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1. Introduction 
 

The growth of researches on piezoelectric rectangular 

plates and beams in general has evolved during past decade 

in part by focusing on free and forced vibration, buckling 

and post-buckling, dynamic and static stability analysis.  

Among various researches on the buckling and post 

buckling analysis of piezoelectric beams, using classical 

beam theory, De Faria and De Almeida (1999) reported a 

theoretical framework and a finite element for the buckling 

of beams with a pair of surface attached piezoactuators, and 

presented the enhancement of prebuckling behavior of 

slender beams through piezoelectric control. The elastic 

buckling of a column structure with a pair of piezoelectric 

layers was presented by Wang (2002). He found that, by 

designing optimal location of the piezoelectric layer and the 

voltage applied to the piezoelectric layers, the buckling 

capacity of the column structure could be enhanced 

effectively. Wang and Quek (2002) showed the 

effectiveness of a pair of surface-bonded piezoelectric 

patches on increasing the buckling capacity of a column 

subjected to a follower force. De Faria (2004) proposed a 

new way of increasing the buckling capability of composite 

columns. For buckling analysis of hybrid piezoelectric 

beams under electromechanical loads, a coupled one-

dimensional geometrically nonlinear zigzag theory was 

developed by Kapuria and Alam (2004a). Also, they  
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(2004b) presented a two-dimensional exact solution for 

buckling of simply supported symmetrically laminated 

hybrid beam and cross-ply panel with elastic substrate and 

piezoelectric layers. With the help of finite element method, 

buckling behavior of smart beams and plates under different 

electrical conditions as well as thermal and electrical 

loading was presented by Giannopoulos et al. (2007). 

Cheng et al. (2008) showed that applying the adaptive 

control of electric field to the surface bonded piezoelectric 

patch lead to decrease the lateral deflection of laminated 

composite beam and increase its dynamic buckling capacity. 

Jerome and Ganesan (2010) developed a new two 

dimensional plane strain finite element formulation to 

predict the critical buckling load of a piezocomposite beam. 

They presented the results for both open and closed circuit 

electrical conditions. Wang (2010) studied the application 

of using piezoelectric actuators and strain gauge sensors to 

control the buckling of both simply supported and 

cantilever beams based on finite element method. 

In the same manner, buckling and postbuckling analysis 

of piezoelectric plates, have been investigated by many 

researchers. Several works have been conducted to 

investigate the buckling, postbuckling and thermal buckling 

behaviors of smart composite plates. For instance, on the 

basis of first order shear deformation plate theory, 

Chandrashekhara and Bathia (1993) developed a finite 

element model for active buckling control of laminated 

composite plates using piezoelectric materials. Considering 

large thermopiezoelastic deflections, Postbuckling and 

vibration analysis of fully symmetric and partially eccentric 

piezolaminated composite plates were carried out by Oh et 

al. (2000). For fully distributed piezolaminates, their study 

showed that excessive bending moments for the suppression 

of thermally buckled deflection may cause another type of 

 
 
 

Stability analysis of transversely isotropic laminated Mindlin plates  
with piezoelectric layers using a Levy-type solution 

 

M.A. Ghasemabadian1a and A.R. Saidi
2 

 
1Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 

2Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran 

 
(Received February 14, 2016, Revised October 21, 2016, Accepted November 23, 2016) 

 
Abstract.  In this paper, based on the first-order shear deformation plate theory, buckling analysis of piezoelectric coupled 

transversely isotropic rectangular plates is investigated. By assuming the transverse distribution of electric potential to be a 

combination of a parabolic and a linear function of thickness coordinate, the equilibrium equations for buckling analysis of plate 

with surface bonded piezoelectric layers are established. The Maxwell’s equation and all boundary conditions including the 

conditions on the top and bottom surfaces of the plate for closed and open circuited are satisfied. The analytical solution is 

obtained for Levy type of boundary conditions. The accurate buckling load of laminated plate is presented for both open and 

closed circuit conditions. From the numerical results it is found that, the critical buckling load for open circuit is more than that 

of closed circuit in all boundary and loading conditions. Furthermore, the critical buckling loads and the buckling mode number 

increase by increasing the thickness of piezoelectric layers for both open and closed circuit conditions. 
 

Keywords:  buckling; piezoelectric; rectangular plate; transversely isotropic; analytical solution 

 



 

M.A. Ghasemabadian and A.R. Saidi 

structural instability. Based on the classical plate theory 

with von-Karman nonlinear kinematic relations, Tang 

(2016) developed an analytical solution to investigate the 

thermal buckling behavior of the imperfect rectangular 

plates with functionally graded (FG) coatings under 

uniform temperature rise. Lei et al. (2016) studied the 

buckling behavior of carbon nanotube reinforced 

functionally graded (CNTR-FG) composite laminated plates 

based on the first-order shear deformation theory and using 

meshless kp-Ritz method. Thai et al. (2014) presented a 

new first-order shear deformation theory for functionally 

graded sandwich plates composed of functionally graded 

face sheets and an isotropic homogeneous core. By making 

a further assumption to the existing first-order shear 

deformation theory, they reduced the number of unknowns 

and governing equations of the present theory. Based on the 

higher order shear deformation plate theory, thermal 

postbuckling and postbuckling analysis of a simply 

supported laminated plate with piezoelectric actuators 

subjected to thermo-electrical and thermo-electro-

mechanical loads were presented by Shen (2001a, b). A 

numerical analysis for dynamic buckling of a plate with 

surface bonded piezoceramic elements was presented by 

Batra and Geng (2001a) based on the three dimensional 

elasticity theory. In that work, the geometric and material 

nonlinearity of the structures were taken into account. They 

found that an increase in the plate thickness relative to that 

of the piezoelectric layers decreases its effectiveness in 

enhancing the buckling load of the plate. Varelis and 

Saravanos (2002) studied the static buckling control of 

smart beams and plates. The buckling and postbuckling 

response of composite laminates and plates with 

piezoactuators and sensors due to large displacements and 

rotations has been presented by Varelis and Saravanos 

(2004). Their results indicate that, depending on the applied 

field polarity, mechanical buckling maybe either 

compensated or promoted. Kapuria and Achary (2004) 

presented a three dimensional exact piezoelasticity solution 

for buckling of simply-supported symmetrically laminated 

hybrid plates with elastic substrate and piezoelectric layers. 

Kapuria and Achary (2006) developed a coupled zigzag 

theory for static buckling analysis of hybrid piezoelectric 

plates. Using three dimensional state-space formulations, 

the buckling of simply supported orthotropic piezoelectric 

laminates with weak interfaces was investigated by Kim 

and Lee (2008). Dynamic buckling of laminated plates with 

piezoelectric sensors and actuators under thermo-electro-

mechanical loadings was studied by Shariyat (2009a). 

Using the piezoelectric elements, De Faria and Donadon 

(2010) proposed a technique for increasing the buckling 

loads of composite plates. Three dimensional thermal 

buckling analysis of piezoelectric antisymmetric angle-ply 

laminates using finite layer method has been done by 

Akhras and Li (2010).  

