag effect, prestressing relaxation, defects in the 

design and construction processes (Bazant et al. 2012a, 

Zhang and Lin 2014a, Lou et al. 2016, Xiang et al. 2011). 

Accordingly, it is necessary to accurately predict the 

responses of box girder bridges in the life cycle. 

The time-dependent behavior of concrete structures has 

been generally analyzed by many scholars according to the 

traditional beam theory, which cannot realistically describe 

the shear lag of box sections (Robertson 2005, Yang 2007b, 

Pan et al. 2011, Granata et al. 2013, Elbadry et al. 2014, 

Sousa et al. 2014, Lou et al. 2015a, b). For the purpose of 

improving the prediction accuracy, some researchers have  
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further established three-dimensional finite element models 

consisting of shell or solid elements to capture shear lag 

effect. Kristek and Bazant (1987) observed that the shear 

lag can significantly affect the long-term deflections and 

stresses. Compared with the results obtained by the solid 

element model, the analysis using the beam element model 

may underestimate the long-term deflection by about 20% 

(Bazant et al. 2012b). Norachan et al. (2014) achieved the 

long-time behavior of a segmentally constructed box girder 

bridge utilizing hexahedral elements. In accordance with the 

monitoring data and the probabilistic shell element models, 

the deflection control strategies were made for box girder 

bridges (Guo and Chen 2016). Besides, Malm and 

Sundquist (2010) interpreted the influence of the non-

uniform creep and shrinkage on the time-varying 

deflections and stresses. And Xiang and He (2015) 

concluded that the non-uniform creep and shrinkage may 

lead to cracking in the bottom flange. Although the shell or 

solid element method can effectively simulate the shear lag, 

it is time-consuming and may be beyond the reach of an 

average engineer. As seen in literature, few studies proposed 

the simplified methods for the time-dependent analysis of 

shear lag in concrete box girders. Thus it seems essential to 

seek a simplified and analytical method, taking into account 

shear lag effect, and creep and shrinkage of concrete. 

Extensive studies on the analytical approaches to 

determine the shear lag have been conducted for decades. 

After Reissner (1946) first adopted a variation method 

based on the principle of minimum potential energy to 

analyze the shear lag in a rectangular box beam, the method 
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was extended to the shear lag analysis of box girders with 

cantilever plates (Dezi and Mentrasti 1985, Wu et al. 2003, 

Zhou 2010). However, those studies are generally based on 

the assumption that the neutral axis of box girders coincides 

with the centroidal axis. The assumption may not satisfy the 

axial equilibrium condition which is critical for accuracy of 

the shear lag analysis. To realize the axial balance of box 

girders, Zhang (2012), and Lin and Zhao (2011a, b) added 

correction terms to the shear lag displacement function and 

the longitudinal displacement, respectively. Nevertheless, 

the physical meanings of additional correction terms are not 

clear, and may be limited to practical applications. 

This paper presents a simplified model considering axial 

equilibrium for the short- and long-term analyses of shear 

lag in RC box girders. The longitudinal displacement of the 

web is added to the displacement field to satisfy the axial 

equilibrium condition. To consider the different shear lag 

intensities of the flanges in box girders, three independent 

shear lag functions are chosen for the top, bottom and 

cantilever plates, respectively. The differential equations 

and boundary conditions can be established by applying the 

virtual work theorem and partial integration. The closed-

form solutions of the differential equations are then derived 

for box girders subjected to uniformly distributed loads. 

The finite element analysis of a simply-supported RC box 

girder is performed to verify the effectiveness and reliability 

of the proposed method. Finally, a comparative study of the 

results obtained by the creep analyses with and without 

shrinkage is carried out for a better understanding of the 

effects of creep and shrinkage on the time-dependent 

behavior of a continuous RC box girder. 

 

 

2. Analytical model 
 

A thin-walled RC box girder with trapezoidal cross 

section is shown in Fig. 1. A coordinate system {O; X, Y, Z} 

is introduced, with the Z axis parallel to the axis of the 

undeformed box girder. Based on the assumption of a 

symmetric cross section, the coordinate plane YZ is also 

selected to coincide with the symmetry plane of the girder. 

