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1. Introduction 
 

The viscoelastic materials are used in different 

industries like the national defense, civilian, vehicle 

technology, spacecraft attachments, composite structures 

and medical. For example, in medical science, the circular 

and annular viscoelastic plates can use as the contact lens 

based bioactive agent delivery system, which they are 

systems for delivery of ophthalmic drugs and other 

bioactive agents to the eye. By extending the application of 

these materials, the theory of viscoelasticity has become 

one of the important branches in the solid mechanics. The 

viscoelastic materials are fading memory materials capable 

of both storage and dissipation of energy. These materials 

exhibit a significant recovery response, i.e. the strain rate 

decreases with time in the absence of any externally applied 

stresses (creep and recovery). The rheological behavior of 

viscoelastic materials can be modeled by mechanical 

elements (spring and dashpot). Maxwell, Kelvin, Wiechert 

and Standard Linear Solid (SLS) are usual models for 

describing this behavior. Nagaya (1979) presented the 

vibrations of a viscoelastic annular plate having an eccentric 

circular inner boundary by Classical Plate Theory (CPT) 

using the numerical method. Baily and Chen (1987) studied 

the natural modes of linear viscoelastic circular plates by 

considering an extension of CPT which includes the effects 

of mechanical dissipation and rotary inertia without the  
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effects of shear deformation. The governing equation was 

solved numerically. Wang and Tsai (1988) used the Finite 

Elements (FE) method for quasi-static and dynamic 

analysis of viscoelastic Mindlin plates by Maxwell and SLS 

models. Liu and Chen (1995) used a FE formulation based 

on the elasticity theory to study the vibrational behavior of 

isotropic and composite annular plates. So and Leissa 

(1998) applied the Ritz method by trigonometric functions 

in the three-dimensional theory of elasticity (3D) in order to 

obtain frequencies of thick circular and annular plates. 

Esmailzadeh and Jalali (1999) applied the FE method to 

study the nonlinear oscillations of viscoelastic simply 

supported rectangular plates by CPT assumption. Liew and 

Yang (2000) studied the vibrational characteristics of 

annular plates using the 3D. A polynomials-Ritz model was 

used in order to approximate the spatial displacements of 

the plates in cylindrical polar coordinates. Wang and Chen 

(2002) used the FE method to study the vibrations and 

damping of a composite annular plate with a viscoelastic 

mid-layer. Salehi and Aghaei )2005) investigated the 

dynamic large deflection analysis of non-axisymmetric 

circular viscoelastic plates by using the higher-order shear 

deformation theory and SLS viscoelastic material. The 

problem was solved by the finite difference technique. 

Dong (2008) investigated the free vibration of functionally 

graded (FG) annular plates with different boundary 

conditions using the Ritz method and the 3D. Hashemi et al. 

(2008) studied the free vibration of thick annular plates 

resting on elastic foundation with different boundary 

conditions and the 3D. The problem was assumed as linear, 

small strain in which the method of polynomials-Ritz was 

used in the solution. Hosseini et al. (2009) investigated the 

validity range of applicability of the CPT and the Mindlin 

plate theory, in comparison with the 3D for freely vibrating 
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circular plates on the elastic foundation. They used the Ritz 

method for the solution. Nie and Zhong (2010) achieved 

dynamic analysis of multi-directional FG annular plates 

using the 3D and space-based differential quadrature (DQ) 

method for solving the equilibrium equations. Gupta (2010) 

presented the vibration analysis of a viscoelastic rectangular 

plate with varying thickness by considering the CPT 

assumption and Kelvin model. The governing equation was 

solved by the Ritz technique. Tahouneh and Yas (2012) 

presented the free vibration of thick FG annular sector 

plates resting on an elastic foundation based on the 3D, 

using DQ method. Khanna and Sharma (2012) presented a 

mathematical study for viscoelastic plates under elevated 

temperatures. They used the Ritz approach to calculate the 

fundamental frequency and deflection functions. Khanna 

and Sharma (2013) investigated the effect of thermal 

gradient on the vibration of square viscoelastic plates of 

varying thickness. They employed the Ritz technique to 

calculate the fundamental frequencies according to CPT 

assumption. Shariyat et al. (2013) studied the free vibration 

analysis of varying thickness viscoelastic circular CPT 

plates made of heterogeneous materials and resting on the 

elastic foundations. It was assumed that the viscoelastic 

material properties vary in the transverse and radial 

directions simultaneously. The complex modulus approach 

in conjunction with the correspondence principle was 

employed to obtain the solution by means of a power series 

solution. Tahouneh et al. (2013, 2014) investigated the free 

vibration of bidirectional FG annular plates on a Pasternark 

elastic foundation based on the 3D with different boundary 

conditions using the DQ and series solutions. Tahouneh and 

Yas (2014) presented the 3D for free vibration analysis of 

two-dimensional continuously graded carbon nanotube 

reinforced annular plates resting on an elastic foundation. 

The Eshelby-Mori-Tanaka approach and composed of two-

dimensional DQ method were employed for the solution. 