Some authors have studied the piezoelectricity effects 

on the buckling and postbuckling behavior of functionally 

graded (FG) plates with piezoelectric layers. The 

postbuckling behavior of piezoelectric FG plates subjected 

to thermo-electro-mechanical loading was presented by 

Liew et al. (2003). They reported that the buckling and 

postbuckling strength of plate can be improved by 

application of negative voltage in the actuator layers. Shen 

(2005) studied the postbuckling analysis of simply 

supported, symmetric FG plates with fully covered or 

embedded piezoelectric actuators subjected to the thermo-

electro-mechanical loads. Based on higher order shear 

deformation plate theory, forced and free vibration and 

dynamic buckling of rectangular FG plates with 

piezoelectric sensors and actuators subjected to thermo-

electro-mechanical loading conditions were investigated by 

Shariyat (2009b). His results revealed that the natural 

frequencies and the thermal and mechanical buckling loads 

were slightly higher when a minus control voltage was 

used. Shen (2009) presented a fully nonlinear postbuckling 

and thermal postbuckling analysis for FG hybrid plates with 

PFRC actuators. Thermal buckling analysis of FG plates 

with piezoelectric actuators subjected to thermo-electrical 

loadings was presented by Mirzavand and Eslami (2011). 

Recently the stability analysis of a functionally graded plate 

integrated with a piezoelectric sensor and actuator at the top 

and bottom faces subjected to electrical and mechanical 

loading was investigated by Jadhav and Bajoria (2012). 

They used finite element method and solved the problem 

for simply supported and clamped boundary conditions. 

Abdollahi et al. (2015) investigated the buckling analysis of 

thick functionally graded piezoelectric rectangular plates 

based on the higher-order shear and normal deformable 

plate theory. They considered two cases consisting of open-

closed and closed circuits as electrical conditions. Yaghoobi 

and Rajabi (2013) presented an analytical method to 

analyze the buckling of piezoelectric coupled plates with 

different boundary conditions on the basis of the first order 

shear deformation plate theory. Also, Chen et al. (2008) 

investigated the buckling of piezoelectric functionally 

graded material with the element free Galerkin method. 

Finally, Arefi (2016) studied mechanical stability of the 

functionally graded rectangular plates bonded with 

functionally graded piezoelectric layers based on Classical 

plate theory.  

They used finite element method and solved the 

problem for simply supported and clamped boundary 

conditions. Finally, Abdollahi et al. (2015) investigated the 

buckling analysis of thick functionally graded piezoelectric 

rectangular plates based on the higher-order shear and 

normal deformable plate theory. They considered two cases 

consisting of open-closed and closed circuits as electrical 

conditions. 

According to the all-around literature review it can be 

found that there is no analytical studying on the buckling 

analysis of a rectangular plate embedded by piezoelectric 

layers even for isotropic materials which consider Levy 

type boundary conditions as mechanical boundary 

conditions and open and closed circuit conditions as 

electrical surface conditions and Maxwell equation as an 

extra equation and assume a combination of a parabolic and 

a linear function of thickness for transverse distribution of 

electric potential. In this work, based on the first-order 

shear deformation theory, buckling analysis of a 

transversely isotropic rectangular plate embedded by 

piezoelectric layers is done for both open and closed 
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circuited electrical conditions. In order to satisfy the 

Maxwell’s equation and all electrical boundary conditions 

including the conditions on the top and bottom surfaces of 

the plate for closed and open circuited, it is assumed that the 

function of electric potential is a combination of parabolic 

and linear functions of thickness coordinate z . Employing 

the principle of minimum total potential energy, the 

equilibrium equations of above mentioned plate are derived.  

In order to present an analytical solution for rectangular 

plates, there are two well-known boundary conditions, the 

first one is Navier type boundary condition (all edges 

simply supported) and the second one is Levy type 

boundary condition (plates with at least two opposite edges 

simply supported and remaining ones arbitrary, including 

free, simple support, or fixed support). It is mentioned that 

Levy type boundary condition is more generic than Navier 

one. Furthermore, the idea of Levy-type method can be 

used for various boundary conditions to reduce the 

governing partial differential equations to a system of 

ordinary ones which may be solved exactly. Therefore, by 

using Levy-type solution and two auxiliary functions, four 

coupled governing partial differential equations are 

decoupled into two decoupled partial differential equations. 

The accurate critical buckling load is obtained for Levy-

type boundary conditions. Revealing the accuracy of the 

present solution, a comparison is done for a special case of 

isotropic plate without piezoelectric layers. Finally, the 

effects of aspect ratio, piezoelectric thickness, plate 

thickness, boundary conditions, loading conditions for some 

different piezoelectric materials are comprehensively 

investigated.  

 

 

2. Stability equations 
 

Consider a flat rectangular plate as shown in Fig. 1 

consisting of a host layer and two piezoelectric layers with 

the length a, width b, host layer thickness 2h and 

piezoelectric layer thickness hp. Both piezoelectric layers 

are polarized perpendicular to the mid-plane in the direction 

of the z-axis. The host layer is made of transversely 

isotropic material where the xy-plane is the plane of 

isotropy. 

The displacement components of the plate based on the 

first-order shear deformation plate theory (FSDT) are 

considered as 
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where z is the thickness coordinate, u and v are the mid-

plane displacement of the plate in the x and y directions, 

respectively, w is the transverse displacement and ψx and ψy 

are rotation functions of mid-plane. Considering the Von-

Karman hypothesis, the nonlinear form of strain 

components are stated as  

 

 
Fig. 1 The geometry and coordinate of a piezoelectric 

coupled rectangular plate 
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(2c) 

where the subscript (,) denotes derivation with respect to the 

corresponding coordinates.  

The stress components in the host plate are expressed as 
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in which the superscript (h) represents the variable in the 

host structure. Furthermore, K
2
 which is the shear 

correction factor employed in Mindlin’s plate model to 

correct the shear stress in thickness direction, is chosen as 

5/6. Furthermore, Gz is the shear modulus in the plane of 

isotropy which is generraly different from E/2(1+v). 

The stress components in the piezoelectric layer can be 

written as 
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where the superscript (p) represents the variables in the 

piezoelectric material, ][C  is the reduced stiffness matrix 

at constant electric field, ][e  is the reduced matrix of 

piezoelectric electric constants and {E} is the electric field. 

The components of reduced matrices are given in relation 

(A.1) of the Appendix.  

 

 

3. Electric potential distribution in piezoelectric layer  
 

For satisfying the Maxwell’s equation and open and 

closed circuit electrical boundary conditions on the 

piezoelectric surfaces, it is needed to consider a 

combination of a parabolic and a linear function of 

thickness for transverse distribution of electric potential as 

follow (Wu et al. 2010)  
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where A, B, A’ and B’ are determined through satisfying the 

boundary conditions on the surfaces of piezoelectric layers.  