 

2.1 Displacement and strain fields 
 

For the sake of establishing an analytical model 

accounting for the shear lag effect in concrete box girders, 

the following assumptions are given: 

 

(1) The external loads are located so as to avoid torsion, 

distortion and transverse bending of the cross section; 

(2) Plane-section hypothesis is applied to the webs, so 

the shear deformation is not considered for the webs; 

(3) The shear lag effect due to the in-plane shear 

deformation is taken into account in the flanges; 

(4) No bond slip can occur between the reinforcing bars 

and the surrounding concrete. 

To satisfy the axial equilibrium condition of the box 

girder, the longitudinal displacement of the web is added to 

the displacement field, which is different from the methods 

in the previous literature. For describing the different shear 

lag intensities of the slabs, three independent shear lag 

functions can be chosen for the top, bottom and cantilever 

slabs, respectively (Luo et al. 2004). The deformation 

process of the girder from time t0 to t (t > t0) is depicted in 

Fig. 2. Therefore, the displacement field can be obtained as 

follows 
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where j, k are the unit vectors along the axes Y and Z, 

respectively; the prime denotes a derivative with respect to 

the variable z; the subscript i=1, 2, 3 represents the top, 

bottom and cantilever slabs, respectively; v is the deflection 

of the box girder; w is the longitudinal displacement of the 

web; fi and ψi are the shear lag functions and the shear lag 

displacement functions of the top, bottom and cantilever 

slabs, respectively. 

According to the displacement field defined in Eq. (1), 

the strain field can be calculated, and the following non 

zero components are expressed as 
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(a) Coordinate system and load (b) Cross section 

Fig. 1 Thin-walled RC box girder 
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Fig. 2 Cross-section displacement components 

 

 
Fig. 3 Shear lag displacement functions 

 

 

where εi (i=1, 2, 3, 4) represent the axial strains in the top, 

bottom and cantilever plates, and the webs, respectively; γi 

define the shear strains in the top, bottom and cantilever 

plates, respectively; the comma represents partial derivative 

with respect to variable x. 

The shear lag displacement functions, which may 

significantly affect the accuracy of the shear lag analysis, 

must be carefully selected. As shown in Fig. 3, the functions 

should be chosen in the light of the following principles: (1) 

for the thin-walled structures, they can be only related to the 

variable x (Dezi et al. 2001); (2) they are symmetric with 

respect to the Y axis and continuous along the slab width; (3) 

at the edge of the cantilever slabs and at the center of the 

top and bottom slabs, ψi,x=0 can guarantee zero shear 

stresses; (4) at the intersections of the webs and the flanges, 

ψi=0 can be required by the plane-section hypothesis for the 

webs. The quadratic parabola was proved to be the 

reasonable curve of the shear lag displacement function 

(Zhang and Lin 2014b). Thus, ψi in this paper can be chosen 

as 
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where 2b1, 2b2 and b3 denote the width of the top, bottom 

and cantilever plates, respectively; tw is the web width. 

 

2.2 Constitutive laws of materials 
 

2.2.1 Concrete 
According to the assumption of linear creep, CEB-FIP 

model code 1990 (1993) presented the integral-type 

constitutive law of concrete under variable stresses as 
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where t is the age of the concrete at the moment considered; 

t0 is the age of the concrete at intial loading; εc and γc are the 

axial and shear strains in the concrete, respectively; εsh(t) is 

the shrinkage strain at time t; σc and τc are the axial and 

shear stresses in the concrete, respectively; J(t,θ) is defined 

as the strain at time t caused by a constant unit stress acting 

from time θ to time t; μ is the Poisson ratio of the concrete 

considered to be constant in time (Gara et al. 2009). 

Analytical solutions for the long-term behavior of 

concrete structures cannot be obtained by adopting the 

constitutive laws defined in Eq. (4). In addition, the results 

obtained by AEMM are more accurate than those by other 

simplified methods for creep analysis, for example, the 

effective modulus method and the mean stress method. For 

gaining the closed-form solutions, AAEM (Bazant 1972) is 

utilized to simplify Eq. (4) in this paper. The stress history 

is considered by introducing the aging coefficient in this 

method, which only involves the concrete stresses at times t 

and t0. Moreover, it is assumed that the creep behavior of 

the concrete is identical in compression and tension (Gara et 

al. 2010, Gilbert and Ranzi 2011). The concrete is supposed 

to be uncracked even in the tension regions (Dezi et al. 