For the modal analysis of annular viscoelastic plates, the 

most authors have used the CPT for formulation and the 

numerical methods for solution. In this paper, the first order 

shear deformation theory (FSDT) is used as the 

displacement field to derive the governing equations of 

annular plates. The viscoelastic behavior obeys the SLS 

constitutive model in shear and elastic in bulk. These 

equations, which are four coupled partial differential 

equations with variable coefficients, are solved analytically 

with the perturbation technique to calculate the natural 

frequencies and damping coefficients. The results are 

compared with the FE method. By a parametric study, the 

effects of geometry, material properties and boundary 

conditions on the results are investigated. 

 

 

2. Governing equations 
 

Consider an isotropic homogeneous elastic annular plate 

with uniform thickness h, inner radius ri and outer radius ro. 

The plate geometry is defined in an orthogonal cylindrical 

coordinate system (r, θ, z). The origin of the coordinate 

system is taken at the center of the mid-plane as shown in 

Fig. 1. The in-plane displacement components of an  

 

Fig. 1 Geometry and coordinate system of an annular plate 

 

 

arbitrary point of the plate are Ur, Uθ, in the radial and 

circular directions and the out-of-plane component 

designated by Uz. 

For the axisymmetric case, the displacement field is 

defined using the FSDT assumption, where the 

displacement components have linear variations with 

respect to z as the following 

0

r 0 1

z 0 1

U r,z,t = u r,t + z.u r,t ;

U r,z,t = w r,t + z.w r,t ;

U r,z,t

     

     
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 (1) 

Where u0, w0 denote the in-plane displacements in the 

mid-plane, z is distance from the mid-plane and u0, u1, w0, 

w1 are unknown functions which depend on the radial 

coordinate, r and the time parameter, t. The strain-

displacement relations for small deformation are 
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The stress-strain relations, according to the Hooke’s law 

are as follows, (Sadd 2009) 
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Where G and K are the shear and bulk modulus, 

respectively. The kinetic energy T and the strain energy U 

of an elastic plate are expressed as 
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 
2 /2

0 /2

1

2

o

i

r h

r r z z rz rz

r h

U r dz d dr



         



       (4b) 

Where, ρ is the plate density (kg/m
3
). By using the 

Hamilton’s principle, the equations of motion and the 

boundary conditions are determined 

2
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From Eq. (4), four equations of motion in terms of stress 

resultants are determined as the following 
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The boundary conditions are 
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And the stress resultants are defined as follows 
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Ks is the shear correction factor which is assumed π
2
/12, 

(Wang et al. 2000). 

By Substituting Eq. (5c) into Eq. (5a), the equations of 

motion in terms of displacements are derived 
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Fig. 2 Standard linear solid model (SLS), (Riande 

et al. 2000) 
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In viscoelastic analysis, it is usual to separate the 

deviatoric and dilatational parts of the stress components. 

For the deviatoric and dilatational parts we have P1τij=Q1γij, 

and P2σii=Q2εii, respectively. P1, Q1, P2, Q2 are the 

viscoelastic operators, τij, γij denote the shear stress and 

strain, and σii, εii are the traces of stress and strain tensors. 

In the elastic case, the shear stress-strain relation is 

τij=2Gεij, so G=Q1/2P1 and the bulk modulus is K=Q2/3P2. 

We assume that the viscoelastic material obeys the SLS 

model in shear and elastic in bulk i.e., K=K0 where K0 is a 

constant (elastic bulk modulus). The viscoelastic operators 

are expressed as (Riande et al. 2000) 
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Where τ=η/G2 is the relaxation time and D=∂/∂t is the 

time derivative operator. By substituting G, K into Eq. (6) 

and applying the time derivative operator on the equations, 

the governing equations of motion for a viscoelastic plate 

are derived as the following 
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L1, L2, L3, L4 are differential operators. The explicit 

dimensionless form of these operators will be reported later. 

 

 

3. Analytical solution 
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The perturbation technique is used for analytical 

solution. Before using this method, it is necessary to 

convert the equations to dimensionless form. We define the 

following dimensionless quantities 
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By substituting Eq. (9a) into governing equations Eq. 

(8), the following dimensionless parameters are appeared 
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Where r
*
 and t

*
 are dimensionless location and time, 

respectively. u0
*
, u1

*
, w0

*
, w1

* 
are dimensionless 

displacement components. a, h0 and t0 are characteristic 

radius, thickness and time, respectively, which are defined 

as a=ro, h=h0 and t0=a/c. c is a quantity with speed 

dimension. ε is a small parameter which is considered as the 

perturbation parameter. By using Eq. (9) and defining 

X=(r
*
-1)/ε, the dimensionless form of the governing 

equations (in terms of displacement) are derived. The 

method of multiple scale in perturbation technique is used 

for the solution. The new scale T0=t
*
, T1=εt

*
 is defined. We 

have (Nayfeh 1993) 
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By substituting Eqs. (9), (10) into Eq. (8), the 

dimensionless form of the governing equations (in terms of 

displacement components) are derived as the following 
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u u X T T u u X T T

w w X T T w w





 
  

  

 
 

 

 
 

 

       

 

