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1. Introduction  
 

As is known (Finkel 1977, Parton and Morozov 1985), 

one of the effective means of inhibition of crack growth 

may be supporting stiffeners on the path of crack 

propagation. In theory of fracture a problem of the crack 

“healing” in body is of great value. The problem of opened 

crack closing is the first step in solving this issue. The 

reinforcing elements reduce deformation of the stretched 

plate in the direction perpendicular to the crack, and in this 

connection the stress intensity factor declines in the vicinity 

of the crack end.  

Extensive literature (Tolkachev 1963, Dolgikh and 

Fil'shtinskii 1976, Vanin 1985, Broek 1982) has been 

devoted to deformation of unlimited plate reinforced by a 

regular system of ribs whose cross sections are very narrow 

rectangles. A considerable attention was drawn to studying 

fracture of plates reinforced by regular system of stringers 

(Cherepanov 1979, Mirsalimov 1986, Maksimenko 1988, 

Savruk and Kravets 1994, 1995, Kravets 1999, Mir-Salim-

zadeh 2007, Mir-Salim-zada 2011). In the mentioned 

papers, the Griffiths crack (model), i.e., a crack with 

noninteracting faces was considered, and it was established 

that at joint action of tensile stress and stiffeners, the stress 

intensity factors may have negative value. This means 

origination of contractive stresses in the vicinity of the 

crack tips, where the crack faces get in contact at some area, 

and this reduces to appearance of contact stresses. Recently, 

there have been published a number of papers devoted to 

investigation of bodies with cracks (slots) with regard to 

possibility of contact of crack faces (Birinci and Cakiroglu 

2003, Perel 2007, Mirsalimov 2009, Birinci 2011, Hasanov  
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2012, Goryacheva et al. 2012, Mirsalimov and Rustamov 

2013, Belhouari et al. 2014, Mirsalimov and Mustafayev 

2014, Mir-Salim-zada 2014, Mirsalimov and Mustafayev 

2015a, b, Mirsalimov 2016). To other fracture mechanics 

problems are devoted works (Birinci et al. 2010, Patra et al. 

2014, Ibraheem et al. 2015, Wu et al. 2015, Farahpour et al. 

2015, Yaylacı 2016). The issues of partial contact of the slot 

faces in the reinforced plate have been poorly studied to 

day.  

 

 

2. Formulation of the problem  
 

Let us consider an elastic isotropic thin plate weakened 

by a periodic system of rectilinear slots of variable width 

h(x) comparable with elastic deformations. At the points 

0)12( ikyLmz   (m=0,1,2,…; k=1,2,…) (Fig. 1), 

lateral stiffeners were fastened to the plate symmetrically 

with regard to its surface with constant step. The action of 

the fastened supporting ribs, in the design scheme is 

replaced by the unknown concentrated forces applied at the 

fixing points. It is assumed that at deformation the stringer’s 

thickness is invariable, and the stress state is uniaxial.  

The following assumptions are accepted: a) stringers do 

not resist bending and work only to tension; b) plane stress 

state is realized in a thin-walled sheet structural element 

(plate); c) the supporting system of stringers is of truss-type, 

their weakening at the expense of setting of fixing points is 

not considered; d) the sheet element and supporting 

elements interact in one plane and only at fixing points; e) 

all fixing points are the same, their radius (the bond area) is 

small compared with their steps and other typical sizes. The 

action of the fixing point is modelled in the stringer by the 

action in the entire rib of the concentrated force applied at 

the point, corresponding to the center of the fixing point; in 

the plate by the action of concentrated force.  
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At infinity the uniform tensile stress 0 
y  acts on 

the plate. Under the action of the external load σ0 and 

concentrated forces Рmn in the zone of compressive stresses 

the slot faces will get in contact at some areas and that will 

contribute to emergence of contact stresses on the these 

areas. The contact areas are assumed to be adjacent to the 

slot tips; their size is not known beforehand and may be 

compared with the slot’s length. In the end zones where the 

slot faces get in contact, there will arise normal σy=q(x) 

stresses. The values of contact stresses and concentrated 

forces Рmn are unknown beforehand and should be defined 

in the process of solution of a boundary value problem of 

fracture mechanics. The parameters λ1 and λ2 characterizing 

the boundary of contact area between the slot faces also 

should be determined in the course of problem solution. For 

the problem under consideration, we can previously say that 

the zone between the slot faces will always begin from the 

end points of slots.  