The electric field is the negative of the gradient of 

electric potential (Wu et al. 2010), i.e. 
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The electric displacement is related to the strain field 

and electric filed as (Wang et al. 2001)  
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(7) 

When the outer surface of the plate is in contact with a 

medium with low permittivity such as air or vacuum and the 

inner surface is held at zero voltage (open circuit condition), 

the following surface boundary conditions are assumed 
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Also, when both surfaces are short circuited, the 

electrical boundary conditions for a closed circuit 

piezoelectric layer are represented as 
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Substituting Eqs. (5) and (7) into Eqs. (8) and (9) leads 

to the following electric potential distribution for open and 

closed circuit conditions, respectively 
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Using the principle of minimum total potential energy, the 

equiblirium equations are obtained as 
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Where (Nxx, Nxy, Nxy), (Qxz, Qyz) and (Mxx, Mxy, Mxy) are the 

force and moment resultants which obtaind from relations 

(3) and (4) as 
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 

1 , 3 , 1

3 , 1 , 1

2 , ,

h hp

xx xx x x y y

h hp

h hp

yy yy x x y y

h hp

h hp

xy xy x y y x

h hp

M zdz

M zdz

M zdz

   

   

  



 



 



 

     

     

   






 

(12b) 

   

   

, 2 , 3 , ,

, 2 , 3 , ,

h hp

xz xz x x x x xx y xy

h hp

h hp

yz yz y y y x xy y yy

h hp

Q dz C w

Q dz C w

    

    



 



 

     

     





 

(12c) 

The constants in relations (12) have been introduced in 

the Appendix A as Eqs. (A.2 through A.4) and (A.6 through 

A.8) for closed and open circuit conditions, respectively. 

Considering the adjacent equilibrium criterion these 

equations are represented as (Mohammadi et al. 2010) 

, ,

, ,

, ,

, ,

0 0 0
, , , , ,

0

0

0

0

2 0

xx x xy y

xy x yy y

xx x xy y xz

xy x yy y yz

xx xx xy xy yy yy xz x yz y

N N

N N

M M Q

M M Q

N w N w N w Q Q

 

 

  

  

    

 (13) 

where ),,( 000
yyxyxx NNN  can be replaced by the pre-buckling 

forces obtained from equilibrium conditions. 

Substituting relations (12a), (12b) and (12c) into Eq. 

(13) yield the force and moment resultants in terms of 

displacements as  

   

   

       

 

       

 

1 , 1 2 , 1 2 ,

1 , 1 2 , 1 2 ,

1 3 , 3 3 , 1 2 , 2 , ,

,

1 3 , 3 3 , 1 2 , 2 , ,

,

0 0 0
, , ,

1 1
0

2 2

1 1
0

2 2

0

0

2

xx yy xy

yy xx xy

x xx y xy x x yy y xy

x x

y yy x xy y x xy y xx

y y

xx xx xy xy yy yy

F u F F u F F v

Fv F F v F F u

C w

C w

N w N w N w

    



    



    

    

          

  

          

  

    

   

, , , ,

2 , , 3 , , , , 0

x x y y xx yy

xx yy x xxx y xxy x xyy y yyy

C w w 

     

   

      

 

(14) 

It should be noted that, for symmetric laminated plates, 

the first two equations are decoupled from last three 

equations and may be neglected (Jomehzadeh and Saidi 

2009). 

It can be seen that, the following relation exists between 

the constants 

3 1 22      (15) 

Using relation (15), the last three Eq. (14) can be 

rewritten as 

        

        

   

 

1 3 , , 1 2 , 2 , , ,

1 3 , , 1 2 , 2 , , ,

0 0 0
, , , , , , , 2 , ,

3 , , , ,

0

0

2

0

x xx y xy x x yy y xy x x

x xy y yy y x xy y xx y y

xx xx xy xy yy yy x x y y xx yy xx yy

x xxx y xxy x xyy y yyy

C w

C w

N w N w N w C w w

     

     

   

   

           

           

       

    

 

(16) 

Besides Eq. (12), the variables should also satisfy the 

Maxwell’s equation (Askari Farsangi and Saidi 2012, 

Askari Farsangi et al. 2013), namely 

0
p

p

h h h
y yx z x z

h h h

D DD D D D
dz dz

x y z x y z

 

 

       
        

        
 

 
(17) 

Referring to relations (10a) and (10b), it is seen that the 

electrical potential function is related to the displacement 

field components in both open and closed circuit cases. By 

considering the in-plane displacement components on 

middle plane (u,v) the magnitudes of the electric 

displacements in upper and bottom piezoelectric layers are 

different. Hence, the Maxwell’s equation is not identical for 

both piezoelectric layers. So, the integration should be done 

on both upper and lower piezoelectric layers (Rahmat 

Talabi and Saidi 2013). 

Utilizing Eqs. (10a) and (10b) into Eq. (17), the 

Maxwell’s equation is obtained free of u and v components 

as 

     

 

1 , , 2 , , 3 , , , ,

4 5 , , 0

x x y y xx yy x xxx y xxy x xyy y yyy

xx yy

w w        

    

      

   

 
(18) 

where i (i=1 to 5) are given in the Appendix A as equations 

(A.5) and (A.9) for closed and open circuit conditions, 

respectively. 

Eqs. (16) and (18) are four coupled equations in terms of 

w, ψx, ψy and ϕ. These equations can be decoupled with the 

help of the following auxiliary functions (Mohammadi et al. 

2010, Saidi and Jomehzadeh 2009)  

1 , ,

2 , ,

x x y y

x y y x

  

  

 

 
 (19) 

Using relations (19), the governing equations can be 

written as 

     1 3 1, 1 2 , 2 2, , 0x x y x xC w             (20a) 

     1 3 1, 1 2 , 2 2, , 0y y x y yC w             (20b) 

     0 0 0 2 2 2
, , , 1 2 3 12 0xx xx xy xy yy yyN w N w N w C w          

     0 0 0 2 2 2
, , , 1 2 3 12 0xx xx xy xy yy yyN w N w N w C w            

(20c) 

2 2 2
1 1 2 3 1 4 5 0w                 (20d) 

where 2  is the two dimensional Laplace operator in 

Cartisian coordinate. 

Differentiation of Eq. (20a) with respect to x and Eq. 

(20b) with respect to y and adding the results yields 
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     2 2 2
1 3 1 1 2 1 0C w             (21) 

Eqs. (20c), (20d) and Eq. (21) are in terms of φ1, φ and w. 

Eliminating of φ1 and φ from these equtions yields 

(Mohammadi et al. 2010)  

 

 

 

6 4 2
1 2 3

4 0 0 0
4 , , ,

2 0 0 0
5 , , ,

0 0 0
6 , , ,

2

2

2 0

xx xx xy xy yy yy

xx xx xy xy yy yy

xx xx xy xy yy yy

m w m w m w

m N w N w N w

m N w N w N w

m N w N w N w

    

   

   

  

 (22) 

The constants mi (i=1..6) are defined in the Appendix B. 

Also, φ1 and φ can be easily obtaind in terms of w. 

Similarly, differentiation of Eq. (20a) with respect to y and 

Eq. (20b) with respect to x and subtracting the results, it is 

concluded that 

2
2 2 2 0C      (23) 

Which can be solved for finding φ2. 

