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1. Introduction 
 

The introduction divides to three parts including 

definition and importance of subject, explanation of 

references, and the main contribution of this study.  

In many industrial applications such as high speed 

assembly and heavy load carrying, the joint flexibility exists 

in most manipulators due to harmonic drives, torque 

transducers, or drive belts that usually neglected to analysis 

of such flexible joint systems (Desai and Kumar 1999). To 

determine Dynamic Load Carrying Capacity (DLCC) for 

flexible manipulator, accurate modeling of manipulator and 

load dynamics is a prerequisite. Therefore, it is necessary to 

extract the dynamic equations of manipulators considering 

the nonlinear strain-displacement relationship and both 

structural and joint flexibility. Many researchers have 

investigated the dynamic behavior of robotic manipulators 

considering rigid links and elastic joints, flexible links and 

rigid joints or flexible links and flexible joints. Most of the 

investigations in dynamic analysis of manipulators with  
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both structural and joint flexibility have been confined to 

manipulators undergoing small deformation. 

A survey of the literature related to dynamic analyses of 

flexible robotic manipulators has been carried out by 

Dwivedy and Eberhard (2006). Both link and joint 

flexibility are considered and an effort has been made to 

critically examine the methods used in these analyses, their 

advantages and shortcomings and possible extension of 

these methods to be applied to a general class of problems. 

Sweet and Good (1984) determined experimentally that 

joint flexibility exists in most manipulators in drive 

transmission systems. Subudhi and Morris (2002) presented 

a dynamic modeling technique for a manipulator with 

multiple flexible links and flexible joints, based on a 

combined Euler-Lagrange formulation and assumed modes 

method. In a similar work, Lin and Gogate (1989) derived 

the dynamics of a manipulator with flexible links and 

flexible joints using Hamilton’s principle. Yang and Donath 

(1988) shown that both link and joint flexibility need to be 

incorporated in the modeling to achieve good trajectory 

tracking and quick damping of end tip vibrations, because 

flexible deformations produced by joints and links make it 

difficult for the end effector to track a prescribed trajectory 

accurately. Yue et al. (1997) proposed a finite element 

model for the link and torsional spring model for the joint to 
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parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the 
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analyze a planar 3R manipulator. Ailon (1998) considered 

the flexibility of the electric drive for the analysis of 

flexible manipulator. Yuan and Lin (1990) considered N-

flexible links and joints and modeled the joints by torsional 

springs.  

Dynamic modeling of flexible manipulators with large 

deformation based on displacement formulation has become 

a very important research subject in many fields. Nonlinear 

modeling for flexible multi-body system with large 

deformation using the absolute nodal coordinates 

investigated to describe the displacement, and variational 

motion equations of a flexible body derived on the basis of 

the geometric nonlinear theory (Dombrowski 2002, Kubler 

et al. 2003, Iwai 2003, Vallejo et al. 2003, Shabana 1998, 

Dmitrochenko 2008). Liu et al. (2007) proposed a hybrid-

coordinate formulation, which is suitable for flexible multi-

body systems with large deformation. Based on exact 

strain-displacement relation, equations of motion for 

flexible multi-body system are derived by using virtual 

work principle. Bayo (1989) used finite element method to 

deal with multi-link flexible manipulators considering 

Timoshenko beam theory and including nonlinear Coriolis 

and centrifugal effects for the elastic behavior. An iterative 

solution scheme is proposed for finding the desired joint 

torques where the solution of each linearization is carried 

out in frequency domain. Aarts and Jonkera (2002) 

proposed the modal integration method for analyzing the 

dynamic behavior of multi-link planar flexible 

manipulators. A nonlinear finite element method is 

employed to derive the equations of motion in terms of a 

mixed set of generalized coordinates of the manipulator. 