  *
0 1( , , )X T T

 
(11e) 

f11, f12, f13, f14 are functions of dependent variables which 

do not appear in our selected expansions (Eq. (12)). A 
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straightforward expansion is considered for the solution as 

the following 

0 0 1 00 0 1 01 0 1

1 0 1 10 0 1 11 0 1

0 0 1 00 0 1 01 0 1

1 0 1 10 0 1 11 0 1

( , , ; ) ( , , ) ( , , );

( , , ; ) ( , , ) ( , , );

( , , ; ) ( , , ) ( , , );

( , , ; ) ( , , ) ( , , )

u X T T u X T T u X T T

u X T T u X T T u X T T

w X T T w X T T w X T T

w X T T w X T T w X T T

 

 

 

 

  

  

  

  

 

 

 

 

 (12) 

We substitute Eq. (12) into Eq. (11) and equate the terms 

with the same power of ε to zero. The governing equations 

with order-zero are extracted as follows 

* * * *
1 11 00 10 4 14 00 10: [ , ] 0; : [ , ] 0eq L u w eq L u w   (13a) 

* * * *
2 12 10 00 3 13 10 00: [ , ] 0; : [ , ] 0eq L u w eq L u w   (13b) 

Note that Eqs. (6), (8) were four coupled equations with 

variable coefficients. By using the parameter X, one can 

convert the governing equations with variable coefficients 

to a system of equations with constant coefficients in each 

order of ε. Eq. (13) are two homogenous system of coupled 

partial differential equations with constant coefficients. Eq. 

(13a) result the radial frequencies and Eq. (13b) compute 

the transverse motion frequencies.  

The governing equations with order-one are as the 

following 

* * * *
1 11 01 11 1 4 14 01 11 4

* * * *
1 11 00 10 12 00 10

* * * *
4 14 00 10 42 00 10

: [ , ] ; : [ , ] ;

2 [ , ]. [ , ] ;

[ , ]. [ , ]

eq L u w FF eq L u w FF

FF L u w X A u w

FF L u w X A u w

 

  

  

 (14a) 

* * * *
2 12 11 01 2 3 13 11 01 3

* * * *
2 12 10 00 22 10 00

* * * *
3 13 10 00 32 10 00

: [ , ] ; : [ , ] ;

2 [ , ]. [ , ] ;

[ , ]. [ , ]

eq L u w FF eq L u w FF

FF L u w X A u w

FF L u w X A u w

 

  

  

 (14b) 

Eq. (14) are two non-homogeneous system of coupled 

partial differential equations with constant coefficients. The 

homogenous parts of Eqs. (13), (14) are the same. In 

general, the boundary conditions obey Eq. (5b). The 

boundary conditions for special cases in order-zero and one, 

have been defined as the following 

Clamped 

(C) 

0
00 10 00 10

1
01 11 01 11

0 0

( ) : 0, 0, 0, 0

( ) : 0, 0, 0, 0

r zU , U

O u u w w

O u u w w





   

   

  

    


   

 (14c) 

Simply 

support 

(S), (type 

1) 

0 00 10
00 10

1 01 11
11 00 2 10 01

11

0, 0, 0

( ) : 0, 0, 0, 0

( ) : , , 0,

0

z r rU rN rM

u u
O w w

X X

u u
O u u w

X X

w



  

 
 

 
  



   

  
   

 
  

  
 

 



 (14d) 

Simply 

support 

(S),(type 

2): 

0 0

0 10 10
00 00

1 11 11
01 3 10 01

0, 0, 0, 0

( ) : 0, 0, 0, 0

( ) : 0, , 0, 0

z r r rzz z
U U rN rM

u w
O u w

X X

u w
O u u w

X X



 

 

 
 

 
  

    

  
   

  


 
     

 (14e) 

Free (F): 

0 10 00 10
10

00
11 22 10

1 0111 11
11 5 10

01
4 11 6 01 7 00

11 0 1 22 0

0, 0, 0, 0

( ) : 0, 0, 0,

0

( ) : 0, 0, ,

6 6 , 6 6

r r r rzrN rM rQ rM

u w w
O u

X X X

u
w

X

ww u
O u u

X X X

u
w w u

X

a i a b i



 

 

  

   

  





 
 


  

    

   
   

  
 
  
 


 
      




  


    1 ; 1b i  

 (14f) 

Where α11, α2,…, α7 are functions of X, ω, Ks and 

material properties of the plate. The reported results are 

based on type 1 formulation for a simply supported edge. 

For a circular (solid) plate, the boundary conditions at the 

center are

 

0 00 10
00 10

1 01 11
01 11

0, 0, 0

( ) : 0, 0, 0, 0

( ) : 0, 0, 0, 0

r r rzU rQ rM

w w
O u u

X X

w w
O u u

X X





 
 

 
 

   

  
   

  


 
   

  

 
(14g) 

 
 
4. Frequency analysis 

 
4.1 Order-zero 

 

The solution of Eq. (13b) can express as 

10 0 1
1 0

00 0 1

1
1 1

2

( , , )
{ ( )}exp( );

( , , )

{ ( )} ( )

n n

n
n n

n

u X T T
V T m X i T

w X T T

B
V T C T

B







  
  

  

  
  

  

 (15a) 

Where mn is the eigenvalues and {Vn} is the eigenvector. 