2003). This assumption can be made only for the beneficial 

effect of prestressing. However, the problem linearity 

permits the uncoupling of effects under different actions. 

Therefore, the calculated results can show time effects on 

the shear lag in reinforced or prestressed concrete box 

girders subjected to external loads. 

The time-dependent stress-strain relationships are 

considered for the concrete 
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and ζ=0, t represents times t0 and t, respectively; σicζ and τicζ 

are the axial and shear stresses in the concrete, respectively; 

εicζ and γicζ are the axial and shear strains in the concrete, 

respectively; Ec0 and Gc0 are the Young's and shear moduli 

of the concrete at time t0, respectively; Ect and Gct are the 

age-adjusted effective moduli of the concrete at time t; υ is 

the creep coefficient at time t; χ is the aging coefficient at 
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time t. 

 

2.2.2 Reinforcing steel 
The reinforcements can be assumed to behave in a linear 

elastic manner. The following one-dimensional constitutive 

law is adopted 

4 3, 2, 1, ;rrr  iE ii  
 

(7) 

where σirζ and εirζ are the axial stress and the axial strain in 

the reinforcements, respectively; Er is the Young's modulus 

of the reinforcements. 

 

2.3 Global balance condition 
 

The longitudinal displacement of the web w, the vertical 

deflection v, and the shear lag functions fi are defined as 

unknown variables. By assuming that the box girder is 

subjected to the body and surface forces, b and s, based on 

the principle of virtual work, the global balance condition at 

time t can be obtained as 
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in which Ai and ΓAi represent the cross-sections and 

contours of the webs, the top, bottom and cantilever slabs, 

respectively; L is the span of the box girder. 

By virtue of Eq. (1) for the displacement field, (2) for 

the strain field, and (5) and (7) for the constitutive laws, Eq. 

(8) can be re-written in the following form 
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are the cross-section stress resultants at time t (N and M are 

the axial force and the moment resisted by the whole cross 

section at time t, respectively; Wi represent the bi-moments 

resisted by the top, bottom and cantilever slabs at time t, 

respectively; Qic are the bi-shears resisted by the concrete in 

the top, bottom and cantilever slabs at time t, respectively); 

while 
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represent the resultants of the body and surface forces 

applied along the girder; and 
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denote the resultants of the surface forces applied at the 

girder ends. 

In Eq. (10), the defined cross-sectional rigidities (with 

the subscript ζ=0, t when computed at times t0 and t, 

respectively) are expressed as 
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are the cross-section stress resultants at time t0 (Nc0 and Mc0 

are the axial force and the moment resisted by the concrete 

in the whole cross section at time t0, respectively; Wic0 and 

Qic0 denote the bi-moments and bi-shears resisted by the 

concrete in the flanges at time t0, respectively). In Eqs. (11)-

(12), szi and bzi are the components of the surface and body 

forces in the Z direction, respectively, while syi and byi are 

the components of the surface and body forces in the Y 

direction, respectively. 

The influence of the shear lag on the short- and long-

term behavior of concrete box girders can be reflected by 

the bi-shears and bi-moments defined in Eqs. (10c), (10d), 

(14c) and (14d). Eq. (10) can also indicate that the long-

term behavior of concrete structures at time t is related to 

the short-term behavior at time t0. Hence, for the purpose of 

conducting the long-term analysis, the short-term problem 

must be solved in advance. It is worth noting that the cross-

section rigidities depending on the material properties of the 

concrete at times t0 and t need to be calculated for the short- 

and long-time analyses, respectively. 

 

2.4 Governing differential equations and boundary 
conditions 
 

The governing system of differential equations and 

corresponding boundary conditions, describing the time-

dependent behavior of shear lag effect in concrete box 

bridges, can be derived by integrating Eq. (9) by parts. The 

differential equations can be expressed as
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and the corresponding boundary conditions at the girder 

ends can be written as 
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Eq. (15a) depicts the longitudinal equilibrium of the box 

girder; Eq. (15b) represents the vertical equilibrium of the 

box girder; while Eq. (15c) imposes the balance conditions 

between the axial stresses and the shear stresses in the 

flanges. Eq. (16) simultaneously contains the static and 

displacement boundary conditions. It is worth highlighting 

that only the uniform shrinkage is considered in this paper. 