Using a perturbation method, the vibrational motion of the 

manipulator is modeled as a first order perturbation of the 

nonlinear nominal rigid link motion. Analysis of the motion 

indicated that the perturbation method is accurate and 

efficient, even for quite large deformations. Korayem and 

Basu (1994) introduced a new method of determining 

DLCC for flexible joint manipulators subject to both 

actuator and end effector deflection constraints. Thomas et 

al. (1985) used the load capacity as a criterion for sizing the 

actuators at the design stage for robot manipulators. In this 

study, piecewise rigid links and joints were assumed. Wang 

and Ravani (1988) indicated that the maximum allowable 

load of a fixed base manipulator on a given trajectory is 

primarily constrained by the joint actuator torque and its 

velocity characteristic. Korayem et al. (2005) described a 

computational technique for obtaining the maximum load 

carrying capacity of robotic manipulators with joint 

elasticity while considering different base positions. In 

another work, Korayem et al. (2010) determined the 

maximum allowable dynamic load for geometrically 

nonlinear manipulators with a predefined trajectory, using 

the finite element method. In their study, a flexible link and 

rigid joint planar manipulator has been investigated. Yue 

and Tso (2001) computed the maximum payload of 

redundant manipulators using a finite element method for 

describing the dynamics of a system. Korayem and Shokri 

(2008) developed an algorithm for determining the 

allowable dynamic load of the 6-UPS Stewart platform 

manipulator. Korayem and Heidari (2007) presented a 

general strategy for finding the maximum DLCC of flexible 

link mobile manipulators. The main constraints used for the 

proposed algorithm are the actuator torque capacity and the 

accuracy of end effector during motion on a given 

trajectory. In another work, the problem of establishing the 

load carrying capacity of mobile base manipulators 

operated by limited force or torque actuators has been 

presented by Korayem and Ghariblu (2007). It has been 

shown the maximum allowable load on a given load 

trajectory is a function of base position. Some researchers 

have studied the stability of mobile manipulators. Some 

earlier works discussed only static stability (Fukuda 1992, 

Papadopoulos and Ray 1996, Ghasempoor and Sepehri 

1995), but others were concerned with dynamic stability 

(Huang et al. 2000, Kim 2002). 

The main contribution of this work is the development 

of complete and efficient model and DLCC determination 

for N-flexible links and N-flexible joints mobile 

manipulator undergoing large deformation. The mixed finite 

element method which is able to consider the full nonlinear 

dynamic of a manipulator with both structural and joint 

flexibility and it can adequately model the shear 

deformation without being locked, is applied to derive the 

dynamic equations (Beirao et al. 2012). Then, a method for 

determination of the maximum allowable dynamic load for 

a specific trajectory is explained. The paper is thus 

organized in the following sections: In section 2, the 

mechanical and kinematical descriptions of the mobile 

manipulator system are described. The kinetic and potential 

energy of the system are obtained too. Section 3 tries to 

drive the dynamic equations of motion considering the 

mixed finite element formulation. An algorithm is proposed 

for determining the maximum DLCC on a given trajectory 

in section 4. The computational simulations are performed 

in section 5. The comparison between the numerical and 

experimental results is illustrated to verify the method 

proposed in section 6 and in the last section the final 

conclusions are considered. 

 

 

2. Kinematical descriptions 
 

In this section, the kinematics of the N-flexible links and 

N-flexible joints manipulator undergoing large deformation 

mounted on a mobile platform will be considered (Fig. 1). A 

payload is to be carried at the tip of the links and this 

subject is motivated by modeling of N-flexible links and N-

flexible joints manipulators together with tip mass. In this 

study, the effects of shear deformation and rotary inertia are 

considered and the Timoshenko beam theory (TBT) is 

applied. Frame  000 ZYX  is the inertial reference frame, 

 iii ZYX  is a coordinate system attached to i
th

 link. It is 

assumed that the elasticity at the i
th

 joint can be modeled as 

a linear torsional spring with constant Ki. Vectors 

 N ,,, 21   as the link angle and 

 mNmmm  ,,, 21   as the rotor angle are defined for the 

multi-flexible link and flexible joint manipulator. The 

lateral deflection and shear angle are presented by w(x) and 

β(x), respectively. The wheeled mobile base moves on the  
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Fig. 1 N-flexible links and N-flexible joints 

manipulator with mobile base 

 

 

ground, subject to non-holonomic constraints. The mobile 

platform can either move in the direction of (xb, yb) or rotate 

about the Zb. Symbols mentioned in Figs. 1-2 have been 

clarified in Nomenclature.  