 

 

4. Electrical and mechanical boundary conditions 
 

It is assumed that the plate is simply supported at two 

opposite edges in y-direction (x=0, x=a) and it has arbitrary 

boundary conditions at two other edges (e.g., Clamped, 

Simply supported and Free). Using the  principle of 

minimum total potential energy, the mechanical boundary 

conditions are obtained as follow: 

Clamped: 

0x yw      (24a) 

Simply supported: 

0x yyw M    (24b) 

Free: 

0 0
, , 0y xy x yy y yy xyQ N w N w M M      (24c) 

Furthermore, the plate is assumed to be insulated at the 

edges in y-direction. So the electrical flux conservation 

equation leads to the following electrical bondary 

conditions (Farsangi and Saidi 2012, Farsangi et al. 2013)  

   , , , , 0
p

p

h h h

y y

h h h

D x y z dz D x y z dz

 

 

    (25) 

Through the text, the letters S, C and F indicate that the 

edge is simply supported, clamped and free respectively. 

 

 

5. Buckling analysis  
 

In this study, a rectangular plate with length a  and 

width b which is subjected to in-plane loads is considered. 

The pre-buckling forces are obtained through using the 

equilibrium conditions  

0
1 1

0
2 1

0 0

xx

yy

xy

N P

N P

N











 (26) 

where P1 is the force per unit length, ς1 and ς2 are the load 

parameter which indicate the loading conditions in x- and y- 

directions, respectively. If the the load ratio is showed by 

R=ς2/ς1

 

 then, R=0 indicates a plate subjected to uniaxial 

loading in x- direction, R=1 shows a plate with biaxial 

compressive loading in the x- and y- directions, and R=-1 

represents a plate under compressive and tensile loading in 

the x- and y-directions, respectively. 

Since the plate is simply supported along two opposite 

edges in the y-directions, and in order to reduce the 

governing partial differential equations to a system of 

ordinary ones, the functions w and φ2 can be expressed as 

(Bodaghi and Saidi 2011b) 

 

 

1

2
1

sin

cos

m

m

m x
w f y

a

m x
g y

a














 
  

 

 
  

 





 (27) 

Substituting (27) into (22) and (23), respectively, the 

following two ordinary differential equations are obtained 

   
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 
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( 3 2

) (3 2

2 )
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xx yy
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xx xx xx

d
m m N f y m m m N m N
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d
m N f y m m m m N
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d
m N m N m N m N f y
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m N m N m N m m m f y

 

   

  

     

     

    

   

      

 

(28a) 

   
2

2
2 22

0
d

g y C
dy

    

 

(28b) 

where β=mπx/a. The general solutions of Eqs. (28a) and 

(28b) can be expressed as 

       

     

1 1 2 1 3 2

4 2 5 3 6 3

sinh cosh sinh

cosh sinh cosh

f y C y C y C y

C y C y C y

  

  

  

  
 (29a) 

7 4 8 4( ) sinh( ) cosh( )g y C y C y    (29b) 

where, ( 1,...,8)iC i   are eight unknown constants. The 

variables ( 1,2,3)i i   are given by Bodaghi and Saidi 

(2010) and 4  
is given in the

 
Appendix as Eq. (B.1). It 

should be noted that, the general solutions (29a) are valid 

for real values of i . For imaginary ones sinh and cosh 

should be replaced by sin and cos, respectively. By 

imposing the mechanical and electrical boundary conditions 

680



 

Stability analysis of transversely isotropic laminated Mindlin plates with… 

 

 

on the edges of plate, a set of homogenous algebraic 

equations are obtained. The buckling load can be 

determined by setting the determinant of coefficient matrix 

to zero. 

 

 

6. Validation of results 
 

In order to verify the accuracy of the present  

 

 

formulations, the critcal buckling loads obtained from the 

present method are compared with those available in the 

literature for isotopic plates under in -plane loads 

(Mohammadi et al. 2010). In Table 1, comparison of the 

non-dimensional critical buckling loads for isotropic plates 

with Levy boundary conditions under different loading 

conditions is made between the results obtained by the 

present solution and those reported by Mohammadi et al. 

(2010). In order to obtain solutions for a single layer  

Table 1 Comparison of the non-dimensional buckling loads for isotropic core plate with (Mohammadi et al. 2010) for 

different boundary conditions 

Boundary condition  

SSSS SCSC SCSS SFSC SFSS SFSF  a b  2h a  R  

14.896187 18.021045 16.222707 10.629458 10.396280 9.315383 Reference 

0.1 

0.5 

0 

14.896569 18.021476 16.223111 10.629663 10.396489 9.315587 Open 

14.896148 18.020975 16.222110 10.629436 10.396110 9.315373 Closed 

13.515629 15.750964 14.494771 9.727484 9.551170 8.599118 Reference 

0.2 13.515737 15.751055 14.494873 9.727537 9.551226 8.599174 Open 

13.515564 15.750110 14.494110 9.727444 9.550110 8.599085 Closed 

37.370789 63.003858* 51.550649 15.365298 13.238391 9.101957 Reference 

0.1 

1 

37.371667 63.004577* 51.551661 15.365461 13.238572 9.102116 Open 

37.370632 63.003041* 51.550110 15.365252 13.238362 9.101942 Closed 

32.211740 42.873560* 40.968426 13.548684 11.998489 8.401412 Reference 

0.2 32.211890 42.873222* 40.968430 13.548686 11.998518 8.401453 Open 

32.211506 42.872110* 40.967993 13.548610 11.998436 8.401382 Closed 

11.916950 13.944616 12.727113 9.439394 9.371949 9.041739 Reference 

0.1 

0.5 

1 

11.917255 13.944955 12.727433 9.439493 9.372059 9.048915 Open 

11.916918 13.944566 12.726110 9.439375 9.371931 9.048767 Closed 

10.812503 12.299795 11.423114 8.558778 8.518930 8.288779 Reference 

0.2 10.812590 12.299872 11.423198 8.558781 8.518938 8.288800 Open 

10.812451 12.299720 11.420110 8.558742 8.518895 8.288747 Closed 

18.685395 33.320627 24.192699 10.502725 9.824325 8.860416 Reference 

0.1 

1 

18.685834 33.321179 24.193201 10.502749 9.824380 8.860528 Open 

18.685316 33.320320 24.191110 10.502697 9.820110 8.860402 Closed 

16.105870 24.857923 19.646211 9.267746 8.806588 8.140908 Reference 

0.2 16.105945 24.857839 19.646235 9.267714 8.806571 8.140925 Open 

16.105753 24.857598 19.646019 9.267700 8.808890 8.140879 Closed 

19.861583 25.010505 22.124398 11.576414 11.226550 9.391407 Reference 

0.1 

0.5 

-1 

19.862091 25.011079 22.124940 11.576665 11.226800 9.391601 Open 

19.861530 25.010391 22.124110 11.576388 11.226527 9.391369 Closed 

18.020839 21.486708 19.600831 10.576026 10.316867 8.671561 Reference 

0.2 18.020983 21.486813 19.600960 10.576095 10.316938 8.671625 Open 

18.020752 21.486556 19.600110 10.575981 10.316825 8.671528 Closed 

72.083357* 85.946832* 78.403323* 22.947335 18.390228 9.208877 Reference 

0.1 

1 

72.084500* 85.947670* 78.404352* 22.947697 18.390563 9.209057 Open 

72.082652* 85.945615* 78.402110* 22.947238 18.390110 9.208860 Closed 

52.588166* 57.484447* 54.936510* 19.726678 16.645443 8.500262 Reference 

0.2 52.587908* 57.483967* 54.936150* 19.726708 16.645514 8.500312 Open 

52.587416* 57.483488* 54.935663* 19.726545 16.645110 8.500231 Closed 
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isotropic plate, the thickness of the piezoelectric layers set 

to zero. It can be concluded from Table 1 that the results are 

in good correlation with the those reported by Mohammadi 

et al. (2010). 