The problem under consideration consists of 

development of a mathematical model that allows to 

determine the contact stresses in the areas 

),(  mml   and ),(  mlm  , the values of 

concentrated forces Pmn ,...)2,1,( nm , the stress-strain 

state outside the slot.  

Outside the contact area the slots faces are load free. 

The boundary conditions of the problem under 

consideration have the form: 

on noncontacting areas of slots faces for y=0, 

 mx   

0)0,()0,(   xx yy   

0)0,()0,(   xx xyxy   

(1) 

on the contact areas lmx  
 

 

 

 

)()0,()0,( xqxx yy     

)()0,()0,( xhxvxv  
 

(2) 

Here x is the affix of the points of slot contour; the 

quantities )(xy
 , )(xxy

 , )(xv  belong to the upper faces 

of the slot, )(xy
 , )(xxy

 , )(xv  to the lower faces of the 

slot. Because of symmetry of the problem under 

consideration 
  yy  ; 

  xyxy  ;   vv ; )()( xhxh  . 

The stress and strain state in an infinite plate in the 

conditions of the plane problem with the cuts along the axis 

Oх is described by two analytic functions )(z  and )(z  

(Muskhelishvili 2010) 

)()()()()( zzzzzzi xyx    
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(3) 

where v  is the Poisson ratio of the plate material; 

)1()3( vv   is the Muskhelishvili elastic constant. 

For determining the functions )(z  and )(z , we 

have the boundary value problem  

for у = 0,     mx
 

0)()()(  zzz  

for у = 0,   lmx          

)()()()( xqzzz   

(4) 

 
Fig. 1 Design scheme of contact problem for a stringer plate 
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3. Solution of boundary value problem  
 

We look for the solution of boundary value problem (4) 

in the form 
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(6) 

Here h  is the plate thickness; 12  mm ; the prime at 

the sign of sum means that at summation the index п=m=0 

is excluded. 

For determining the analytic functions )(1 z  and 

)(1 z , we have the boundary value problem:  

For determining the functions )(z  and )(z , we 

have the boundary value problem  

for у = 0,     mx  

)()()()( 111 xfzzz   

for у = 0,   lmx          

)()()()()( 111 xqxfzzz   

(7) 

where  

)()()( 111 zzzz   

 )()()()()( 0000 xxxxxxf   

 

By the conditions of symmetry with respect to the axis 

x, the function f(x) is real, therefore based on (7) on all the 

real axis there will be 0)(Im 1  z . Consequently, taking 

into account the conditions at infinity, we get 0)(1  z . 

For the function )(1 z  we get the Dirichlet problem  

for у = 0,     mx  

)(
2

1
)(Re 1 xfz   

for у = 0,   lmx          

 )()(
2

1
)(Re 1 xqxfz      

as z    0)(1  z  

(8) 

By means of transformation )sin(  zw   we pass 

from the plane z to the parametric plane of complex variable 

w. Herewith, the exterior of the periodic system of slots of 

the plane z passes to infinitely sheeted Riemann surface 

with the slot ),( 00 ll , where )sin(0  ll  . 

The sought-for solution of the problem (8) should be 

found in the class of everywhere bounded functions. We 

write the sought-for solution of the problem in the form  


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Here                            
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Under the function )(z  we mean the branch that for 

large z  has the form )sin(  z . 

Subject to behavior of the function )(1 z  at infinity, 

the solvability condition of the boundary value problem is 

represented in the form 

 
0

)(

)cos()()(
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0










l

l

dx
x

xxqxf 
 (10) 

where )(sin)(sin)( 22
*  xlx  . 

This relation is used to determine the size of the end 

contact zone.  

For terminal determination of the potential )(1 z  it is 

necessary to find the contact stresses q(x) on the areas of 

contact between the slot faces, i.e., for lmx   , and 

also the values of concentrated forces Pmn. 

