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1. Introduction 
 

As a widely interested field, structural sizing for weight 

minimization have been studied by several researchers 

(Kaveh 2014, Yang 2010, Arora 2004). It is usually 

addressed by non-linearity and narrowness of the feasible 

region in its non-convex design space (Shahrouzi and 

Pashaei 2013). In many applications, structural sections are 

limited to a practical list and should be assessed by discrete 

variables. Such requirements make the optimization 

procedure more complicated than continuous search. Meta-

heuristic algorithms are interested solutions for such 

problems since they can search the design space by 

sampling it without using any gradient information or 

approximation of discrete variables (Kaveh and Mahdavi 

2014). 

The majority of meta-heuristic algorithms are bio-

inspired while the others mimic some physical, chemical or 

natural phenomena (Fister et al. 2013). Performance of such 

population-based methods, depends on fine tuning their 

control parameters to achieve proper balance between 

exploration and exploitation (Crepinsek 2013). Therefore 

the less the number of control parameters, the less tuning 

effort is required to achieve the best performance of the 

corresponding algorithm. 

Teaching-Learning-Based Optimization, TLBO, is a 

meta-heuristic introduced by Rao et al. (2011) with the least 

common parameters. It is based on stochastic movement in 

several directions guided by different strategies via the 

teacher phase and the learner phase. In the teacher-phase the  
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search agents are focused toward the global-best solution up 

to the current iteration while in the learner phase social 

incorporation of agents is highlighted by a fitness-based 

competition. 

Application of TLBO as a meta-heuristic optimizer is 

being extended in various engineering problems. Rao et al. 

(2012) studied optimization of large-scale nonlinear 

problems by TLBO. Togan (2012) employed this method 

for optimal design of planar frames. Degertekin and 

Hayalioglu (2013), applied TLBO to size optimization of 

truss structures. Makiabadi et al. (2013) extended its 

application to sizing of truss bridges. Baghlani et al. (2013) 

used TLBO for geometry and size optimization of truss 

structures with eignevalue constraints.  

A number of TLBO variants have already been 

developed by several investigators. Rao and Patel (2012) 

introduced an elitist TLBO that employs a ranked portion of 

population by additional elite-size parameter and some 

extra effort for duplicate elimination in the algorithm. They 

applied Deb’s heuristic tournament strategy (Deb 2000) to 

handle the limitations in the constrained problems. It 

requires more fitness evaluations than their unconstrained 

TLBO. Rajasekhar et al. (2012), offered an opposition-

based strategy to enhance elitist TLBO. Rao and Patel 

(2013) improved the basic TLBO by introducing the 

concept of number of teachers, adaptive teaching factor, 

tutorial training and self motivated learning. Crepinsek et 

al. (2012) analyzed performance of some TLBO variants in 

a number of test functions. Pholdee and Bureerat (2014) 

reported that TLBO falls within medium-to-high rank 

among 24 meta-heuristics in structural weight minimization 

under frequency constraints. Vecek et al. (2014) reported 

similarities between some variants of Differential Evolution, 

DE and TLBO via a novel ranking mechanism. More 

rigorous survey on TLBO variants and applications is given  
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by Rao (2016).  

The present work improves TLBO by introducing a new 

search agent embedded to the teaching phase. It is mainly 

based on memory exploitation by stochastic information 

exchanging between the artificial classmates. The method is 

utilized for a number of benchmark examples in structural 

sizing for weight minimization under behavioral and side 

constraints. For efficient constraint handling of discrete 

sizing problems; proper techniques are distinctly suited to 

treat side/behavioral constraints. Performance improvement 

 

 

of TLBO via the proposed strategy is evaluated treating a 

number of benchmark examples. Further comparison of the 

results with the related literature works is also provided to 

declare suitability of the proposed OTLBO for structural 

sizing problems. 