ω is the complex dimensionless frequency. By substituting 

Eq. (15a) into Eq. (13b), a system of algebraic equation is 

obtained as the following 

111 12
11

21 22 2

*2 2

12 0 1

*2 2
* * 2
0 1 21 0 1

2 * *
0 1 22

0
; (1 );

0

( ) (1 )
12

( ); ( )
12

( ); (1 )

n
s n

n

n
s

n

s n

Ba a
a K m i

a a B

h m
a a i a K i

eh
G i G a m c i c

e G i G a K m i

 

   


   

    

     
       

      

   

    

  

 (15b) 
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For a non-trivial solution, the determinant of the matrix 

coefficient must be vanished i.e., a11.a22-a12.a21=0 which is 

known as the dispersion equation and it is a relation 

between mn and ω. It is an order-four algebraic equation and 

its roots (m1, m2, m3, m4) are functions of ω. Then the 

eigenvectors are determined from Eq. (15b). {Vn} is the 

eigenvector corresponds to the eigenvalue mn. The total 

solution is as the following 

4
10 0 1 1

1 0
200 0 1 1

( , , )
( ) ( )

( , , )

n
n n

nn

u X T T B
C T exp m X i T

Bw X T T







      
    

    
  (15c) 

By applying the boundary conditions, a set of 

homogenous algebraic equations as [ax]{C}={0} is formed 

where vector {C} contains the constants C1(T1), C2(T1), 

C3(T1), C4(T1) and the matrix [ax] contains the coefficients 

of equations. For a non-zero solution, the determinant of the 

coefficients matrix (i.e., [ax]) is equated to zero which 

results a complicated algebraic equation in terms of ω. The 

roots of this equation are the dimensionless complex 

frequencies which are obtained from the relative minimum 

of the absolute value of matrix determinant. Also C2(T1), 

C3(T1), C4(T1) are determined in terms of C1(T1). 

 

4.2 Order-one 
 

By substituting Eqs. (15c) into (14b), the non-

homogenous part of Eq. (14b) i.e., FF2, FF3 are obtained. 

The general form of these parts are as the following 

1
2 21 1 22 0

1

1
3 31 1 32 0

1

( 1) ( )

( 1) ( )

dC
FF K C T K exp i T ;

dT

dC
FF K C T K exp i T

dT





 
  
 

 
  
 

 (16) 

K21, K22, K23, K24 are known functions of X, ω. From 

Eqs. (14b), (15c), (16), it is clear that Eq. (14b) have secular 

terms and before finding its particular solution as a uniform 

expansion, it is necessary to remove its secularity. For this 

purpose, we define the adjoint functions for these equations. 

Consider two coupled homogenous differential equations as 

the following and two adjoint functions υ1(x), υ2(x). We 

multiply the first equation in υ1(x) and the second one in 

υ2(x) and integrated over the total domain 

20 20 21 21

20 1 21 2

: [ 1( ) 2( )] 0 : [ 1( ) 2( )] 0

( ( ) ( )) 0
b

a

Eq L y x , y x ; Eq L y x , y x

Eq . x Eq . x dx 

 

 
 (17a) 

Where, L20, L21 are differential operators. The part by part 

integration results the adjoint equations (related to 

homogenous part) and appropriated boundary conditions for 

υ1(x), υ2(x) 

30 30 1 2

31 31 1 2

: [ ( ) ( )] 0

: [ ( ) ( )] 0

Eq L x , x ;

Eq L x , x

 

 




 (17b) 

L30, L31 are differential operators which are not the same 

with L20, L21 necessarily. By solving Eqs. (17b), the adjoint 

functions are obtained. Now, the same procedure is applied 

on Eq. (14b) (order-one) i.e. 

* * * *
12 11 01 2 1 13 11 01 2

2 1 3 2

( [ , ] . [ , ]. ( ))

( . ( ) . ( ))

b

a

b

a

L u w x L u w x dx

FF x FF x dx

 

 

 







( )

 (18a) 

Which it is resulted 

1
1 1 1 0 1 1

1

0 ( 1) ( )
dC

C C T C exp T
dT

      (18b) 

Where α1 is a constant complex value. So the 

dependency of C1 to T1 is determined and the non-

homogeneous parts of Eq. (14b) are removed and the 

solution Eq. (15c) is defined completely. So Eq. (15c) can 

write as 

 

 

10
0 1 1 02*1

00

0 0 0 0

0 1 1

( )

( ) ;

Im( . ); Re( . )

m

m

u
C Y X exp T i T

w

C Y X exp i T exp T

 

 

      





  
   

  

  

( )

( ) ( )  

(19) 

Im, Re stand of real and imaginary parts of a quantity. A 

similar procedure can apply on Eqs. (14a). 

 
 
5. CPT plate 

 

For CPT, the equation of motion in the polar coordinate 

system is as follows 

2 3
4 20

0 0 02 2

1
0; ( ) ; ;

12(1 )

9 3 2
;

3 6 2

w Eh
D w h r D

t r r r

KG K G
E

K G K G






  
     

   


 

 

 (20) 

By substituting G=Q1/2P1 and K=Q2/3P2 in Eq. (20), 

the flexural rigidity D0 is obtained for a viscoelastic plate. 

