
Structural Engineering and Mechanics, Vol. 62, No. 6 (2017) 759-769 

DOI: https://doi.org/10.12989/sem.2017.62.6.759                                                                 759 

Copyright ©  2017 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction  
 

Thin-walled beams are basic structural elements that 

have found widespread use in most branches of structural 

engineering. In these beams, because of specific geometry 

characteristics, centroid and shear centre of typical cross-

sections are not coincident (except symmetric sections). 

Therefore, the bending and torsional vibration modes of a 

thin-walled beam with mono-symmetric and asymmetric 

cross-sections will be coupled. Since thin-walled beams 

with coupled bending- torsional motion, have many 

practical applications, many efforts is done for solving 

vibration and buckling problems of them (Jun et al. 2004, 

Eken and Kaya 2015, Chen et al. 2016, Chen and Hsiao 

2007, Sheikh et al. 2015 and Kim 2009). Finite element 

method, transfer matrix method and exact dynamic stiffness 

method are some methods that were used to solve vibration 

problems of mentioned beams. 

Exact dynamic stiffness matrix method (EDSM) is a 

powerful means of solving vibration problems in structural 

engineering, particularly when higher natural frequencies 

and better accuracy are required (Banerjee 1997). The use 

of EDSM in vibration analysis of beams has certain 

advantages over the conventional finite element method. 

This is because, in the finite element method, the stiffness  
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parameters of an individual element are derived from the 

assumed shape functions and so are not „exact‟, whereas the 

properties obtained from EDSM are based on the closed 

form analytical solution of the differential equation of the 

element and hence are justifiably called „exact‟. Many 

researchers have used EDSM method in solving coupled 

bending-torsional vibration problems of beams. Banerjee 

(1989) derived explicit expressions for elements of dynamic 

stiffness matrix of a mono-symmetric Bernoulli-Euler 

beam. In next one, Banerjee (1991) wrote a FORTRAN 

subroutine for calculating the EDSM of coupled vibration 

of mentioned beam of former research. Banerjee and 

Williams (1992) derived analytical expressions for the 

elements of the dynamic stiffness matrix governing the 

coupled bending-torsional motion of a uniform Timoshenko 

beam. Banerjee et al. (1996) formulated an exact dynamic 

stiffness matrix for a Bernoulli-Euler thin-walled beam 

including the effects of warping torsion. Eslimy-Isfahany et 

al. (1996) investigated the response of a mono-symmetric 

beam coupled in bending and torsion to deterministic and 

random loads by using the EDSM and normal mode 

methods. Rafezy and Howson (2007) developed an exact 

dynamic stiffness matrix for the coupled flexural -torsional 

motion of a three dimensional bi-material beam of doubly 

asymmetric cross-section. Ghandi et al. (2012) extended 

Rafezy and Howson‟s work (2007) by replacing the Euler-

Bernoulli theory with Timoshenko theory when modeling 

the beam
'
s thin-walled outer layer. The papers mentioned so 

far do not allow for the effect of a static axial load in the 

member. Coupled vibration of beams under axial loading 

has been of practical interest in recent years. The additional 
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effect of axial load was considered by Banerjee and Fisher 

(1992), who derived analytical expressions for the coupled 

bending-torsional dynamic stiffness matrix based on Euler-

Bernuolli theory. This was later extended by Banerjee and 

Williams (1994) to cover Timoshenko theory. Eslimy-

Isfahany and Banerjee (1996) predicted the dynamic 

response of an axially loaded bending-torsional coupled 

beam to deterministic and random loads. 

Shirmohammadzade et al. (2011) used Bernoulli-Euler 

beam theory to develop an exact dynamic stiffness matrix 

for the flexural-torsional coupled motion of a three-

dimensional, axially loaded, thin-walled beam of doubly 

asymmetric cross-section. Ghandi et al. (2015) developed 

the dynamic stiffness matrix of an axially loaded elastically 

supported uniform bi-material beam with doubly 

asymmetric cross-section and subsequently used to 

investigate it‟s free vibration characteristics. In all studies 

mentioned above, the axial load is applied in centroid. 

However, there are situations that the load will be off center 

and cause a bending in the member in addition to the 

tension or compression. This type of loading is called 

eccentric load. Such an eccentric load can be replaced by an 

equivalent axial load that is on the neutral axis and bending 

moment. In this paper the effect of an eccentric axial load 

on the coupled vibration of asymmetric thin-walled beams 

is studied using exact dynamic stiffness matrix method. 