Therefore, for concrete box girders with constant cross 

section, the terms related to the shrinkage strain cannot 

appear in Eq. (15), but only in Eq. (16).
 

 

2.5 Closed-form solutions 
 

The short- and long-term solutions considering shear lag 

effect are deduced for a RC box girder subjected to a 

uniformly vertical distributed load py. The generalized 

displacements at times t0 and t are distinguished by the 

subscript ζ=0, t. 
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2.5.1 Shear lag analysis at time t0 
According to the differential equations defined in Eqs. 

(15a) and (15b), the generalized displacements w0 and v0 

can be expressed in terms of fi0 as 
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and C0 is an integral constant at time t0. 

By substituting Eq. (17) into Eq. (15c), the following 

group of the differential equations can be obtained and re-

written in a matrix form as 

)( 000000 Czp'' yp  NfMfL  (19) 

where 

T
3020100 ][ ffff  (20a) 



















330320310

230220210

130120110

0 

lll

lll

lll

L
 

(20b) 

)diag( 3020100 mmmM  (20c) 

T
3020100 ][ pppp nnnN  (20d) 

The elements in Eqs. (20b), (20c) and (20d) are defined 

as 

3 2, 1, ;000000  iEIρEBωEAl ψiiψiiψiii  
(21a) 

jijiρEBEAl ijψiψjji   3, 2, 1,3, 2, 1, ;00000 

 

(21b) 

3 2, 1, ;00  jGIm ψjdj  (21c) 

3 2, 1, ;00000  jωEAρEBn pψjpjψpj  (21d) 

Based on Eq. (19), the solutions of fi0 can be obtained as 

3 2, 1, );(

)shch(

0
0

0

3

1

00)2(00)12(00
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zλCzλCξf

y
i

pi

α

ααααiαi

 (22) 

and 



















330320310

230220210

130120110

0





ξ

ξ  (23) 

where Ck0 (k=1, ... , 6) are the integral constants, which can 

be determined by use of the boundary conditions at time t0; 

λα0
2
 (α=1, 2, 3) are the eigenvalues of L0

-1
M0; ξ0 is the 

matrix of the right eigenvetors of L0
-1

M0. 

 

2.5.2 Shear lag analysis at time t 
Determining the short-term response can make it 

possible to perform the long-term analysis. The generalized 

displacements wt and vt can be written in terms of fit as

 

)(0c0c

3

1

typtMtNtit

i

itt Czpω'Mω'Nω''fω''w 


 (24a) 

)(0c0c

3

1

typtMtNtit

i

itt Czpρ'Mρ'Nρ''fρ'''v 


 
(24b) 

where 

3 2, 1, ;
2





 i

EBEIEA

EIEAEBEB
ω

ttt

ttψittψi
it  (25a) 

3 2, 1, ;
2





 i

EBEIEA

EBEAEAEB
ρ

ttt

ttψittψi
it  

(25b) 

22
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t
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ttt

t
Nt

EBEIEA
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ρ

EBEIEA

EI
ω


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
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(25c) 
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t
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EBEIEA
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



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(25d) 
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22
 ,

ttt

t
pt

ttt

t
pt

EBEIEA

EA
ρ

EBEIEA

EB
ω







 

(25e) 

and Ct is an integral constant at time t. 

Substituting Eq. (24) into Eq. (15c) can yield the group 

of the differential equations, which can be expressed as 

)(

0c0c0c0c

typt

MNtttt

Czp

''M'N''





N

QWNNfMfL 
 (26) 

where 

T
321 ][ tttt ffff  (27a) 



















ttt

ttt

ttt

t

lll

lll

lll

333231

232221

131211

L
 

(27b) 

)diag( 321 tttt mmmM  (27c) 

T
321 ][ tptptppt nnnN  (27d) 

T
321 ][ NNNN nnnN  (27e) 

T
321 ][ MMMM nnnN  (27f) 

T
0c30c20c10c ][ WWWW  (27g) 

T
0c30c20c10c ][ QQQQ  (27h) 

The coefficients in Eqs. (27b), (27c), (27d), (27e) and 

(27f) are written as 

3 2, 1, ;  iEIρEBωEAl tψiittψiittψiiit  
(28a) 

jijiρEBEAl ittψjittψjjit   3, 2, 1,3, 2, 1, ;

 

(28b) 