For a plate which is viscoelastic in shear and elastic in bulk 

and using Eq. (7) for the SLS model, the governing equation 

for a viscoelastic CPT plate is determined. By inserting Eq. 

(9), the governing equation is converted to a dimensionless 

form as the following 

* 2
15 15 52 0 15

2 44
* 0 0 0

15 0 6 5 4 0 404 2 4
00 0

3 2
0 0

3 23 2
0 0

3 2
* 0 0 0

52 0 40 3 23 2
1 00 0

4 5
0

5 64

[ ] (3 [ ] [w ]) ( ) 0

[w ] ( )

[w ] (4 3 2

2

* * *
0 0 0

* * *
*

* *

* * *

*

eq : L w L w .X A f w ,

w w w
L d d d w d

TX T T

w w
d d ;

T T

w w w
A d d d

T TT T

w w
d d

X

     

  
    

  

 


 

  
   
  

 




23
0 0 0

6 54 3 2
00 0

4 0

) 2 (

)

* * *

*

w w
d d

TX T X T

d w

 
  

   

 

(21a) 
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3 3 32
6 1 3 5 1 2 3 4 1 2

2 2 *
40 1 1 3 1 1 0 0 1

2 0 3 1 2 0 1 0

3 3 ( ) 3

9 9 ( )

1 1
9

3 3

* * * * * *

* * * * *

* * * * *

d h G a ; d h G a a ; d h G a ;

d e h G a ;d e h G G a G a ;

a G ;a G ; d eh G G a

 

 

   

  

    

 
(21b) 

By applying the perturbation technique as explained before, 

the natural frequencies are determined. 

 

 
6. Numerical analysis 

 

Ansys 12 FE package has been used for numerical (FE) 

analysis. The selected element is Solid-Shell 3D element 

which has the viscoelastic feature capability and it includes 

eight-node with three degrees of freedom at each node 

(Ansys User Manual 2009). The boundary conditions are 

considered as clamped and simply supported at the edges of 

annular plate. The viscoelastic property has been defined 

using Prony’s series. The geometrical and material 

properties of the plate have been listed in Table 1. The 

viscoelastic parameters values are selected from 

Marynowski (2005). 

It should be noticed that the density of the plate which is 

the mass density per unit area must be divided to thickness 

for presented solution. Also the bulk modulus (K0) and 

elastic modulus (E) have been defined as the following: 

1

0 1 2

1 2

0
2 1

2(1 )
03 1 2

s s s

G for

K G ;G ; E GG .G
for

G G







 
  

    
   

 (22) 

We used Eq. (22) to convert the frequencies of 

viscoelastic cases to dimensionless form. 

 

 
7. Parametric study 

 

To check the validity of the presented solution, we 

consider some case studies. The dimensionless frequency of 

the system is a complex parameter and it can be writen as 

ω0+iα (Eq. (19)). Its real part (ω0) stands for the free 

vibration frequency and we call it the natural frequency in 

this text. The imaginary part (α) defines the rate of decay in 

amplitude of vibration and we name it the damping ratio. At 

first we investigate the natural frequency sensitivity to input 

data. For this purpose, a parametric study is performed. The 

analytical results were calculated using the mathematical 

environment Maple 15. 

By setting τ→0 the solution of a viscoelastic plate can 

approach to an elastic plate. In this case (elastic case), the 

 

 

Table 1 geometrical and material properties 

Outer radius (m) ro=0.15
 

Poisson’s ratio ν=0.25 

Viscoelastic modulus  (Pa) G1=5.354e9, G2=4.504e9
 

Viscosity coefficient (Pa.s) η=2.673e10
 

Density (Kg/m2) 0.22
 

equivalent shear modulus of the plate is calculated using 

Eq. (22) for η=0. In Table 2, the transverse frequencies of 

the elastic plates with clamped-clamped (C-C) edges has 

been presented for ri /ro=0.3 and different values of ro/h. 

The results have been reported with the FSDT, CPT 

(Hagedorn 2007) which has used the Bessel functions, FE 

(Ansys), CPT (Eq. (21)) and the Liu and Chen (1995) which 

has used the FE method based on the theory of elasticity. 

By increasing ro /h, the dimensionless frequencies decrease. 

The difference percentage of the results have been 

calculated too. The difference percentage has been defined 

as diff(A1)=abs(((A1-AFE) / AFE)*100) where AFE stands for 

the FE results, A1 is the analytical value and abs stands of 

absolute value of the quantity. According to Table 2, for 

large values of ro /h, the difference percentage with the CPT 

is smaller than the FSDT i.e., the FSDT does not have any 

advantage for thin plates. For small values of ro /h, the 

FSDT is closer than the CPT to the FE especially in the 

second modes. The FSDT results are in a good agreement 

with the Liu and Chen (1995) for thicker plates and the CPT 

results are close to the Liu and Chen for thinner plates. So, 

the presented solution method predicts the correct results as 

we expected for elastic plate. All the other tables and graphs 

are for the viscoelastic case with the FE (Ansys), CPT (Eq. 