Bernoulli-Euler and Vlasov theories are used to modeling 

the flexure and torsion of the aforesaid thin-walled beam, 

respectively. 

 

 

2. Theory 
 

The following basic assumptions are adopted in order to 

investigate the coupled vibration of eccentrically axially 

loaded asymmetric thin-walled beam: 

1. All displacements and strains are small so that the 

theory of linear elasticity applies. 

2. The beam is made of homogeneous and isotropic 

materials, so mass center and center of geometry of cross-

section are coincident. 

3. The thin-walled beam is prismatic. 

4. The cross-section is rigid with respect to in-plane 

deformation except for warping deformation. 

 
2.1 Governing differential equations 
 

The first step towards developing the dynamic stiffness 

matrix of a structural element is to derive its governing 

differential equations of motion in free vibration. The 

structural model of an asymmetric prismatic thin-walled 

beam is shown in Fig. 1. The shear centre (O) and mass 

centre (C) of the beam are not coincident and are separated 

by distances 𝑥𝑐  and 𝑦𝑐 . The origin of 𝑥𝑦𝑧  coordinate 

system is O and the origin of 𝑟𝑠𝑞 coordinate system is C. 

The 𝑧-axis is assumed to coincide with the flexure axis and 

the 𝑞-axis is assumed to coincide with the mass axis. A 

constant eccentric axial load P is assumed to act through the 

arbitrary point (N) of the cross-section of the thin-walled 

beam. The eccentricities of P relative to centroid are er and 

es. 

During vibration, the displacement of the shear and mass 

centers at any time 𝑡 in the 𝑥 − 𝑦 plane can be determined as 

the result of a pure translation followed by a pure rotation 

about the shear centre O. The flexural translation in the 𝑥 and 

𝑦  directions and torsional rotation about the 𝑧 -axis are 

represented by 𝑢(𝑧, 𝑡), 𝑣(𝑧, 𝑡) and φ(z, t), respectively. The 

resulting translations  (𝑢𝑐  , 𝑣𝑐) of the mass centre in the 𝑥 

and 𝑦 directions, respectively, are 

),(),(),( tzytzutzu cc 
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(1b) 

The governing equations of motion and the boundary 

conditions can be derived using Hamilton‟s principle 
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where δT and δV denote the variations of the kinetic and 

potential energies. 

The kinetic energy T of the beam is given by 
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in which 𝑚 is the mass per unit length and 𝑟𝑚𝑐is the polar 

radius of gyration of the cross-section about mass axis 
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Fig. 1 Co-ordinate system and notation for a three-

dimensional thin-walled axially loaded beam of length 

L that has a doubly asymmetric cross-section 
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where 
2222

mcccm ryxr   is the polar radius of gyration of 

the cross-section about flexure axis. 

The total potential energy of the beam is expressed as 

follows 

extVVV  int  
(5) 

in which Vint is the strain energy stored in the member and Vext 

is the potential energy of the external loads. 

The strain energy consists of four parts, the energies due to 

bending in the 𝑥 − 𝑧 and 𝑦 − 𝑧 planes, the energy of the 

Saint-Venant shear stresses and the energy of longitudinal 

stresses associated with warping torsion. Thus 
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where 𝐸𝐼𝑥 and 𝐸𝐼𝑦  are the flexural rigidity of the beam in 

the 𝑥 − 𝑧 and 𝑦 − 𝑧 planes, respectively. GtJt and EIw are 

the Saint-Venant and warping torsion rigidity, respectively. 

The only external force applied to the cross-section is an 

eccentric axial load (P). So to achieve Vext, the potential energy 

of the axial load should be calculated. The mentioned eccentric 

axial load can be considered as a combination of a central axial 

load and two bending moments in principal planes. Then the 

normal stress at any point of beam is given by the equation  
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where  dArI
A

r 
2  and  dAsI

A

s 
2  are the moment of 

inertia, A is the area of cross-section, Mr and Ms are the 

bending moments in 𝑟 − 𝑞  and 𝑠 − 𝑞  plans, respectively. 

These moments are defined by the equations  
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The potential energy of the external axial load is equal to 

the product of the load and the distance it moves as the 

member deforms. Fig. 2 shows a longitudinal fiber whose ends 

approach one another by an amount ∆ when the fiber bends. 