3 2, 1, ;  jGIm tψjdjt  (28c) 

3 2, 1, ;  jωEAρEBn pttψjpttψjpjt  (28d) 

3 2, 1, ;  jωEAρEBn NttψjNttψjNj  (28e) 

3 2, 1, ;  jωEAρEBn MttψjMttψjMj  (28f) 

Compared with Eq. (19), the added terms in Eq. (26) 

related to the stress resultants at time t0 is due to the 

constitutive relationship of concrete creep. On the basis of 

Eq. (14), the expressions of the stress resultants at time t0 

can be determined as 

98
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0)2(0)12(0c )chsh(
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zλazλaN
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 (29a) 

98
2

7

3

1

0)2(0)12(0c )chsh(

MMM

α

ααMααM

azaza

zλazλaM








 
(29b) 

3 2, 1, ;

)chsh(
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)shch(
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QiQi
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 (29d) 

where the coefficients aNl, aMl, aWil and aQim (l=1, ..., 9; 

m=1, ..., 8) can be achieved in the shear lag analysis at time 

t0. 

In accordance with Eq. (26), the closed-form solutions 

of fit can be expressed as 

3 2, 1, ;)(

)shch(
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1

)2()12(
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 (30) 

and 






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

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

ttt

ttt

ttt

t

ξ

333231

232221

131211







ξ  (31) 

where Ckt (k=1, ..., 6) are the integral constants, which can 

be calculated based on the boundary conditions at time t; 

λαt
2
 (α=1, 2, 3) are the eigenvalues of Lt

-1
Mt; ξt is the matrix 

of the right eigenvetors of Lt
-1

Mt. 

By taking advantage of Eq. (29), the particular solutions, 

which only depend on the stress resultants at time t0, can be 

derived as 

87

3

1

0)2(0)12( )shch( ηηηηf 


 zzλzλ
α

ααααtp  (32) 

and 
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T
321 ][ tptptptp ffff  (33a) 

3 2, 1, );

(

)12()12(0

)12(0)12(0)12(


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
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αλ

aλaλ

αQαWα

MαMαNαNαα
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NNHη
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(33b) 

3 2, 1, );
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)2()2(0

)2(0)2(0)2(





αλ

aλaλ

αQαWα

MαMαNαNαα

aa

NNHη
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 (33c) 

)222( 7777
1

7 QWMMNNt aa aaNNMη  


 (33d) 

)( 8888
1

8 QWMMNNt aa aaNNMη  


 (33e) 

where 

3 2, 1, ;)( 12
0   αλ ttα MLH  (34) 

In particular, it should be noted that the solutions of the 

generalized displacements obtained by the proposed method 

can be reduced to those obtained from the elementary beam 

theory if the shear lag effect is ignored. 

 

 

3. Numerical applications 
 

Two case studies of a simply-supported RC box girder 

and a continuous RC box girder are presented below. The 

short- and long-term results computed by the proposed 

method for the simply-supported girder are compared with 

those calculated by the finite element method and the 

elementary beam theory. Moreover, creep analyses with and 

without shrinkage are conducted for an evaluation of time 

effects on the long-time behavior of the continuous girder. 

 

3.1 Verification of the proposed method 
 

With the development of bridge engineering, box girders 

with long cantilever slabs and large-spacing webs have 

been widely used. Shear lag effect in these box girders is 

more evident than that in general box girders. Fig. 4 shows 

a scaled (1:6) simply-supported RC box girder which was 

provided by Cao (2000). It is assumed that the load py=21.2 

kN/m is applied at 28 days from casting of the concrete, 

namely, t0=28 days. The final time of the analysis is t=3628 

days. And the age of the concrete at the beginning of 

shrinkage, ts, is taken as 3 days. Young's modulus of the 

concrete at time t0 is Ec0=32.6 GPa, and Poisson's ratio is 

μ=0.167. The mean compressive strength of the concrete at 

the age of 28 days, fcm, is 37.4 MPa. The relative humidity 

is RH=70%. Young's modulus of the reinforcements is 

Er=210 GPa. The creep and shrinkage functions can be 

determined in terms of CEB-FIP model code 1990 (1993). 