(21)) and FSDT (Eqs. (13), (14)). In Tables 3, the 

frequencies of viscoelastic plate have been reported. The 

results of the CPT have a large discrepancy with the FE for 

small values of ro/h especially in the second mode. For a 

constant value of ro/h, by increasing ri/ro, the dimensionless 

frequencies increase (Fig. 3). Also for a constant value of 

ri/ro, the obtained frequency with the FE is smaller than the 

FSDT and CPT. The calculation showed that this result is 

not correct for all boundary conditions (The results of the 

other boundary conditions are reported later). 

The presented formulation can use for the plate with 

different boundary conditions. Tables 4 present the first and 

second frequencies of an ELASTIC annular plate for 

different boundary conditions. The first letter stands of the 

inner boundary and the second is for the outer boundary 

e.g., S-F is related to the simply supported at the inner edge 

and free at the outer one. Tables 4 compare the exact 

 

 

 

Fig. 3 Effect of ri/ro on frequencies of viscoelastic 

annular plates (C-C) 
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solution using the Bessel functions for the CPT case 

(Hagedorn et al. 2007) and the presented method with the 

perturbation technique (Eq. (21)). There is a good 

agreement between the results or it shows that the presented 

formulations work properly for these boundary conditions. 

The calculations showed that in the presented formulation, 

the equations order-zero (Eq. (13)) are sufficient to find the 

frequencies for the plates with the same boundary 

conditions (i.e., S-S, C-C, F-F) but for non-similar 

boundary conditions (i.e., S-F, F-S, C-S, S-C,…), the order-

zero presents the same frequencies for the non-similar cases 

e.g., S-F and F-S (which did not report here). So it is 

necessary to consider the order-one (Eq. (14)) too or the  

 

 

 

 

 

order-zero, does not have the sufficient convergence. The 

natural frequencies of the viscoelastic annular plates with 

different boundary conditions have been reported in Tables 

5. These results have been compared with the FE and CPT 

results. In the most cases, the FSDT is closer than to the FE 

with respect to the CPT. The reported frequencies relate to 

the bending mode. In some cases, there are the rigid body 

frequencies which did not report here. It is seen that the 

natural frequencies for the C-C case is larger than the S-S as 

we expected. It is due to increasing the stiffness of the plate. 

Also, the difference percentage for S-S is smaller than the 

C-C boundary conditions. 

Fig. 4 shows the effect of relaxation time on the natural  

Table 2 Dimensionless natural frequencies (ω0) for C-C ELASTIC annular plate ri /ro=0.3 

  Mode 1 
 

 Mode 2 

ro/h 5 10 20 50 5 10 20 50 

FE 2.2746 1.4626 0.8010 0.3296  4.9133 3.5800 2.1259 0.9045 

FSDT  

diff(FSDT) 

2.3414 

2.8 

1.5365 

5.0 

0.8502 

6.1 

0.3514 

6.6 
 

4.9419 

0.6 

3.6990 

3.3 

2.2372 

5.2 

0.9606 

6.2 

CPT (Eq. (21)) 

diff(CPT-Eq. (21)) 

3.3347 

31.7 

1.6672 

14.0 

0.8337 

4.1 

0.3335 

1.2 
 

9.1919 

87.1 

4.5959 

28.4 

2.2980 

8.1 

0.9192 

1.6 

CPT (Bessel) 

diff(CPT- Bessel) 

3.3116 

45.5 

1.6558 

13.2 

0.8279 

3.4 

0.3312 

0.5 
 

9.1555 

86.3 

4.5779 

27.9 

2.2889 

7.7 

0.9156 

1.2 

Liu 

diff(Liu) 
 1.5119 

3.4 

0.8139 

1.6 

0.3315 

0.6 
  3.7070 

3.5 

2.1641 

3.3 

0.9103 

0.6 

Table 3a Dimensionless natural frequencies (ω0) for C-C viscoelastic annular plate ri /ro=0.1 

 
 

Mode 1    Mode 2 

ro/h 5 10 20 50   5 10 20 50 

FE  1.5616 0.9156 0.4891 0.1987  
 

3.5159 2.3364 1.3243 0.5479 

FSDT  

diff (FSDT) 
 

1.6039 

2.7 
0.9778 

6.8 

 

05221 

6.8 

0.2131 

7.3 
  3.5491 

0.9 

2.4500 

4.9 

1.3973 

5.5 

0.5844 

6.7 

CPT(Eq. (21)) 

diff(CPT) 
 

2.0172 

29.2 

1.0085 

10.2 

0.5043 

3.1 

0.2017 

1.5 
  5.5601 

58.1 

2.7804 

19.0 

1.3902 

5.0 

0.5561 

1.5 

Table 3b Dimensionless natural frequencies (ω0) for C-C viscoelastic annular plate ri /ro=0.3 

 
 

 Mode 1 
 

 Mode 2 

ro/h 5 10 20 50 5 10 20 50 

FE  2.2738 1.4615 0.8006 0.3295  4.9122 3.5774 2.1247 0.9043 

FSDT  

diff (FSDT) 
 