The distance ∆ is equal to the difference between the arc 

length 𝑏 and the chord length 𝐿 of the fiber. If the cross-

sectional area of the fiber is 𝑑𝐴, then the potential energy of 

the load acting on the fiber is ∆𝜎𝑑𝐴. 
The total potential energy for the entire member is obtained 

by integrating over the cross-sectional area. Thus 

𝑉𝑒𝑥𝑡 = ∫ ∆𝜎𝑑𝐴
𝐴

 (9) 

The ∆ parameter can be calculated as follows 
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Substituting Eqs. (7) and (10) into Eq. (9), the external 

potential energy obtained as follows 
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The total potential energy of the beam can now be obtained 

by substituting Eqs. (6) and (11) in Eq. (5). Thus 
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Fig. 2 (a) Longitudinal fiber (b) Difference in length 

between arc and chord 

 
 
Eqs. (4) and (13) are now substituted into Eq. (2) and 

integrated. The derived governing differential equations for the 

considered beam element are as follows 
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The above equations are coupled and should be solved 

simultaneously. The associated boundary conditions at ends 

(𝑍 = 0, 𝐿) are 
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2.2 Dynamic stiffness matrix 
 
The usual steps of assuming harmonic variation  

(
titi ezVtzvezUtzu  )(),(,)(),( 

tieztz  )(),(,  ) 

and the introduction of the non-dimensional variable( 𝜉 =
Z

L
) 

then yields the governing Eqs. (14a), (14b) and (14c) as the 

following 
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where 
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𝑈 , 𝑉  and Φ are the amplitudes of 𝑢 , 𝑣  and 𝜑 , 

respectively, and 𝜔 is the circular frequency. 

Eq. (16) can be re-written in the following matrix form 
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in which 
d

d
D  . 

Eq. (18) can be combined into one equation by 

eliminating all but one of 𝑈, 𝑉 or Φ, to give the twelfth-

order differential equation 
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where 𝑊(𝜉) = 𝑈(𝜉), 𝑉(𝜉) or Φ(𝜉). 

Lengthy expressions for the coefficients 𝜇𝑖 ,which could 

be obtained using MATLAB via symbolic computation, are not 

given here due to space limitations. 

Eq. (19) is a linear differential equation with constant 

coefficients and hence solutions can be assumed in the form 

𝑊(𝜉) = 𝑒𝑎𝜉 (20) 

Substituting Eq. (20) into Eq. (19) gives the auxiliary 

equation as 
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where τ=a
2
. 

The solutions of Eq. (21) cannot be achieved in closed-

form, therefore a numerical approach is necessary. Let the six-

roots of Eq. (21) be τj (j=1,6) where these roots may be real or 

complex. Therefore the twelve roots of Eq. (19) can be 

obtained as 
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The general solution to Eq. (19) is given by the 

following 
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Eq. (23) represents the solution for U(ξ), V(ξ) and Φ(ξ), 

since they are related via Eq. (18). Hence, they can be 

written individually as follows 
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The relationship between the constants 
u

jC , 
v

jC  and Cj 

(j=1,6) also follows from Eq. (18) as follows 
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The expressions for shear forces 𝑄𝑥(𝜉)  and 𝑄𝑦(𝜉) , 

bending moments 𝑀𝑥(𝜉) and𝑀𝑦(𝜉), torsional moment 𝑇(𝜉) 

and bi-moment 𝐵(𝜉)  can be obtained from Eq. (15) as 

follows 
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Fig. 3 (a) Sign convention for positive forces; (b) and (c) 

Sign convention for nodal displacements and forces 

 

 

3L

EI
B

y

y  2
,,

L

EI
D

L

P w

o   (28d-f) 

L

JG
F

L

EI
E tt

o
w

o  ,
3

,
L

M
G r1

 (28g-i) 

L

BM
H

L

M
H

L

BM
G ssr 2

21
1

2 ,,   (28j-l) 

From Fig. 3 the boundary conditions for the nodal 

displacements and forces are, respectively, the following 

0 : 
1UU  ,  

1VV  ,  1ΦΦ  , 

1xx  ,  
1yy  ,  

1ΦΦ   
(29a) 

1 : 2UU  ,  2VV  ,  2ΦΦ  ,   

2xx  ,   
2yy  , 

2ΦΦ   
(29b) 

0 :  
1xx QQ  , 

1yy QQ  , 
1TT  ,  

1xx MM  , 
1yy MM  , 

1BB   
(29c) 

1 : 
2xx QQ  , 

2yy QQ  ,  
2TT  , 

2xx MM  , 
2yy MM  , 

2BB   
(29d) 

x and 
y  are the amplitudes of ),( tzx  and ),( tzx , 

respectively (where ),( tzx and ),( tzy  are the rotation of 

the cross-section due to bending in the x − z  and y − z 

planes, respectively). 