For the convenient calculation of the aging coefficient χ, the 

different simplified expressions for χ were provided by the 

literature (Lacidogna and Tarantino 1996, Jirasek and  

 
(a) Cross section 

 
(b) Load case 

 
(c) Reinforcement arrangement 

Fig. 4 Simply-supported RC box girder (unit: mm) 

 

 

Bazant 2002). Moreover, a step-by-step method, which was 

presented by Bazant (1972) and programmed by Ghali et al. 

(2012), is adopted to obtain a more accurate value of χ in 

this paper. In view of the length limitation, the computer 

code for χ given by Ghali et al. (2012) is not listed here. 

In this paper, the software MIDAS is used for the finite 

element analysis of the box girder. As shown in Fig. 5, the 

finite element model, which can automatically capture the 

shear lag effect, is constructed using eight-node solid 

elements. The longitudinal reinforcements and stirrups can 

be modeled as line elements, attached to the concrete at the 

nodes. Besides, the time-varying behavior of the box girder 

can be obtained by the step-by-step method. 

Fig. 6(a) depicts the deflections of the box girder 

calculated by various methods at times t0 and t. EBT, SSL, 

SLCS and FEA represent the analyses based on the 

elementary beam theory, the short-term analysis of shear lag, 

the shear-lag analysis considering creep and shrinkage, and 

the finite element analyses, respectively. Compared with the 

proposed method considering shear lag, the analyses based 

on the elementary beam theory underestimate the mid-span 

deflections at both time t0 and time t by about 11%. The 

deflections obtained by the proposed method are relatively 

close to those calculated by the finite element method. The 

small differences between these two approaches are mainly 

caused by the shear deformations of the webs which are 

ignored in the proposed method. As shown in Fig. 6(b), the 

mid-span deflections resulting from creep and shrinkage at 

time t computed by each method are about twice larger than 

those at time t0. 

Fig. 7 shows the time-varying transverse distributions of 

the axial stresses in the top and bottom slabs at mid-span. It 

is observed that both the short- and long-term stresses in the 

flanges obtained from the proposed method are in very 

good agreement with those from the finite element analyses. 

Because of the neglect of the shear lag effect, the 

longitudinal stresses computed by the elementary beam  
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theory are uniformly distributed, leading to considerable 

errors in the stress calculations (Kristek and Kadlec 2014). 

As shown in Fig. 7(a), a reduction with time of the 

compressive stresses is obvious in the top slab, owing to the 

creep and shrinkage. On the other hand, Fig. 7(b) shows 

that the tensile stresses in the bottom slab gradually 

increases with time. The stresses in the top and bottom slabs 

gradually get close to 0 and tensile strength of the concrete,  

 

 

 

 

respectively. Therefore, the time evolution of the stresses in 

the top and bottom plates is detrimental to the girder. 

Moreover, in the case of constant external loads, creep and 

shrinkage generally cause the variation of stress values, and 

cannot substantially modify the shape of the transverse 

distributions of axial stresses (Xiang and He 2015). 

 

3.2 Creep analyses with and without shrinkage 

  
(a) Concrete (b) Reinforcement 

Fig. 5 Finite element model for simply-supported box girder 

  
(a) Top slab (b) Bottom slab 

Fig. 7 Transverse distributions of axial stresses at mid-span of simply-support box girder 

  

(a) Deflection curves (b) Mid-span deflections 

Fig. 6 Time evolution of deflections of simply-supported box girder 
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A two-span continuous RC box girder, as shown in Fig. 

8, is chosen to conduct the further analyses. Young's 

modulus of the concrete at time t0 is Ec0=38.1 GPa. The 

mean compressive strength of the concrete at the age of 28 

days is fcm=48 MPa. The remaining parameters are the same 

as those of the simply-supported RC box girder in Section 

3.1. The aging coefficient, creep and shrinkage functions 

are also calculated by the same method in Section 3.1. 

In order to further elaborate the effects of creep and 

shrinkage on the structural responses, two different shear-

lag analyses, including creep analysis with shrinkage (SLCS) 

and creep analysis without shrinkage (SLC), are carried out 

for the continuous box girder. 

The differences of the deflection curves obtained from 

creep analyses with and without shrinkage are shown in Fig. 

9(a). At time t, the deflection increment at mid-span due to 

creep accounts for about 81% of that due to creep and 

shrinkage. It illustrates that concrete creep has a greater 

impact on the long-term deflections than concrete shrinkage. 