 
2.1 Non-holonomic constraints for a mobile 

manipulator 
 

The first constraint restricts the velocity of the mobile 

platform to be zero in the direction  1oo  through two axial 

center lines of driving wheels 

(1) 0cossin    dyx bb  

The other two constraints are included with assumption of 

no-slipping of each rolling wheel in the forward directions, 

and the velocity of the driving wheels can be expressed as 

rbb
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2.2 Description of displacement and kinetic energy 
 

The position vector of an infinitesimal element on the i
th

 

link located at a distance ii lx 0  relatively to the 

 000 ZYX  reference frame for mobile base model can be 

expressed by (Fig. 2) 
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where I, J, K are the unit vectors along the X0, Y0 and Z0 

axis, respectively. The kinetic energy of the flexible mobile 

manipulator involves kinetic energy of N-flexible links 

(Tm), kinetic energy of tip mass (Ttip), kinetic energy of 

motors (Tmotor), and mobile base's kinetic energy (Tbase) as 
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(4) 

The position vector of end effector relatively to the 

 000 ZYX  reference frame can be derived by 
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
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N
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2.3 Nonlinear strain-displacement relationship and 
potential energy 

 

If the displacements are large enough, we must use the 

Green-Lagrange strain and the 2nd Piola-Kirchoff stress 

tensors to account for large deformation. For Timoshenko 

theory of beams, unknown variables are the transverse 

deflection w(x), and the rotation β(x). The components of 

displacement field across the beam height are 
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Nonzero Green-Lagrange strain tensor is 
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where E
0
 and  are strains which are constant on the cross-

section and K
b
 measures change in rotation (curvature) 

 

 

 

Fig. 2 Manipulator with flexible links 
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of the cross-sections. Assuming a linear constitutive 

relation, the strain energy can be obtained as 

   

v

ij
T

ij dVSESE
2

1  
(8) 

Expanding above integral, and since z is measured from the 

neutral axis, all integrals of the form ZdA  must vanish. To 

express the strain potential energy of the whole system, we 

get 
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The gravity potential energy of the i
th

 link and tip mass is 

calculated by 
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(10) 

The potential energy due to the gravity is given by 
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N
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The potential energy stored in the flexible joints can be 

written as follows 
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According to presented expressions, the potential energy of 

the whole system can now be derived as 

sintjoflexibleg UUSEU   (13) 

 

 
3. Derivatives of dynamic model 
 

In this part, the equations of motion of multi-flexible 

link manipulator with mobile base which incorporate both 

structural and joint flexibility will be developed. The 

extended Hamilton method, the Galerkin method, and the 

mixed finite element formulation are utilized to derive of 

ordinary differential dynamic equations for system.  

 

3.1 Shear locking and mixed finite element 
formulation 

 

Shear locking is a numerical problem in structural 

calculations by finite element methods when the structure 

looks like a slender beam or shell, the main deformation is 

bending and there are not enough elements across the 

thickness. If this occurs then the stiffness of the structure is 

significantly (orders of magnitude) over predicted 

(deformation is under predicted) and the shear stresses are 

predicted much higher than the tensile stress (usually for 

bending is the other way around). Shear locking occurs than 

elements are not smart enough to use correct shape for shear 

stress inside the element (many elements only consider 

stress to be linear inside the element or even constant) and 

the difference between the real and approximated by finite 

element shear stress profile is high. Then the finite element 

analysis might predict the structure as supported by large 

shear stresses rather than the tensile stresses (Rakowski 

1990). The term mixed method was first used in the 1960’s 

to describe finite element methods in which both bending 

moment and displacement fields are approximated as 

primary variables. In this method, shear deformation can be 

easily included without involving the shear locking in the 

element and, thus the behavior is independent of the number 

of integration points along the element. The basic 

advantages of the mixed method are that the solution of the 

resulting equations immediately yields moments and 

displacements and no shear locking is observed in mixed 

formulation. 
Based on the mixed finite element formulation, the finite 

element approximations for the displacement, rotation, and 

bending moment field can be introduced as 
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where the shape functions for each field is assumed as 
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The vector of nodal Dofs of the j
th

 beam element from i
th

 

flexible link is given by 
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 element for 

i
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theory of beam, the bending moment for small and large 

deformation, given by 
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The stiffness matrix of the base element (e) for large 

deformation model is presented in Appendix. The set 

dynamics equation of the N-flexible links and N-flexible 

joints with mobile base can be obtained in the following 

form 
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where  Nfj KKKdigK ,,, 21   is a diagonal stiffness 

matrix modeling the joint elasticity,  Nfj JJJdigJ ,,, 21   

is the diagonal matrix representing motor inertia, and   is 

vector of applied torque to joints. The symbol mb  is vector 

of applied torque to driving wheels, A is a matrix derived 

from the non-holonomic constraints and λ is Lagrange 

multipliers. 543
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Generalized coordinates based on mixed finite element 

formulation are chosen as 

 