The nodal displacements can be determined from Eqs. (24) 

and (29a,b) and written in matrix form as follows 

𝑫 = 𝑩𝑪 (30) 

where 𝑫 is the nodal displacement vector, 𝑪 is the vector of 

unknown constants and 𝑩 is a coefficient matrix. They are 

defined as follows 
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where (𝑗 = 1, 12). 
Hence, the vector of constants 𝐂 can be determined from 

Eq. (30) as the following 

DBC
-1  

(34) 

In similar fashion, the vector of nodal forces can be 

determined from Eqs. (27) and (29c, d) as the following 

𝐅 = 𝐒𝐂 (35) 

where 𝐅 is the nodal force vector and 𝐒  is a coefficient 

matrix. They are defined as follows 
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where (𝑗 = 1, 12). 
Thus the required stiffness matrix can be developed by 

substituting Eq. (34) into Eq. (35) to give 

𝑭 = 𝑲𝑫 (39) 

where the exact dynamic stiffness matrix, 𝐊 = 𝐒𝐁−𝟏 . 

The dynamic stiffness matrix can now be used to compute 

the coupled bending-torsional natural frequencies of either a 

single eccentrically loaded Bernoulli-Euler thin-walled beam 

or an assembly of them. An accurate and reliable method of 

calculating the natural frequencies is to use the dynamic 

stiffness matrix in conjunction with the well-known Wittrick-

Williams algorithm (1971). 

 
2.3 Application of Wittrick-Williams algorithm 
 
The Wittrick-Williams algorithm (1971) is widely 

understood and has been implemented in many different ways. 

Very often, it is possible to establish the clamped-clamped 

frequencies of a component member by examining the 

determinant of a coefficient matrix corresponding to 𝐁 in Eq. 

(30) when 𝐃 = 𝟎. However, this was not possible in the 

current case, since the elements of 𝐁  could be complex. 

Instead, recourse was made to a procedure originally proposed 

by Howson and Williams (1973). 

The reference shows that the key to converging on the 

required system frequencies lies in the calculation of two 

parameters, Kss and Jss, for each member of the structure in 

turn. Kss is the dynamic stiffness matrix of a component 

member when the member is removed from the structure and 

then simply supported, while Jss is the number of natural 

frequencies of this simply supported member that have been 

exceeded by the trial frequency. Simply supported boundary 

conditions for the beam member described herein are defined 

as follows 

0  and 1 :  0 BMM yx
,   

0VU  
(40) 

The stiffness relationship for a single member subject to 

these boundary conditions can then be obtained by deleting 

appropriate rows and columns from Eq. (39) to leave the 

following 
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(41) 

or 

ssssdKF 
 

(42) 

where the 𝐾𝑖,𝑗 are the remaining elements of 𝐊 with their 

original row 𝑖  and column 𝑗  subscripts and  𝐾𝑠𝑠  is the 

required 6 ×  6 matrix for this simple one member structure. 

Application of the Wittrick-Williams algorithm (1971) to 

this simple structure gives the following 

)}(K{)()( ss

   sJJ mss  
(43) 

)}(K{)()( ss

   sJJ ssm  
(44) 

where 𝐽𝑠𝑠(ω
∗) is the number of natural frequencies of the 

simply supported member that lie below the trial frequency 

ω∗ , 𝐽𝑚(ω∗)  is the required number of clamped-clamped 

natural frequencies of the member lying below ω∗  and 

𝑠*𝐾𝑆𝑆(ω
∗)+ is the sign count of the matrix 𝐾𝑆𝑆(ω

∗). The 

evaluation of 𝑠*𝐾𝑆𝑆(ω
∗)+ is clearly straightforward, and the 

problem thus lies in determining 𝐽𝑠𝑠(ω
∗). 