The time-varying deflections of the box girder at mid-span 

are also plotted in Fig. 9(b). Although the impact of the 

concrete shrinkage on the long-term deflections becomes 

larger with time, the concrete creep is still dominant. 

Fig. 10 plots the transverse distributions of the axial 

stresses in the top and bottom slabs at the interior support. 

Both creep and shrinkage can result in the reduction of the 

compressive stresses in the bottom slab. Besides, the 

reduction and increase of the tensile stresses in the top plate 

are caused by creep and shrinkage, respectively. It can be 

seen that concrete creep may mainly induce the stress 

migration from the concrete to the reinforcing bars, while 

concrete shrinkage may trigger the cracking in the top slab 

in tension. Therefore, not only creep but also shrinkage 

should be paid attention to in the stress analysis of concrete 

box girders. 

 

 

 
(a) Cross section 

 
(b) Load case 

 
(c) Reinforcement arrangement 

Fig. 8 Two-span continuous RC box girder (unit: mm) 

 

 

 
(a) Deflection curves 

 
(b) Mid-span deflections 

Fig. 9 Time evolution of deflections of continuous 

box girder 

 

 
(a) Top slab 

 
(b) Bottom slab 

Fig. 10 Transverse distributions of axial stresses at 

interior support of continuous box girder 
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(a) End support 

 
(b) Interior support 

Fig. 11 Time evolution of support reactions in 

continuous box girder 

 

 
(a) Distributions of moments 

 
(b) Moments at mid-span and at interior support 

Fig. 12 Time evolution of bending moments in 

continuous box girder 

The variations of support reactions and bending 

moments due to time effects are reported in Figs. 11-12, 

respectively. Concrete creep has virtually no effect on the 

support reactions and the bending moments. It is also 

observed that the reaction at the interior support increases 

while the reaction at the end support reduces because of 

concrete shrinkage. Hence, the hogging moment at the 

interior support increases while the sagging moment at mid-

span decreases. The similar variations with time were also 

observed by Lou et al. (2014). At 3628 days, the concrete 

shrinkage decreases the reaction at the end support and the 

moment at mid-span by approximately 12.5% and 37.0%, 

respectively. Therefore, time effects on the redistribution of 

internal forces and support reactions should be attached 

importance to in statically indeterminate concrete 

structures. 

 

 

4. Conclusions 
 

An analytical model considering axial equilibrium is 

developed for analyzing the short- and long-term shear lag 

effect in reinforced concrete box girders. In order to take 

into account the axial equilibrium, the longitudinal 

displacement of the web is added to the displacement field. 

Three independent shear lag functions are applied to denote 

the different shear lag intensities of the top, bottom and 

cantilever slabs, respectively. The age-adjusted effective 

modulus method is adopted for modeling the time-

dependent behavior of the concrete. The governing system 

of differential equations and corresponding boundary 

conditions can be determined based on the virtual work 

theorem and the partial integration. The closed-form 

solutions of the short- and long-term behavior are derived 

for concrete box girders subjected to uniformly distributed 

loads. Meanwhile, the proposed method is employed to 

investigate the short- and long-term responses of a simply-

supported RC box girder. The results obtained by the 

proposed method are compared with those from the 

traditional elementary beam theory and the finite element 

analyses. In addition, creep analyses with and without 

shrinkage are also performed for quantifying the effects of 

creep and shrinkage on the long-term behavior of a 

continuous RC box girder. 

The following conclusions could be drawn: 

• Both the short- and long-term responses calculated by 

the presented model are in good agreement with those 

obtained from the finite element analyses. Compared 

with the proposed method, the conventional analyses 

based on the elementary beam theory lead to significant 

errors in the prediction of the structural responses. 

• Creep has a significant impact on the long-term 

deflections, while shrinkage has a large effect on the 

concrete stresses. Moreover, it should be noted that 

shrinkage can remarkably affect the redistribution of the 

internal forces and support reactions in the continuous 

girder. 

• It is quite necessary to comprehensively consider shear 

lag effect, creep and shrinkage in the long-term analysis 

of RC box girders. Especially at the design stage, the 
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proposed method is an effective tool for engineers to 

analyze the short- and long-term behavior of shear lag 

effect in RC box girders. Further extensive experimental 

studies should be conducted to calibrate the proposed 

method. 
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