 
 

 

 TNr

T

mNmmfj

T

nniiniiniiii

T

Nilrbbmb

Q

q

MMwwq

qqqqyxq

i
iii









,,,

,,,

21

21

4311,1,1,1,1,1,

21

















  
(20) 

where ni is the number of elements for i
th

 flexible link. In 

Eq. (18), [Mmb] is the nonlinear mass matrix, [Kmb] is the 

stiffness matrix and  mbmbmb qqh ,  considering the 

contribution of other dynamic forces such as centrifugal, 

Coriolis and gravity forces. The Eq. (19) states that the 

dimension of the matrix Km is NNn
N
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Therefore, all elements of the matrix except for the 

elements related to the link angle is zero and the nonzero 

elements are equal to   NiK miii ,,2,1,  . 

 

 

4. Dynamic load carrying capacity of flexible link and 
flexible joint manipulators 

 

This section presents a general approach to calculate the 

maximum load based on accuracy, actuator and dynamic 

stability constraints. For details on the formulation of joint 

actuator torque and accuracy constraints the reader is 

referred to Korayem et al. (2005). 

 

4.1 Formulation of dynamic stability constraint 
 

To analyze the dynamic stability of a wheeled mobile 

manipulator on its motion, MHS criterion is used, which 

has proposed by Moosavian and Alipour (2006). The 

following steps should be considered to apply MHS 

measure. First, the mobile manipulator is divided into two 

subsystems i.e., the mobile base and the manipulator arm(s). 

Next, all forces and torques exerted to the mobile base are 

considered. Those forces and torques are coming from the 

manipulator motion, consisting of gravitational, inertial, and 

external forces and torques. The support boundary polygon 

is constituted of the base contact points on the ground. The 

resultant moment about each edge of support boundary is 

computed. Then, for each edge of the support polygon, a 

unit vector, iâ  is defined such that all the unit vectors make 

a closed loop direction. Next, the dynamic MHS measure α 

is calculated as follows 

  nii ,,2,1min    (21) 

Where αi denotes the dynamic stability margin about the i
th

 

boundary edge and 

  iivii aMI i ˆ.


   (22) 

where Ivi is the base moment of inertia around the i
th

 edge of 

the support boundary edge, and 










otherwise

aMif ii

i
1

0ˆ1 
  (23) 

When the minimum of all αi is positive, the system is stable, 

and conversely the negative value of displays the instability 

is in progress. The zero values of α represents the critical 

dynamic stability. 

For determining the maximum DLCC during a given 

trajectory, the computational approach summarized as 

follows: 

Step 1: Discretizing the given trajectory into m points 

and choosing an initial value for mtip(i), i=1. 

Step 2: Finding joints variables by solving inverse 

dynamic for the same rigid links and rigid joints 

manipulator. 

Step 3: Deriving the dynamic equations of motion for 

manipulator with structural and joint flexibility using 

extended Hamilton principle. 

Step 4: Solving the coupled nonlinear differential Eq. 

(18) for mobile manipulator. 

Step 5: Calculating the no load torque from the joint Eq. 

(18) and determining the load coefficient ca based on 

actuator constraints (Korayem et al. 2005). 

Step 6: Calculating the no load deflection from the Eq. 

(18) and determining the load coefficient cp based on 

accuracy constraint (Korayem et al. 2005). 

Step 7: Computing the general load coefficient, c as 

follows 

c=min{cp, ca} 

Step 8: Putting mtip(i+1)=cmtip(i) 

Step 9: If mtip(i+1)-mtip(i)≤error then DLCC=mtip(i+1), 

otherwise go to step 4. 