Based on Eqs. (24a, b and c) and (27a, b and c), the 

boundary conditions of Eq. (40) are satisfied by assuming 

solutions for the displacements U(ξ), V(ξ) and Φ(ξ) of the 

following form 

)sin()(  nFU n , )sin()(  nGV n , 

)sin()(  nH n  
(45) 

where 𝐹𝑛, 𝐺𝑛 and 𝐻𝑛 are constants. 
Substituting Eq. (45) into Eq. (18) gives the following 

AE=0 (46) 

where 
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(47b) 

ω represents the coupled natural frequencies of the member 

with simply supported ends. The non-trivial solution of Eq. 

(46) is obtained when 

0A
 

(48) 

Eq. (48) can be expressed as a sixth-order polynomial 

equation in ω, and consequently, its real positive roots are the 

natural frequencies for each value of n=1, 2, 3… It is then 

possible to calculate 𝐽𝑠𝑠(ω
∗)  by substituting progressively 

larger values of n until all of those natural frequencies lying 

below ω∗ have been accounted for. Once 𝐽𝑠𝑠(ω
∗) is known, 

𝐽𝑚(ω∗) can be calculated from Eq. (44). 

 
 

3. Numerical results 
 
Example I: In this example a cantilever steel beam with 

channel section (mono-symmetric section) is considered (Fig. 

4). Characteristics of the desired section is given below:  
21110164.2 NmE  , 461045.0 mI y

  

461047348.0 mI x

 , 69101636.0 mIw

          

2.21.11 mNJG tt  , mrm 058827.0  

mxc 03771.0 , myc 0.0  

)/(095.2 mkgm  , mL 28.1    

m123519.01  , m0.02  , ℎ = 0.1𝑚 

𝑏 = 0.058𝑚,    𝑡𝑓 = 0.00125𝑚, 𝑡𝑤 = 0.00125𝑚 

In Table 1, the first four natural frequencies of the beam 

obtained using proposed method are compared with results of 

finite element ABAQUS software. 700 ABAQUS‟s eight-

noded shell element (S8R5) is used for modeling thin-walled 

beam in ABAQUS software. 

The effect of increase of axial load and the effect of various 

eccentricities of axial load on natural frequencies of the 

channel beam are investigated in this example. The first three 

mode shapes of the unloaded channel beam (i.e., P = 0) are 

shown in Fig. 5. Note that in this figure the Φ component of 

the mode shapes have been multiplied by the distance xc in 

order to compare Φ directly with the 𝑉  component. 

According to Fig. 5 can be seen that the first and third mode 

shapes are coupled bending-torsional modes but the second 

mode shape is an uncoupled bending mode. 

In first step of parametric study, the effect of increase of 

central axial load (𝑒𝑟 = 0  , 𝑒𝑠 = 0 ) on first three natural 

frequencies are investigated and are shown in Fig. 6. It should 

be noted that the beam is loaded in the range of zero to critical 

buckling load ( NPcr 17653.214 ). According to Fig. 6. can 

be seen that natural frequencies are reduced by increasing the 

axial load. It should be noted that with the increasing frequency 

order, the effect of axial force on natural frequencies quickly 

reduces. 

In second step of the parametric study, the effect of various 

eccentricities of axial load on natural frequencies of the 

channel beam are investigated. This step consists of two stage: 

1- The effect of increasing of er (eccentricity along the axis 

of symmetry (𝑒𝑠 = 0)) on natural frequencies; 

2- The effect of increasing of es (eccentricity along the axis 

perpendicular to the axis of symmetry (𝑒𝑟 = 0)) on natural 

frequencies. 

In Table 2, the maximum possible values of er and es are 

given for different axial loads. Eccentricities er and es are 

chosen so that for selected eccentricities, considered axial load 

is the critical load (buckling load of first buckling mode). 