2.3414 

3.0 

1.5365 

5.1 

0.8501 

6.2 

0.3514 

6.7 
 

4.9419 

0.6 

3.6988 

3.4 

2.2373 

5.3 

0.9606 

6.2 

CPT (Eq. (21)) 

diff (CPT) 
 

3.3347 

46.7 

1.6673 

14.0 

0.8337 

4.1 

0.3335 

1.2 
 

9.1919 

87.1 

4.5961 

28.5 

2.2983 

8.2 

0.9192 

1.7 

Table 3c Dimensionless natural frequencies (ω0) for C-C viscoelastic annular plate ri /ro=0.5 

 
 

 Mode 1 
 

 Mode 2 

ro/h 5 10 20 50 5 10 20 50 

FE  3.6966 2.6821 1.5530 0.6493  7.5178 6.2508 4.0486 1.7890 

FSDT 

diff(FSDT) 
 

3.7073 

0.3 

2.7127 

1.1 

1.6092 

3.6 

0.6845 

5.4 
 

7.4263 

1.2 

6.1279 

2.0 

4.0902 

1.0 

1.8569 

3.8 

CPT(Eq21) 

diff(CPT) 
 

6.5356 

76.8 

3.2681 

21.9 

1.6340 

5.2 

0.6535 

0.7 
 

18.0166 

139.7 

9.0075 

44.1 

4.5038 

11.2 

1.8017 

0.7 
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Fig. 4 Variation of natural frequency (ω0) with relaxation 

time (C-C, Mode 1, ri/ro=0.3) 

 

 

frequency of C-C annular plates with different thicknesses. 

The sensitivity of the natural frequency to relaxation time 

restricted to the small values of η. Fig. 5 shows the effect of 

thickness on the natural frequency of C-C annular plates. 

By increasing the thickness, the natural frequency increases 

 

 

 

 

 

Fig. 5 Variation of natural frequency (ω0) with 

thickness for different modes (C-C, ri/ro=0.3) 

 

 

and the growth of its slope is more on the second mode in 

the studied range. In addition, for small values of thickness, 

the difference between CPT and FSDT results are small 

especially in Mode 1.  

In Table 6, the frequencies and damping of the system 

for different values of η (2.6972≤η≤2.6972e10) have been  

Table 4a Dimensionless natural frequencies (ω0) for different boundary conditions of an annular ELASTIC plate 

ri/ro=0.3, ro /h=10, E=0.6115e10, ν=0.25 (Mode 1) 

 
 

Mode 1 

Support C-C S-S C-S S-C C-F F-C S-F F-S F-F 

CPT (Bessel)  1.6558 0.7719 1.0913 1.2390 0.2408 0.4215 1.1539 1.3609 1.8451 

CPT(Eq. (21))  1.6672 0.7355 1.0938 1.2041 0.2058 0.3182 1.0938 1.2041 1.6672 

Table 4b Dimensionless natural frequencies (ω0) for different boundary conditions of an annular ELASTIC plate 

ri/ro=0.3, ro/h=10, E=0.6115e10, ν=0.25 (Mode 2) 

 
 

Mode 2 

Support C-C S-S C-S S-C C-F F-C S-F F-S F-F 

CPT (Bessel)  4.5779 2.9883 3.6641 3.8124 1.5501 1.9015 3.7373 3.9354 4.7735 

CPT(Eq. (21))  4.5959 2.9421 3.6710 3.7754 1.5337 1.7502 3.6712 3.7753 4.5959 

Table 5a Dimensionless natural frequencies (ω0) for different boundary conditions of an annular viscoelastic plate 

ri/ro=0.3, ro/h=10 (Mode 1) 

 
 

Mode 1 

Support C-C S-S C-S S-C C-F F-C S-F F-S F-F 

FE  1.4618 0.7359 1.0036 1.1386 0.2366 0.4118 1.0814 1.2820 1.7155 

FSDT  

diff(FSDT) 
 

1.5365 

5.1 

0.6978 

5.2 

1.0640 

6 

1.1186 

2 

0.2151 

8.9 

0.3308 

19.6 

0.9811 

9.3 

1.2100 

5.6 

1.6454 

4.1 

CPT(Eq. (21)) 

diff(CPT) 
 

1.6672 

14 

0.7355 

0.05 

1.0938 

9 

1.2041 

5.7 

0.2058 

13 

0.3182 

22 

1.0938 

1.1 

1.2041 

7.8 

1.6672 

2.8 

Table 5b Dimensionless natural frequencies (ω0) for different boundary conditions of an annular viscoelastic plate 

ri/ro=0.3, ro/h=10 (Mode 2) 

 
 

Mode 2 

Support C-C S-S C-S S-C C-F F-C S-F F-S F-F 

FE  3.5778 2.5840 3.0190 3.1285 1.3936 1.7171 3.1747 3.3604 4.1790 

FSDT  

diff(FSDT) 
 

3.6988 

3.4 

2.4640 

4.6 

3.1830 

5.4 

3.2276 

3 

1.4507 

4.1 

1.6596 

3.3 

3.0317 

4.5 

3.4242 

1.9 

4.0551 

3 

CPT(Eq. (21)) 

diff(CPT) 
 