Step 10: Considering stability constraint for the 

computed maximum DLCC from step 9 using MHS 

criterion. 
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5. Simulation results  
 

A simulation study has been carried out to show the 

capability of proposed approach in deriving the equation of 

motion of flexible link and flexible joint manipulator with 

mobile base. In addition, the maximum load carrying 

capacity is investigated for a given trajectory according to 

the presented strategy. 

Case I: In order to check the validity of the model 

proposed, the mobile two flexible links and rigid joints 

manipulator problem from Korayem et al. (2012) is 

considered. In this case, the initial coordinates of the end 

effector are x1=0.78, y1=0.35, z1=1.64 (m) and it must reach 

the final point with coordinates x2=3.64, y2=0.11, z2=1.9 (m) 

at tf=1.8 sec. It is considered that the base moves through 

clothoid path which its desired trajectory is derived by 

Fresnel integrals as 

dttydttx

t

b

t

b  


















0

2

0

2

2
sin,

2
cos


 

The parameters of manipulator and mobile base used in 

simulation are given in Table 1. The responses of end 

effector in X, Y and Z directions for both small and large 

deformation are shown in Figs. 3, 4, and 5, respectively. 

Also, actual end effector trajectory toward desired trajectory 

is presented in Fig. 6. In this case, the permissible error 

bound for the end effector motion around the desired path is  

 

 

Table 1 Parameters of two link flexible mobile manipulator 

in clothoid base path (Korayem et al. 2012) 

Parameter (unit) Value (manipulator) Value (base) 

Length of links 

(m) 
5.2ll 21   ------- 

Cross section area 

(m2) 
4

21 109AA   ------- 

Mass 

(kg) 
5mm 21   55mbase   

Moment of inertia 

(m4) 
8

21 1015II   2.0Ibase   

Young’s modulus of 

material 

(N/m2) 
9

2

9
1

1045E

,1070E



  
------- 

 

 
Fig. 3 Trajectory of end effector in X direction 

 

 

Fig. 4 Trajectory of end effector in Y direction 

  

 

Fig. 5 Trajectory of end effector in Z direction 

 

 

Fig. 6 The desired and actual trajectory 

 

 

Rp=12 cm and actuators of the robot are considered with 

τs=385 N.m and ωn=10 rad/s. The maximum DLCC, by 

imposing both accuracy and joints torque constraints, is 

1.82 kg. The results obtained are in good agreement with 

presented results by (Korayem et al. 2012). 

Case II: According to second study, a circular trajectory 

is selected for tracking problem of two flexible link and 

flexible joint manipulator with wheeled mobile base. 

Equations of desired circular trajectory that must be 

happened in 6 seconds are presented in Table 3. The base is 

forced to move on a predefined trajectory. It is considered 

that the base moves from the origin to point (0.45, 0.195) 

and then returns to the origin. All necessary parameters for 

computational simulation can be found in Table 2. 
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Table 2 Parameters of two flexible link and flexible joint 

manipulator 

Parameter Value (unit) 

Length of links m6.1l,m4.0l 21   

Density of links 321
m

kg
3000  

Young’s modulus of material 211
21 mN103.0EE   

Spring constant mN600KK 21   

Cross section area 23
21 m105.2AA   

Moment of inertia 47
21 m102.5II   

Shear modulus of material 26
21 mN1016GG   

Motor’s moment of inertia 2
21 kgm5.0JJ   

Mass of base kg65mbase   

Base’s moment of inertia 4
base m297.0I   

 

Table 3 Reference input for mobile manipulator 

)t
9

sin(2.0ze

)
8

))sin(t
9

0.2cos(-.22(ye

)
8

))cos(t
9

0.2cos(-.22(xe

3t

2

2

2











 

 

 

  )6t-
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)
8

))sin(6t-
9
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)
8

))cos(6t-
9
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6t3
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

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












 

 

 

(a) First link 

 
(b) Second link 

Fig. 7 Angular positions of links under rigid, small and 

large deformation models 

 

 

Fig. 8 End effector trajectory in XYZ plane 

 

 

For an allowable tracking error equal to 10 cm, DLCC 

of robot is 1.85 kg. Maximum DLCC of the mobile 

manipulator considering joints torque constraint is found to 

be 2.7 kg. By considering stability constraint based on MHS 

criterion and tip mass equals to 1.85 kg, dynamic MHS 

measure is negative and this means that mobile manipulator 

under this tip mass is capsized. Therefore, maximum DLCC 

of the mobile manipulator considering stability constraint is 

1.5 kg. The angular displacement of two links is shown in 

Fig. 7. The end effector trajectories obtained for full load 

conditions are shown in Fig. 8. The configuration of the 

mobile manipulator with full load is demonstrated in Fig. 9. 