 
 

 
Fig. 4 Mono-symmetric channel section 

 
Table 1 Natural frequencies (Hz) for the cantilever channel 

beam studied in Example I 

Frequency 

number 

𝑃 = 0 
Centric axial load 

𝑃 = 2500𝑁 

Proposed 

method 
ABAQUS 

Proposed 

method 
ABAQUS 

1 25.3702 25.097 24.1093 24.029 

2 75.5333 75.124 74.7521 74.332 

3 98.5570 95.974 97.3494 95.084 

4 148.6504 148.30 146.8254 147.320 
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(a) First mode shape 

 
(b) Second mode shape 

 
(c) Third mode shape 

Fig. 5 Mode shapes of channel beam 

 

 
Fig. 6 The effect of increase of central axial load on 

natural frequencies of channel beam 

 

Table 2 Possible values of er and es for different axial loads 

P(N)  
0.2Pcr 0.4Pcr 0.6Pcr

crP6.0
 

3530.643 7061.286 10591.930 

es=0 

er (m)  0.115271 0.043278 0.019258 

(er/b) 1.98743 0.74617 0.33204 

er=0 

es (m)  0.794473 0.341887 0.184936 

(es/h)  7.94473 3.41887 1.849359 

 

 
(a) First mode 

 
(b) Second mode 

 
(c) Third mode 

Fig. 7 Effect of increasing of 𝑒𝑟 on natural frequen

cies of channel beam for different value of axial l

oads 
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(a) First mode 

 
(b) Second mode 

 
(c) Third mode 

Fig. 8 Effect of increasing of 𝑒𝑠  on natural 

frequencies of channel beam for different value of 

axial loads 

 
 
In Figs. 7-8 effect of increasing of dimensionless 

parameters )(
b

er  and )(
h

es

 
on first three natural 

frequencies of beam, are given for different value of axial 

loads. 

Considering Figs. 7-8, for a mono-symmetric section if 

eccentricity of axial load be along the axis of symmetry, 

increasing of eccentricity er will not affect the natural 

frequency of uncoupled bending mode along the axis of 

symmetry. However the natural frequency of coupled bending-

torsional modes change during increasing er. If eccentricity of 

axial load be along the axis perpendicular to the axis of 

symmetry while increasing eccentricity es the natural 

frequency of uncoupled bending mode decreases. But the  

Table 3 Natural frequencies (Hz) for the asymmetric cantilever 

beam studied in Example II: (A) Proposed method (Axial load 

ignored); (B) Tanaka and Bercin (1999)(Axial load ignored); 

(C) Proposed method (Centric axial load P=2000N); (D) 

Shirmohammadzade et al. (2011) (Centric axial load 

P=2000N) (E) Proposed method (Eccentric axial load 

P=2000N (er=0.03 m, es=0.02 m)) 

Frequency 

number 

Natural frequency (Hz) 

(A) (B) (C) (D) (E) 

1 17.1764 17.03 15.5625 15.5630 12.4103 

2 27.3235 27.58 26.3266 26.3267 26.0903 

3 59.1326 59.25 58.6767 58.6769 58.5448 

4 98.7343 - 96.8216 96.8217 93.4513 

5 167.4119 - 166.2883 166.2884 166.094 

 

 

changes of natural frequency of coupled bending-torsional 

modes does not follow the certain relationship. 

Example II: This example considers the beam studied by 

Tanaka and Bercin (1999). It is a uniform thin-walled beam of 

length 1.5 m with doubly asymmetric cross-section. The 

properties of the cross-section are as follows: 

𝐸𝐼𝑥 = 73480N.m2, 𝐸𝐼𝑦 = 16680N.m2      
634.26 mEI w  , 2.81.10 mNJG tt      

mrm 055.0 , mxc 02316.0       

myc 02625.0 , )/(947.1 mkgm         

mL 5.1 , m045.01  , m243.02               

Table 3 shows the first five coupled natural frequencies of 

the beam for various cases. The results compared with results 

of Tanaka and Bercin (1999) and Shirmohammadzade et al. 

(2011). 

 
 

3. Conclusions 
 

A general formulation for free vibration analysis of three-

dimensional non-symmetric axially loaded thin-walled  

Bernoulli-Euler beam considering the effects of eccentricity of 

axial load relative to centroid has been presented. The partial 

differential equations governing have been derived through 

application of Hamilton‟s principle. These equations are 

subsequently solved and presented in the form of a dynamic 

stiffness matrix. The application of such theory necessitates the 

solution of a transcendental eigenvalue problem. This has been 

accommodated in the present case by use of the Wittrick-

Williams algorithm, which enables convergence upon any 

required frequency to any desired accuracy with the certain 

knowledge that none have been missed. The resulting matrix 

can be used to establish more complex beam systems and 

axially loaded tall building structures in usual way. Application 

of the dynamic stiffness matrix has been demonstrated by 

solving a parametric study numerical example in conjunction 

with the Wittrick-Williams algorithm. 
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