  

 

4. Definition of contact stresses  
 

Using the Kolosov-Muskhelishvili relations and the 

boundary values of the function )(1 z , on the sections 

lmx    we get the following equality  
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Using the Sokhotskii-Plemelj formulas (Muskhelishvili 

2008), with regard to formula (9), we find 
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Taking into account conditions (2), we get the singular 

integral equation 
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where  001 ,  lL ,  002 ,lL  , )(sin0   . 

Solving the appropriate Riemann problem 

(Muskhelishvili 2008), we can get the solution of singular 

integral Eq. (12).  

Solving Eq. (12), with regard to boundedness of the 

contact stresses at the ends of the contact zone, we get 

formulas for the normal stresses q(x) 
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For calculating the contact stresses, it is necessary to 

find the values of concentrated forces Pmn (m,n=1,2,…). 

Because of symmetry and periodicity of the problem 

Pmn=Pm1 (m=1,2…). 

 

 

5. Definition of values of concentrated forces  
 

For determining the values of concentrated forces Pmn 

(m,n=1,2,…), we use the Hooke law and the method of 

joining of two asymptotics of the desired solution. 

According to this law, the desired value of the concentrated 

force Pmn acting on each fixing point from the side of the 

rigidity rib equals  
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where m=0,1, 2,…; n=1,2,…; SE  is the Young modulus of 

the stringer material; mF  is the area of the cross section of 

the stringer (without loss of generality we will assume that 

FFm  ); ny02  is the distance between the fixing points; 

mnv  is mutual displacement of the considered fixing 

points that equals the elongation of the appropriate area of 

the stringer.  

Denote by a0 the radius of the fixing point (adhesion 

area). Accept a natural assumption that mutual elastic 

displacement of the points a0 in the considered problem of 

elasticity theory equals the above mentioned mutual 

displacement of the fixing points )( 00* anyiLmz   

and )( 00* anyiLmz  . This additional condition of 

compatibility of displacements permits to find effectively 

the solution of the stated problem. By complex potentials 
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Thus, the sought-for values of concentrated forces are 

determined from the solution of infinite system of Eq. (14). 

The obtained system of Eq. (14) and relations (10), (13) are 

coupled and should be solved jointly. 

 

 

6. Analysis of results  
 

Analysis of partial closure of the system of variable 

width slots is reduced to parametric investigation of 

geometric parameters and also mechanical constants of the 

material according to formulas (10), (13), (14) at different 

distributions of stresses in the plane. Immediately, by means 

of calculations from the obtained formulas we can 

determine the normal stresses in contact areas, and also the 

size of the contact zone.  

When calculating the contact stresses, all integration 

intervals were reduced to one interval [-1,1], and then the 

integrals we replaced by finite sums by means of Gauss-

type quadrature formulas. Because of unknown sizes of 

contact zones, the obtained algebraic system of equations 

turned out to be nonlinear. For solving it, the successive 

approximations method was used (Mirsalimov 1987). 

The calculations were carried out for the following 

values of free parameters: 3.0 ; 01.001  La ; 

15.00  Ly ; 0.25; 0.5; MPaE 4101.7   (V95 alloy): 

MPaEs
4105.11   (Al-steel composite); 10 hyF . The 

amount of stringers and fixing points accepted to be equal 

to 6; 10; 14. The dimensionless coordinates  

x
ll

x 






22


  

were used at calculations. The dependence of distribution of 

contact stresses along the right contact zone for the slot 

whose width changes according to the parabolic law for 

25.0  was established (Fig. 2). Curve 1 corresponds to 

the dimensionless length of the slots 50.0 Lll ; curve 

2 25.0l : 

 

 

7. Conclusions 
 

 

Fig. 2 Distribution of contact stresses along the right 

contact zone for the slot 
 

 

 

The effective calculation scheme of partial closure of 

the system of variable width slots in the stringer plate is 

suggested. The obtained relations permit to solve the 

inverse problem, i.e., to determine the characteristics of 

strengthening elements and the stress state of the stringer 

plate at which the given area of contact of slot faces is 

achieved. 
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