 

 

7. Numerical results and discussion 
 

After verifaction of the results, the numerical results for 

buckling of a transversely isotrpic plate with two surface 

bounded piezoelectric layers are presented. The numerical 

values for the Young’s modulus, Poisson’s ratio and the 

shear modulus of the core plate are considered to be E=70 

(GPa), v=0.3 and Gz=0.15E, respectivly (Bodaghi and Saidi 

2011a). Moreover, the piezoelectric layer is made of PZT-4 

whose material properties are listed in Table 2. 

Here, two set of numerical results have been presented. 

In the first set of numerical results, it is assumed that the 

plate has a constant overall thickness of H=2h+2hp=0.1 and 

hp
 
varies from 0 to 0.05, that means hp=0 and hp=0.05 are 

related to the plate made of pure transversely isotropic 

 

 

 

and pure piezoelectric materials, respectively. Fig. 2 depicts 

the variation of critical buckling load (in Mega Newton per 

meter (MN/m)) versus piezoelectric thickness for a SCSC 

plate subjected to the biaxial compression under open, 

closed and null surface conditions which null means that the 

electrical effect of piezoelectric layer is removed by setting 

the electrical coefficient of piezoelectric material (eij) to 

zero to taken into account the mechaniacl effect only. This 

figure shows that for all electrical conditions, the highest 

and lowest values of the critical buckling loads are 

corresponded to pure PZT-4 plate and pure transversely 

isotropic plate, respectively. Furthermore, it is seen that the 

critical buckling loads obtained from open circuit condition 

are significantly higher than those of closed circuit and null. 

It can be concluded that the effective stiffness of the smart 

laminated plate with open circuit surface condition is larger 

than that of the closed circuit one. Such a phenomenon can 

be attributed to the different electric potential distributions 

along thickness direction of piezoelectric laminated plate 

for open and closed circuit conditions. 

In Tables 3 and 4, in constant overall thickness and all 

Table 2 Material properties of some common piezoelectric materials 

Dielectric constants (C/Vm) Electric constants (C/m2) Elastic constants (GPa) 
materials 

33  
11  

15e  
31e  

33e  
13
EC  12

EC  
55
EC  33

EC  
11
EC  

5.841 e-9 7.124e-9 10.5 4.1 14.1 73 71 26 115 132 PZT-4 

7.35 e-9 8.11 e-9 12.3 5.4 15.8 75.4 75.9 21.1 111 121 PZT-5A 

3.42 e-9 3.60 e-9 4.60 0.9 7.10 84.2 84.7 35.5 163 168 PZT-6B 

2.08 e-9 4.07 e-9 9.20 2.1 9.50 81.3 76.1 25.3 131 148 PZT-7A 

5.14 e-9 7.97 e-9 10.4 4.0 17.5 71.1 69.9 31.3 123 137 PZT-8 

Table 3 The critical buckling load of a plate with constant total thickness (a/b=1, H=0.1) 

Boundary conditions 
h/hp

 
 R  

SFSF SFSS SFSC SSSS SCSS SCSC 

61.669 68.119 72.585 127.452 162.590 219.050 1 
Null 

1 

62.613 69.309 73.953 129.873 166.396 225.608 0.5 

62.893 69.699 74.491 131.828 170.124 233.219 1 
Closed 

63.847 70.617 75.381 134.243 173.085 237.046 0.5 

67.599 72.052 75.759 153.746 194.332 258.703 1 
Open 

69.144 73.660 77.465 159.204 202.007 270.647 0.5 

63.293 91.773 105.860 254.904 344.461 475.410 1 
Null 

0 

64.227 93.260 107.800 259.747 353.108 491.147 0.5 

64.565 93.871 108.819 263.657 361.883 509.759 1 
Closed 

65.644 95.329 110.398 268.478 367.917 517.129 0.5 

72.095 102.483 116.550 307.527 409.538 554.608 1 
Open 

73.952 105.121 119.643 318.479 425.954 579.888 0.5 

63.985 127.234 156.660 471.749(2) 506.446(2) 546.515(2) 1 
Null 

-1 

64.920 129.271 159.780 486.543(2) 524.178(2) 568.020(2) 0.5 

65.296 130.278 161.991 504.036(2) 545.968(2) 595.455(2) 1 
Closed 

66.430 132.479 164.523 512.173(2) 553.860(2) 602.818(2) 0.5 

74.110 146.931 179.271 555.834 590.571 629.635 1 
Open 

76.135 151.161 184.876 582.363 619.434 661.186 0.5 
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Fig. 2 The critical buckling load of SCSC plate with 

constant overall thickness versus hp (a/b=1, R=1) 

 

 
Fig. 3 The critical buckling load of SCSS plate versus 

hp/2h (2h/a=0.1, a/b=0.5, R=-1) 

 

 
Fig. 4 The critical buckling load for a SCSC plate 

made of various piezoelectric materials versus hp/2h 

for open circuit condition (a/b=0.5, R=1, 2h/a=0.1) 

 

 

mechanical boundary conditions, the critical buckling load 

of plates in null, open and closed electrical conditions is 

tabulated for a/b=1 and 0.5, respectively. From these tables 

it can be concluded that the critical buckling load for null 

condition is less than that of closed and open circuit 

conditions, as predicted. 

In the following of the numerical results, it is assumed 

that the thickness of host layer to be constant (2h=0.1). In 

Fig. 3, the critical buckling load of a SCSS plate under 

biaxial compression and tension are compared in open and 

closed circuit conditions. It is observed that in a special hp, 

the critical buckling load for closed circuit piezoelectric 

layer is less than open one. Moreover, for both open and 

closed circuit conditions, the critical buckling load increases 

with the increase of piezoelectric layer thickness.  
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Table 4 The critical buckling load of a plate with constant total thickness (a/b=0.5, H=0.1) 