 

 

2. Overview of Teaching-Learning-Based 
Optimization  

 
Fig. 1 Flowchart of TLBO 
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Teaching-Learning-Based Optimization, TLBO is first 

introduced by Rao et al. (2011). It is a population-based 

method that simulates the knowledge growth process in a 

classroom by two distinct phases; the first is improving the 

mean level of the students’ grades by a teacher while the 

second mimics learning via interaction between the students 

themselves. Detailed representation of TLBO variants is 

addressed by Rao (2016). Fig. 1 shows flowchart of the 

employed basic TLBO. 

It is indicated that TLBO applies movement vector V 

from the current position of each individual X to its new 

position X+rand× V. According to the teacher phase, any  

 

 

student is forced to move in the same direction like that the 

class mean moves toward the best found position; i.e., 

V=XTeacher-TfX
Mean. The teacher vector XTeacher can be the 

fittest solution of the current population or the elite solution 

up to the current generation (Rao and Patel 2012). The 

second strategy is applied in the current study by saving and 

updating an elite solution in an auxiliary memory next to 

the current population. It is somehow like movement 

toward the global-best position as an essential part of 

Particle Swarm Optimization (Kennedy and Eberhart 2001) 

provided that an amplification factor, Tf applies in TLBO 

that randomly switches between 1 and 2. 

 
Fig. 2 Flowchart of the proposed OTLBO 
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In the learner phase of TLBO, the movement vector of 

each current Xi is constructed parallel to the line connecting 

it to another randomly selected member of population Xj. 

However, based on weather Xi is fitter than Xj or not, it is 

decided that Xi moves toward Xj or backwards. Some other 

meta-heuristics like Differential Evolution constitutes 

similar movement steps to explore the search space (Vecek 

et al. 2014). 

 

 

3. Observer-Teacher-Learner-Based Optimization  
 

Both of teacher and learner phases in TLBO take 

advantageous of vector-sum movements. An extra way of 

constructing and guiding new solutions is introduced 

hereinafter via a new algorithm called Observer-Teacher-

Learner-Based Optimization, OTLBO. It is based on 

exploitation of the current memory; i.e., the class of 

students in TLBO terminology. In this process, classmates’ 

information; subject by subject is randomly taken from 

various students to generate a new solution called the 

observer. In the absence of the teacher in the class, such an 

observer takes its place to guide the other students. Here, 

the presence time is equally shared between the teacher and 

the observer. As this strategy introduces an extra way of 

search space decomposition; it is expected to improve the 

stochastic search capability of the algorithm (Shahrouzi 

2011). 

An elitist strategy is also proposed to avoid loss of best-

so-far solutions via iterations of the search procedure. In the 

first generation, the fittest solution of the population is 

saved as the elite solution. It is then updated via comparison 

with the fittest solution of any new generation. The 

proposed OTLBO is described via the following 

algorithmic steps: 

 
3.1 OTLBO algorithm 
 

Step 1. Initiate the class: Set the iteration number to 1. 

Generate the population matrix: PopMat of Np classmates 

between their lower limit XL
j and upper limit XU

j in any jth 

subject by 

( ( ))

{1,2,..., }, {1,2,..., }

i L U L

j j j j

p d

X round X rand X X

i N j N

   

 
 (1) 

Nd is the number of subjects or components of any 

classmate vector; Xi. rand is a function that generates 

random numbers in the range [0,1] 

1 1 1

1 2

2 2 2

1 2

1 2

...

...

...

...

Nd

Nd

Np Np Np

Nd

x x x

x x x
PopMat

x x x

 
 
 
 
 
  

 (2) 

Step 2. Decode the classmates’ vectors to the design 

space and evaluate their fitness.  

Step 3. Elitist Update:  

• In the first iteration, save the fittest classmate as the 

elite solution. 

• In any next iteration, compare previously saved elite 

with the fittest of the current population and select their 

best as the new elite solution. 