For the triangular support boundary polygon, Moment-

Height criteria related to the different edges of support 

polygon is shown in Fig. 10. According to the descriptions 

given in subsection 4-1 about stability constraint, when the 

minimum of all dynamic stability margins is positive, the 

system is stable. Fig. 10 shows that all dynamic stability 

margins are positive and therefor this plot represents that 

stability is guaranteed. Fig. 11 shows the angular positions 

of system with different values of torsional spring constant. 

This figure indicates joints elastic deformation with large 

spring constant vanishes. Fig. 12 represents the angular 

response of links and motors based on large deformation 

model.  
 
 

 

Fig. 9 The configuration of the mobile manipulator 

with full load 
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Fig. 10 The MHS measure related to the different 

edges of the support polygon 

 

 

(a) First link 

 
(b) Second link 

Fig. 11 Angular positions of links with different 

values of torsional spring constant 

 

 

Fig. 12 Angular positions of the joints and motors 

6. Experimental results 
 
The experimental setup presented in Fig. 13 is consisted 

of a two flexible link manipulator. The first joint is driven 

by a servo-tech AC servo motor and the second joint driven 

by a DC motor. An incremental encoder with the resolution 

of 2500 pulse per revolution is used to measure the 

rotational position of the first motor. The rotational position 

of the second motor is measured by a small absolute 

magnetic encoder. The deflection of each point of both links 

is estimated by the data obtained from three strain gauge 

bridges mounted on the both sides of the links. The flexible 

manipulator has a planar motion, thus the effect of gravity 

can be ignored. The physical parameters of the flexible 

links are shown in Table 4. In order to obtain maximum 

dynamic load of the planar flexible robot manipulator, 

angular positions of links are considered similar to Fig. 14. 

Actuators of the robot are considered by τs=0.1 N.m and 

maximum allowable dynamic load of the manipulator 

considering torque constraint is 0.62 kg for the given path. 

The actual path tracked by the planar manipulator is 

compared with the desired path in Fig. 15. In Fig. 16, the 

torques applied to the links corresponding to the 

experimental setup and numerical simulation is presented. 

This figure represents that the first arm torque will reach to 

the saturation sooner than the torque obtained by second 

arm. By studying the figures related to angular 

displacement and arms torque, it is clear that, change in 

angular displacement of the arms at t=2.5 sec will cause to 

alter the applied torques. 

 

 

 

Fig. 13 Two link flexible robotic manipulator 

(experimental setup) 

 

 

Fig. 14 Angular position for both the first and second links 
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Fig. 15 End effector trajectory in XY plane 

 

 

(a) First link 

 
(b) Second link 

Fig. 16 Applied torques to the first and second links 

 

Table 4 Physical parameters of the experimental setup 

Parameters Value (unit) 

Length of the links mll 0.521   

Height of the links mh c5.17h4; 21   

Thickness of the links mmt 1.5t4; 21   

Bending stiffness 2
z2z1 N.m1.01714.93;  EIEI  

Mass per unit length 
m

Kg
0.2442μ0.504;μ 21   

Mass moment of 

inertia per unit length 

m
Kg

m
Kg

4
2

4
1

10

0.000400

00.46810

000.4685

J

10

0.0057800

00.5780

000.584

J








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
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
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


















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





 

Mass of the DC motor Kg0.495M
1m 

 