Boundary conditions 
h/hp

 
 R  

SFSF SFSS SFSC SSSS SCSS SCSC 

62.885 65.078 65.530 82.242 87.608 95.584 1 
Null 

1 

63.853 66.124 66.600 83.514 89.030 97.255 0.5 

64.195 66.506 66.985 84.315 89.995 98.515 1 
Closed 

65.206 67.488 67.950 85.935 91.695 100.364 0.5 

69.339 70.629 70.798 100.087 106.444 115.838 1 
Open 

70.965 72.252 72.416 103.386 110.028 119.885 0.5 

64.680 72.128 73.695 102.803 111.544 123.237 1 
Null 

0 

65.621 73.205 74.819 104.392 113.392 125.477 0.5 

66.030 73.680 75.337 105.394 114.661 127.219 1 
Closed 

67.208 74.969 76.633 107.418 116.841 129.585 0.5 

75.611 83.808 85.231 125.105 135.387 149.017 1 
Open 

77.728 86.141 87.592 129.229 139.974 154.254 0.5 

65.169 77.828 80.147 137.070 151.773 170.199 1 
Null 

-1 

66.111 78.979 81.368 139.189 154.388 173.532 0.5 

66.548 79.537 81.996 140.518 156.283 176.297 1 
Closed 

67.769 80.985 83.467 143.224 159.197 179.443 0.5 

77.289 92.145 94.611 166.812 183.838 204.882 1 
Open 

79.556 94.867 97.427 172.310 190.110 212.148 0.5 
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Fig. 5 The critical buckling load of SCSS plate versus 

hp/2h for open circuit condition (a/b=1, 2h/a=0.1, R=0) 

 

 
(a) 

 
(b) 

Fig. 6 (a) The non-dimensional critical buckling load 

and (b) The critical buckling load for SSSS plate 

versus for open circuit condition(a/b=0.5, 2h/a=0.1, 

R=0) 
 

 
(a) Closed circuit condition 

 
(b) open circuit condition 

Fig. 7 The critical buckling load of SCSC plate versus 

hp/2h (2h/a=0.1, a/b=1) 

 

 

For five different piezoelectric materials, the critical 

bukling load versus / 2ph h  is plotted in figure 4. This 

figure shows that the least and the most value of the critical 

bukling loads are related to PZT-5A and PZT-6B layers, 

respectively. Focusing on properties of PZT-5A and PZT-6B 

in table 2, it can be seen that  PZT-6B has the least values 

of dielectric and electric constants and the highest values of 

reduced stiffness matrix components and this is completly 

reverse for PZT-5A. 

A comparsion between the critical bukling load of a 

transversely isotrpic plate and an isotropic plate both with 

two surface bounded piezoelectric layers is performed in 

Fig. 5. It can be seen that, in all values of hp, the the critical 

buckling load of isotropic plate is more than that of 

transeversely isotropic one, as predicted. 

In order to study of piezoelectric effect, the relative 

critical buckling load P
*
 is defined as 

* cr with piezoelectric layer

cr without piezoelectric layer
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(a) Closed circuit condition 

 
(b) open circuit condition 

Fig. 8 The non-dimensional critical buckling load of 

SCSC plate versus hp/2h (2h/a=0.1, a/b=1) 

 

 
(a) Closed circuit condition 

Fig. 9 The critical buckling load for all Levy 

boundary conditions versus hp/2h (2h/a=0.1, 

a/b=0.5, R=0) 

 
(b) open circuit condition 

Fig. 9 Continued 

 

 
(a) Closed circuit condition 

 
(b) open circuit condition 

Fig. 10 The non-dimensional critical buckling load 

for all Levy boundary conditions versus hp/2h 

(2h/a=0.1, a/b=0.5, R=0) 
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Table 5 The critical buckling load of plate under different boundary and loading conditions for open and closed circuit 

(a/b=1,hp/2h=0.2) 

Boundary condition 
2h/a  R 

SFSF SFSS SFSC SSSS SCSS SCSC 

155.249 168.230 177.439 306.811 375.422 477.286 0.1 

Closed 

1 

82.497 90.382 95.819 167.815 210.428 276.678 0.08 

21.040 23.381 25.029 44.228 57.343 79.141 0.05 

165.251 174.505 182.254 348.431 421.742 528.713 0.1 

Open 88.315 94.142 98.830 192.479 239.320 311.037 0.08 

22.711 24.552 25.984 51.364 66.305 90.935 0.05 

159.946 228.844 258.832 613.675 783.130 825.752(2) 0.1 

Closed 

0 

84.853 122.333 139.937 335.639 442.799 495.592(2) 0.08 

21.580 31.427 36.520 88.470 122.236 149.950(2) 0.05 

175.390 247.028 276.412 696.954 867.262(2) 901.668(2) 0.1 

Open 93.502 132.731 150.220 384.975 501.787 549.965(2) 0.08 

23.936 34.343 39.500 102.728 141.071 170.870(2) 0.05 

161.731 317.070 376.432 1011.143(2) 1056.990(2) 1106.773(2) 0.1 

Closed 

-1 

85.812 169.669 205.696 592.212(2) 627.600(2) 667.203(2) 0.08 

21.820 43.597 54.452 171.260(2) 186.439(2) 204.591(2) 0.05 

179.403 350.110 411.976 1116.077(2) 1159.658(2) 1206.373(2) 0.1 

Open 95.699 188.597 227.036 664.130(2) 699.508(2) 738.555(2) 0.08 

24.499 48.869 60.830 196.602(2) 213.024(2) 232.421(2) 0.05 

Table 6 The critical buckling load of plate under different boundary and loading conditions for open and closed circuit 

(a/b=0.5, hp/2h=0.2) 

Boundary condition 
2h/a

 
 R 

SFSF SFSS SFSC SSSS SCSS SCSC 

158.034 162.606 163.420 205.440 217.246 234.145 0.1 

Closed 

1 

84.090 86.792 87.313 109.888 116.695 126.699 0.08 

21.475 22.266 22.431 28.177 30.105 33.002 0.05 

168.600 171.433 171.788 235.917 248.867 267.351 0.1 

Open 90.396 92.165 92.403 127.009 134.669 145.839 0.08 

23.340 23.897 23.981 32.837 35.052 38.373 0.05 

163.539 181.734 185.156 256.870 275.703 299.889 0.1 

Closed 

0 

86.768 96.611 98.596 137.369 148.392 162.898 0.08 

22.062 24.630 25.190 35.230 38.380 42.656 0.05 

182.721 202.086 205.191 294.900 315.517 341.739 0.1 

Open 97.460 108.022 109.851 158.762 171.101 187.210 0.08 

24.950 27.733 28.264 41.047 44.667 49.560 0.05 

164.836 196.179 201.170 342.512 372.876 409.181 0.1 

Closed 

-1 

87.455 104.297 107.218 183.164 201.369 223.727 0.08 

22.231 26.578 27.413 46.977 52.353 59.216 0.05 

186.018 220.991 226.081 393.204 426.048 464.841 0.1 

Open 99.240 118.176 121.214 211.683 231.871 256.410 0.08 

25.398 30.331 31.222 54.729 60.879 68.689 0.05 
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(a) Closed circuit condition 

 
(b) open circuit condition 

Fig. 11 The non-dimensional critical buckling load for 

SCSC, SCSS and SSSS plate versus b/a (2h/a=0.1, R=1) 

 

 

The critical buckling load without piezoelectric layer is 

obtained by setting the piezoelectric layer thickness equal to 

zero. 