Step 4. Perform either Teacher phase or Observer phase 

with the same probability:  

a. Teacher phase: For any ith student, try to improve 

mean mark of the class by help of the teacher using the 

following relation 

( ( ))new i Teacher Mean

fX q X rand X T X     (3) 

XTeacher is the current elite solution. Tf denotes a teaching 

factor that randomly switches to either 1 or 2. Any 

component Xl
Mean in the above relation is determined by 

averaging over all classmates in their jth subject. q(.) as a 

fly-to-boundary function is further described in the next 

section. 

b. Observer phase: For any ith student, construct an 

observer solution, XExp by exploiting the current memory 

via the following relation 

( ), 1,2,...,

Exp k

l l

P d

X X

k randi N l N



 
 (4) 

randi(Np) generates a random integer between 1 and Np. 

The observer vector is constructed by getting any its lth 

subject mark from the corresponding subject of the kth 

student. At this stage, take XNew as XExp. 

Step 5. Evaluate fitness of XNew. Replace the current Xi 

with XNew if it is fitter than Xi 

if ( ) ( )i new new iX X Fit X Fit X   (5) 

Step 6. Learner Phase  

During this phase, students interact with each other to 

increase their scientific level via these steps: 

• Randomly select a pair of students with different 

numbers; i and j ≠ i 

• Update XNew by the following relations 

( ( )) if ( ) ( )

( ( ))

new i j i j i

new i i j

X q X rand X X Fit X Fit X

X q X rand X X otherwise

    

   

 
(6) 

• Evaluate fitness of XNew. Replace the current Xi with 

XNew if it is fitter than Xi in the same way as in Eq. (5) 

Step 7. Repeat steps (4) to (6) for all classmates 

Step 8. If iteration number has not reached NI increase it 

by 1 and return to step (3) 

Step 9. Decode and announce the final XTeacher as the 

optimal design. Flowchart of the proposed OTLBO is 

demonstrated in Fig. 2.  

 
3.2 The fly-to-boundary function for side constraints 
 
Design variables are usually limited to upper and lower 

bounds. The fly-to-boundary function q(.) is utilized here to 

avoid such out-of-bound infeasibilities. Therefore, q(.) is 

applied by the following relation 

( ) max( min(round( ), ), )U L

j j j jq x x x x  (7) 
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It preserves that any design vector component takes the 

nearest integer number between Xj
L and Xj

U as the lower and 

upper bounds, respectively. Due to application of vector-

sum movements undesired non-discrete values may be 

generated during optimization. Therefore, a rounding 

function is included in q(.) to correct such a value into the 

nearest discrete value. 

In addition, the behavioral constraints should be 

specifically defined for the problem in hand. In the present 

study, they are described via the problem formulation. 

 
3.3 Direct index coding 
 
During the structural optimization, it is necessary to 

evaluate nodal displacements and member stresses by 

structural analyses to evaluate the corresponding behavioral 

constraints. Prior to that, the design vector should be 

decoded into the entire structural model.  

Direct Index Coding, DIC, is shown to be very efficient 

for discrete structural problems (Kaveh and Shahrouzi 

2005). In the present work, a DIC is utilized so that any jth 

design variable is assigned an integer index between 

Nj
Sections and 1. Nj

Sections denotes the number of available 

cross sections to be selected for the jth group of structural 

members.  

Definition of the function q(.) in Eq. (7) is extended so 

that no zero or non-integer value can be returned by it as a 

section index. Hence, all the lower bounds xj
L are set to 1 

for such an encoding scheme in the structural sizing 

problem.  

Some variants of TLBO apply extra duplicate 

elimination in the algorithm (Crepinsek et al. 2012) which 

results in uncontrolled function calls via iterations of the 

search. However in the present work, a basic form of TLBO 

is utilized so that the number of fitness evaluations is 

exactly twice the product of the population size by the 

iteration number plus one population size for the initiation. 

It is worth mentioning that the proposed OTLBO applies 

the same number of fitness calls as TLBO; leading to true 

iteration-wise comparison. 
 

 

4. Problem formulation for discrete structural weight 
minimization 

 

Structural weight minimization is concerned here when 

member peroperties can only be chosen from a discrete set 

of practical profiles. In addition to variable bounds, there 

are several behavioral constraints that should be evaluated 

via structural analyses. It is a cumbersome numerical task, 

specially for large structures when no analytical method can 

be directly employed. In the other hand, the available 

structural profiles are practically limited to a specific 

discrete list which generally makes this discrete 

optimization more complicated than a continuous problem. 