7. Conclusions 
 

A generalized modeling framework has been described 

to obtain the closed form of nonlinear dynamic equations of 

motion for mobile base multi-link manipulator with a tip 

mass considering the flexibility in the links and joints by 

using extended Hamilton principle and Galerkin 

discretization technique. To include the effects of shear and 

rotational inertia, TBT has been applied. In order to 

overcome shear locking phenomena in elements, a new 

procedure has been employed based on mixed finite 

element formulation. The emphasis of this paper has been 

set on precise and complete dynamic analysis of flexible 

links and flexible joints manipulator with mobile base 

including large deformation conditions. The dynamic model 

of the manipulator in this paper has considered large 

deformation of the links due to geometrically nonlinear 

behavior, dynamics of load and manipulator, joints 

flexibility, gravity, and mobile base subject to non-

holonomic constraints. Another purpose of this work was to 

determine dynamic load carrying capacity of the mentioned 

flexible manipulator as an important characteristic of a 

manipulator. In addition, for a wheeled mobile robot, 

dynamic stability constraint was discussed by applying 

MHS approach. Numerical simulations were carried out for 

various end effector trajectories observing the flexible 

deformations produced by the joints and the links make it 

difficult for the end effector to track a prescribed trajectory 

accurately. The results represent that dynamic stability 

constraint is dominant constraint for the given circular path 

and the maximum allowable dynamic load of the 

manipulator considering all constraints is 1.5 kg. In 

addition, by changing the trajectory of end effector, 

maximum load also changes. As for clothoid path, 

maximum load of the manipulator is equal to 1.82 kg and 

DLCC is 1.5 kg considering circular trajectory. It has been 

found that dynamic behavior of manipulators with structural 

and joint flexibility considering larger values of the 

torsional spring constant are correlated with response of 

flexible link and rigid joint manipulators. Fluctuation range 

in obtained figures for angular displacement of links and 

end effector path is bigger for large deformation model (See 

Figs. 7-8). Theoretically dynamic model is validated by an 

experiment on a two flexible link and rigid joint 

manipulator. The comparisons demonstrate that the mixed 

formulation is reliable and so it can be trusted in multi- 

flexible link manipulators. For future study, the achieved 

results from the proposed method can be compared with 

industrial robot experimental results (e.g., Scout mobile 

robot). Also, for improving joint modeling, besides 

flexibility, the effects of damping and friction can also be 

included. 
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Nomenclature 
 

Coordinates of the driving wheels  lr  ,  

Radius of the driving wheels r 

Mass of the mobile base basem 

Moment of inertia for the mobile base baseI 

Translation coordinates of the moving 

platform 
 bb yx , 

Rotation coordinate of the moving platform  

Driving wheels moment of inertia lr JJ , 

Green-Lagrange strain tensor  ijE 

Second Piola-Kirchoff stress tensor  ijS 

Young’s modulus of i
th

 link iE  

Shear modulus of i
th

 link iG 

Cross sectional area of i
th

 link iA 

Moment of inertia of the cross section for 

i
th

 link iI 

Length of i
th

 link il 

Density of i
th

 link i 

Spring constant of i
th

 elastic joint iK 

Moment of inertia for i
th

 motor iJ 

Shear correction factor k 

Gravity acceleration g
 

The distance between driving wheels L 

The distance between driving wheels and 

center of mobile platform 
d

 

Tip mass tipm
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Appendix 
 

The stiffness matrix of the base element (e) for large 

deformation model is by 
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when the mechanical and geometrical properties are 

constant along the beam, the sub matrices for the base 

element (e) are 

 

 

 

 

 

 

 

 

 
 

 

    2,1,

,sincos

0,sin2

sincos2

cos2

,2cos

cos2
sin

2

sin2

2sin

2cos

cos

3

0

33

0

32

31

0

0

23

0

22

0

21

0

2

0

0

13

0

0

12

0

2

0

2

11





























































































































































































































































































jidxNNk

dx
x

w

dx

dN
NEIk

kdx
x

w

dx

NNd

dx
x

w

dx

dN
Nk

dx
x

w
K

dx

dN
NEIk

dx
dx

dN
NkGAk

dx
x

NNdx
xdx

NNd

dx
xdx

dN
Nk

dx
x

w

dx

dN
NkGA

dx
dx

dN
NkGAk

dx
dx

dN

dx

Nd
kGA

dx
dx

dN

dx

x

w
Nd

EAk

l

M

j

M

iij

l d

jM

iij

ij

l M

j

d

i

l M

jd

iij

l

b

d

jd

iij

l d

jd

iij

l

M

j

d

i

l M

j

d

i

l M

jd

iij

l d

jd

i

l d

jd

iij

l d

j
d

i

l d

j

d

i

ij























 

(A-2) 

 

629

http://www.engin.umich.edu/class/bme456/largedef/largedef.htm#gl2#gl2