In order to study the effects of piezoelectric matrix 

constants on the buckling load, the variation of both the 

critical buckling load Pcr and the relative critical buckling 

load P
*
 versus the parameter α are plotted in Fig. 6. The 

parameter  which varies between 0 to 1 is a multiplier of 

matrix of piezoelectric constants. α=1 means the matrix of 

piezoelectric constants is belonged to PZT-4 and α=0 means 

the matrix of piezoelectric constants is equal to zero. Cases 

1 through 3 are related to variation in the reduced matrix of 

dielectric constants [ ] , the reduced matrix of piezoelectric 

electric constants ][e  and the reduced stiffness matrix 

][C , respectively. From these figures, it can be found that 

in cases 2 and 3 unlike the case 1 the critical buckling load 

and the non-dimensional critical buckling load increase as α 

increases. Also, these figures show that the effect of 

variation in reduced stiffness matrix ][C  on the critical 

buckling load is more considerable. 

For a SCSC square plate in both open and closed circuit 

conditions, the variation of the critical buckling load (Pcr)  

 
(a) Closed circuit condition 

 
(b) open circuit condition 

Fig. 12 The non-dimensional critical buckling load for 

SFSF, SFSS and SFSC plate versus b/a (2h/a=0.1, R=1) 
 

 

 

and relative critical buckling load (P
*
) versus the 

piezoelectric layer thickness to the core thickness ratio are 

depicted in Figs. 7 and 8, respectively. Comparing Figs. 7 

and 8, it can be found that the ascending order of loading 

conditions for the critical buckling load Pcr and the relative 

critical buckling load P
*
 is completely reverse.  

In Figs. 9 and 10 for both open and closed circuit 

conditions, the critical buckling load Pcr and the relative 

critical buckling load P
*
 are plotted, respectively, for 6 

different mechanical boundary conditions. In the case of the 

critical buckling load Pcr, it can be concluded that for both 

closed and open circuit conditions, stronger constraints on 

boundary conditions lead to higher critical buckling loads 

which means, the mechanical boundary conditions can be 

sorted in ascending order of critical buckling load as SFSF, 

SFSS, SFSC, SSSS, SCSS and SCSC. 

Moreover, the ascending order of P
*
 for closed circuit 

condition is different that of Pcr. The open circuit condition 

has no special ascending order of P
*
 at all values of hp, that 

means, at each special hp, there is a special ascending order 

of P
*
. 

Now, the non-dimensional critical buckling load P  is 

defined as  
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2

1

crP a
P 


 (31) 

where 
1  has been defined in Appendix A as Eqs. (A.3) 

and (A.7) for closed and open circuit conditions, 

respectively. 

The effect of the aspect ratio on the non-dimensional 

critical buckling load of a plate under different boundary 

conditions is presented in Figs. 11 and 12. Fig. 11 

corresponds to the SCSC, SCSS and SSSS boundary 

conditions and Fig. 12 corresponds to SFSF, SFSC and 

SFSS boundary conditions. In these figures, the non-

dimensional critical buckling load versus aspect ratio is 

plotted for a plate under biaxial compression. As these 

figures show, for all boundary conditions except SFSF, the 

non-dimensional critical buckling load decreases as aspect 

ratio increases.  

By comparing Figs. 11 and 12, it can be observed that 

for all boundary conditions, the non-dimensional critical 

buckling load is nearly constant for high aspect ratios, 

which means, for high aspect ratios, the effect of boundary 

condition on the critical buckling load is negligible. 

 

 

In Tables 5 and 6, the critical buckling loads of plate 

under both closed and open circuit electrical conditions and 

different mechanical boundary conditions are presented for 

a/b=0.5
 
and 1, respectively. It can be seen that the critical 

buckling load for closed circuit piezoelectric layer is less 

than open one regardless of mechanical boundary 

conditions and also for both electrical boundary condition, 

the lowest and highest of the critical boundary condition are 

related to SFSF and SCSC, respectively, as predicted. 

It should be noted that the critical buckling load which 

is the lowest buckling load, may not occur in the first mode, 

therefore, in Tables 7 and 8 for various mechanical 

boundary conditions, the mode numbers are presented for 

the cases that it is different for open and closed circuit 

conditions. These tables indicate that hp can increase the 

mode number. Furthermore, the mode number in open 

circuit piezoelectric layer is always equal to or greater than 

that of closed one. It may be concluded that changing the 

electrical boundary condition can change the mode number. 

Furthermore, in Table 9 the critical buckling load for 

isotropic and transeversely isotropic materials are 

presented. As mentioned, the critical buckling load for  

Table 7 The critical buckling load and mode number of square plate for open and closed circuit (R=-1, 2h/a=0.1) 

SCSS SCSC SSSS Bc’s
 

Open closed open closed Open Closed hp/2h
 

410.248(2) 410.248(2) 435.755(2) 435.755(2) 387. 471(2) 387.471(2) 0 

472.178(2) 462.020(2) 500.240(2) 490.081(2) 446.944(2) 436.849(2) 0.02 

537.362(2) 516.913(2) 567.953(2) 547.575(2) 509.721(2) 489.332(2) 0.04 

605.496(2) 574.668(2) 638.518(2) 607.901(2) 575.523(2) 544.684(2) 0.06 

676.526(2) 635.265(2) 711.871(2) 671.043(2) 644.302(2) 602.898(2) 0.08 

750.389(2) 698.696(2) 787.941(2) 736.962(2) 716.005(2) 663.969(2) 0.10 

827.015(2) 764.918(2) 866.656(2) 805.623(2) 790.572(2) 727.866(2) 0.12 

906.334(2) 833.895(2) 947.938(2) 876.983(2) 867.937(2) 794.572(2) 0.14 

988.268(2) 905.605(2) 1031.706(2) 950.996(2) 948.027(2) 864.047(2) 0.16 

1072.737(2) 979.976(2) 1117.880(2) 1027.611(2) 1030.767(2) 936.251(2) 0.18 

1159.658(2) 1056.990(2) 1206.373(2) 1106.773(2) 1116.077(2) 1011.143(2) 0.20 

1248.945(2) 1136.575(2) 1297.100(2) 1188.427(2) 1203.874(2) 1088.685(2) 0.22 

1340.511(2) 1218.669(2) 1389.973(2) 1272.512(2) 1294.071(2) 1168.822(2) 0.24 

1434.266(2) 1303.240(2) 1482.798(3) 1358.961(2) 1386.578(2) 1251.494(2) 0.26 

1530.119(2) 1390.203(2) 1570.785(3) 1447.729(2) 1481.305(2) 1336.646(2) 0.28 

1627.977(2) 1479.504(2) 1659.676(3) 1538.729(2) 1578.159(2) 1424.221(2) 0.30 

1727.749(2) 1571.078(2) 1749.368(3) 1631.914(2) 1677.046(2) 1514.154(2) 0.32 

1829.341(2) 1664.859(2) 1839.757(3) 1727.204(2) 1777.871(2) 1606.368(2) 0.34 

1921.489(3) 1760.780(2) 1930.746(3) 1818.429(3) 1880.538(2) 1700.842(2) 0.36 

2013.090(3) 1858.770(2) 2022.236(3) 1908.555(3) 1984.951(2) 1797.464(2) 0.38 

2105.115(3) 1958.773(2) 2114.133(3) 1999.754(3) 2091.014(2) 1896.181(2) 0.40 

2197.472(3) 2060.708(2) 2206.347(3) 2091.963(3) 2188.758(3) 1996.925(2) 0.42 

2290.070(3) 2164.510(2) 2298.789(3) 2185.102(3) 2281.500(3) 2099.626(2) 0.44 

2382.821(3) 2266.625(3) 2391.374(3) 2279.104(3) 2374.408(3) 2204.206(2) 0.46 

2475.644(3) 2361.442(3) 2484.019(3) 2373.903(3) 2467.396(3) 2310.623(2) 0.48 

2568.455(3) 2457.007(3) 2576.645(3) 2469.411(3) 2560.384(3) 2418.780(2) 0.50 
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Table 8 The critical buckling load and mode number of a simply supported square plate subjected to biaxial compression 