4.5961 

28.4 

2.9422 

13.8 

3.6710 

21.6 

3.7751 

20.7 

1.5337 

10 

1.7502 

1.9 

3.6710 

15.6 

3.7751 

12.3 

4.5959 

10 
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listed. The results are related to Eq. (14b) which we called it 

the transverse motion. In the range of 0≤n≤4, by increasing 

the viscoelastic parameter, the damping of the system 

increases or the viscoelastic parameter can reduce the rate 

of amplitude vibration but the more increasing of “n”, does  

 

 

 

Fig. 6 Transverse response of middle radius 

(η=2.6729e4 Pa) 

 

 

 

 

not affect on the damping of the system. Note that for the 

large values of η, the system approach to an elastic system 

which has the shear modulus G1 (Fig. 2) or the large values 

of η, can convert the dashpot element to a rigid link. The 

value of ω0 is nearly constant for large values of n but in 

0≤n≤4, it can affect on the natural frequency. For these 

values, it is necessary to consider the terms with order-one 

(i.e., Eq. (14b)) to calculate the frequencies. Also, it is seen 

that the frequencies of elastic case (Table 2, which is just 

related to order-zero) are not nearly the same as Table 6 for 

n=0. In Fig. 6, the vibrational amplitude of the system for 

especial value of damping has been shown. 

As mentioned before, the FSDT can represent the radial 

frequencies, too (Eq. (14a)). The radial natural frequencies 

of a C-C plate have been reported in Table 7 for different 

values of “n”. The radial frequencies values are large in 

comparison with respect to the transverse frequencies. 

These results cannot calculate with the CPT formulation. 

Also the similar conclusion of Table 7 can express for this 

Table. Fig. 7 shows the mode shapes for the first and 

second modes in the case of simply supported and clamped 

plates. 

 

Table 6 Dimensionless Transverse complex frequencies (ω0+ i.α) for a C-C annular plate and different values of 

viscoelastic parameter η(ri/ro=0.3, ro/h=10) 

 n→ 10 8 6 5 4 3 2 0 

Mode1 
α -1.2211e-7 -1.2211e-5 -1.2212e-3 -3.2113e-2 -0.14872 -1.9510e-2 -7.3890e-4 -7.390e-6 

ω0 1.5365 1.5365 1.5365 1.5299 1.3460 1.2465 1.2462 1.2492 

Mode2 
α -1.4040e-7 -1.4040e-5 -1.4040e-3 -3.8056e-2 -0.34591 -0.13806 -1.4267e-2 -4.926e-4 

ω0 3.6988 3.6988 3.6987 3.6974 3.5411 2.9009 2.8746 2.8754 

Table 7. Dimensionless Radial complex frequencies (ω0+ i.α) for an C-C annular plate and different values of 

viscoelastic parameter η( ri/ro=0.3, ro/h=10) 

 n→ 10 8 6 5 4 3 2 0 

Mode1 
α -1.5001e-7 -1.5001e-5 -1.5001e-3 -5.2030e-2 -0.40621 -0.36914 -4.1004e-2 -1.3335e-4 

ω0 5.7026 5.7026 5.7025 5.6981 5.6007 4.3358 4.2570 4.2564 

Mode2 
α -1.5186e-7 -1.5186e-5 -1.5186e-3 -5.2182e-2 -0.44533 -1.4054 -1.6355e-1 -5.3574e-4 

ω0 11.3844 11.3844 11.3844 11.3839 11.3427 9.0805 8.4623 8.4580 

 

Fig. 7 Mode shapes 1 and 2 for S-S and C-C annular plate 
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8. Conclusions 
 

A mathematical approach has been applied to 

investigate the free vibration of viscoelastic annular plates 

by considering the first order shear deformation theory as 

the displacement field. The governing equations were 

solved analytically by the perturbation technique. A 

sensitivity analysis was performed to investigate the 

influences of boundary conditions, radius ratio, relaxation 

time, viscoelastic parameters and thickness on the 

transverse natural frequency of the plate. The following 

conclusions can obtain for the studied cases: 

• Using a new variable change, the governing equations 

which were a system of differential equations with 

variable coefficients, were converted to equations with 

constant coefficients. The new form of equations has a 

closed-form solution in each order of ε. 

• The calculations can be performed using a simple code 

in a mathematical environment such as Maple and it is 

not necessary to construct a FE model. In the other 

word, the calculations can be performed faster than the 

FE. 

• For smaller values of ro/h, the FSDT is more closer 

than CPT to the FE results, especially in the second 

mode. 

• For larger values of ro/h, the FSDT does not have any 

advantage with respect to the CPT. 

• For a constant value of ro/h, by increasing ri/ro, the 

dimensionless frequencies increase.  

• For the plates with C-C edges, the natural frequencies 

are larger than the S-S results for a viscoelastic plate. 

Also the difference percentage for S-S is smaller than 

the C-C boundary conditions.  

• The FSDT can represent the radial frequencies, too. 

• The sensitivity of the natural frequency to the 

relaxation time is restricted to the small values of η. 

• By increasing the thickness, the natural frequency 

increases, especially in the second mode. 

• The presented method can use for different boundary 

conditions. 
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