and tension
 

0.1 0.08 0.05 2h/a
 

Open closed Open Closed Open Closed hp/2h
 

387.471(2) 387.471(2) 219.391(2) 219.391(2) 60.519(2) 60.519(2) 0 

446.944(2) 436.849(2) 236.535(2) 248.002(2) 65.453(2) 68.637(2) 0.02 

509.721(2) 489.332(2) 254.374(2) 278.633(2) 70.644(2) 77.434(2) 0.04 

575.523(2) 544.684(2) 291.615(2) 311.144(2) 81.568(2) 86.846(2) 0.06 

644.302(2) 602.898(2) 330.944(2) 345.544(2) 93.228(2) 96.891(2) 0.08 

716.005(2) 663.969(2) 372.362(2) 381.849(2) 105.640(2) 107.584(2) 0.10 

790.572(2) 727.866(2) 415.863(2) 420.076(2) 118.817(2) 118.942(2) 0.12 

867.937(2) 794.572(2) 461.437(2) 460.220(2) 132.773(2) 130.975(2) 0.14 

948.027(2) 864.047(2) 509.070(2) 502.296(2) 147.519(2) 143.698(2) 0.16 

1030.767(2) 936.251(2) 558.745(2) 546.293(2) 163.066(2) 157.121(2) 0.18 

1116.077(2) 1011.143(2) 610.440(2) 592.212(2) 179.424(2) 171.260(2) 0.20 

1203.874(2) 1088.685(2) 664.130(2) 640.055(2) 196.602(2) 186.124(2) 0.22 

1294.071(2) 1168.822(2) 719.785(2) 689.793(2) 214.608(2) 201.718(2) 0.24 

1386.578(2) 1251.494(2) 777.376(2) 741.425(2) 233.449(2) 218.061(2) 0.26 

1481.305(2) 1336.646(2) 836.867(2) 794.925(2) 253.131(2) 235.152(2) 0.28 

1578.159(2) 1424.221(2) 898.222(2) 850.291(2) 273.658(2) 253.005(2) 0.30 

1677.046(2) 1514.154(2) 961.401(2) 907.483(2) 295.036(2) 271.625(2) 0.32 

1777.871(2) 1606.368(2) 1026.363(2) 966.495(2) 317.266(2) 291.017(2) 0.34 

1880.538(2) 1700.842(2) 1093.066(2) 1027.293(2) 340.352(2) 311.187(2) 0.36 

1984.951(2) 1797.464(2) 1161.463(2) 1089.851(2) 364.295(2) 332.141(2) 0.38 

2091.014(2) 1896.181(2) 1231.509(2) 1154.135(2) 389.095(2) 353.878(2) 0.40 

2188.758(3) 1996.925(2) 1303.155(2) 1220.136(2) 414.752(2) 376.415(2) 0.42 

2281.500(3) 2099.626(2) 1376.352(2) 1287.790(2) 441.265(2) 399.736(2) 0.44 

2374.408(3) 2204.206(2) 1451.051(2) 1357.107(2) 468.632(2) 423.863(2) 0.46 

2467.396(3) 2310.623(2) 1527.199(2) 1428.018(2) 496.851(2) 448.782(2) 0.48 

2560.384(3) 2418.780(2) 1604.746(2) 1500.492(2) 525.918(2) 474.500(2) 0.50 

Table 9 The critical buckling loads of isotropic and transversely isotropic plates under different boundary and loading 

conditions for open and closed circuit (a/b=1, hp/2h=0.5) 

R   
Boundary condition 

SCSC SCSS SSSS SFSC SFSS SFSF 

1 

Closed 
isotropic 1352.077 1078.989 891.923 519.086 494.326 457.936 

transversely 1161.612 958.225 813.669 484.415 464.332 435.253 

Open 
isotropic 1519.112 1236.447 1038.463 534.543 513.932 491.910 

transversely 1272.223 1073.166 928.989 495.461 478.871 463.405 

0 

Closed 
isotropic 2301.513(2) 2213.788(2) 1784.179 757.173 673.173 472.3956 

transversely 1914.809(2) 1861.547(2) 1629.745 705.295 635.117 449.823 

Open 
isotropic 2534.168(2) 2456.747(2) 2077.763 818.317 737.632 527.851 

transversely 2061.899(2) 2019.553(2) 1864.162 756.376 690.641 498.954 

-1 

Closed 
isotropic 3078.651(2) 2959.909(2) 2849.099(2) 1095.342 932.341 477.682 

transversely 2469.410(3) 2457.007(3) 2418.780(2) 1007.937 877.614 454.639 

Open 
isotropic 3330.528(3) 3280.915(2) 3183.308(2) 1218.402 1050.659 541.712 

transversely 2576.645(3) 2568.455(3) 2560.384(3) 1106.721 978.328 511.193 
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isotropic material is larger than that of transversely isotropic 

one. 

 

 

8. Conclusions 
 

In the present article, an analytical method has been 

developed for buckling analysis of transversely isotropic 

rectangular plates with surface bonded piezoelectric layers. 

Based on the first-order shear deformation plate theory 

(FSDT) the stability and equilibrium equations have been 

derived. Four coupled stability equations have been 

decoupled using some analytical functions. The critical 

buckling loads for Levy type of mechanical boundary 

conditions and closed and open circuit electrical boundary 

conditions are presented. From the numerical results the 

following conclusions can be remarked: 

1- The electrical effect of piezoelectric layer increases 

the buckling load for both open and closed circuit 

conditions.  

2- Changing the closed circuit condition to open one can 

increase the buckling mode number. 

3- Changing core material from transversely isotropic to 

isotropic increases the critical buckling loads. 

4- The highest and lowest values for the critical 

buckling load in all electrical and mechanical boundary 

conditions are related to the plates under biaxial 

compression, and tension and biaxial compression, 

respectively. 

5- The effect of variation in reduced stiffness matrix on 

the critical buckling load is more noticeable than other 

piezoelectric properties. 

6- For all Levy boundary conditions, except SFSF, 

increasing the aspect ratio decreases the nondimensional 

critical buckling load. 
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Appendix A 
 

The components of reduced stiffness matrix at constant 

electric field and the reduced matrix of piezoelectric electric 

constants can be written as 
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Coefficients in Eqs. (12) through (18) are listed as 
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(b) Open circuit condition 
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Appendix B 
 

Coefficients in Eq. (22) are as follow 
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