It is desired that all stress and deflection regulations are 

satisfied at the optimal design. For a given truss structure 

with 𝑁𝑚  members that are grouped into 𝑁𝑑  sizing 

variables, the present optimization problem is formulated as 

follows 

( )

1 1

( )

{ ,..., }, 1,...,

( ) 0 , 1,...,

Nm jNd

k k

j k

LB UB

i i i d

c c

Minimize w X l A

Subject to

x x x i N

g X c N


 



 

 

 

 (8) 

Where ρ stands for material weight per unit volume and lk is 

length of the kth member in the jth group. Ak denotes its 

cross-sectional area which is determined after decoding the 

design vector: X={x1,…,xNd}.  

Due to the prescribed DIC, the design vector contains 

integer section indices from the lower bound to the upper 

bound in order to be chosen for any jth group with Nm(j) 

structural members.  

Side constraints on the number of available sections are 

satisfied by the function q(.). Behavioral constraints for the 

resulting stress, deflection and stability measures are 

defined as follows 

( ) 1 0,  1,...,          
( )

k k
m

k allowable

g X k N




     (9) 

,

,h

( ) 1 0,   1,...,      
( )

n hn

d n

n allowable

d
g X n N

d
     (10) 

( ) 1 0,       1,...,                    
( )

k k
m

k allowable

g X k N




     (11) 

dn,h is the nth node’s displacement at the hth degree of 

freedom. σk and λk denote the combined stress for the kth 

member and its slenderness ratio, respectively. Nm is the 

number of members while Nn stands for the number of 

nodes.  

For implementation of meta-heuristic search, the 

aforementioned constrianed formulation is changed to the 

unconstrained form by the following penalty function 

1

( ) ( ) (1 max(0, ( )) )
CN

p c

c

Maximize Fit X w X g X


      (12) 

in which p  stands for the prescribed penalty factor and 

w  is the strucural weight as a raw cost function.  

 

 

5. Numerical simulation 
 

Structural optimization has been a classic rewarding task 

for investigators since early 1910’s due to its wide 

application in the real world problems. Relatively narrow 

feasible region with respect to the entire search space as 

well as non-analytical derivation of objective function has 

led it to be classified in the non-convex complex 

optimization category. It is dealt here with OTLBO and 

TLBO and consequent statistical results are derived in each 

example using several independent runs. 

In order to better study behavior of the algorithms a 

diversity measure is utilized. In this article the following 
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definition of diversity index, DI, is applied as given by 

Kaveh and Zolghadr (2014) 

1

( ) ( )1
( ) ( )

pN Elite i

U L
ip

X t X t
DI t norm

N X X





  (13) 

where XElite(t) denotes the elitist individual up to the 

corresponding iteration, t and Np is the population size. 

As another issue, CPU time consumption is compared 

between TLBO and OTLBO provided that the same 

platform is used in each example. For this purpose, a time 

ratio is defined and calculated as 

Elapsed time by OTLBO
TR

Elapsed time by TLBO
  (14) 

 

 

 

 

 

Fig. 3 The 10-bar truss 

 

 

Every example is solved with both TLBO and the 

proposed OTLBO. For the sake of true comparison in each  

 

 

  
(a)  (b)  

Fig. 4 Mean optimal weight vs. population size for (a) TLBO and (b) OTLBO in the 10-bar truss design 

Table 1 Optimal design comparison for the 10-bar truss 

Element  

Group 

Section  

Variable 

Optimal cross section area ( in² ) Present Work 

Li et al. 

2009 

Kripka 

2004 

Camp et al. 

2004 

Turkkan 

2003 

Sonmez 

2011 
TLBO OTLBO 

1 A1 30.00 33.50 33.50 33.50 33.50 33.50 33.50 

2 A2 1.62 1.62 1.62 1.62 1.62 1.62 1.62 

3 A3 22.90 22.90 22.90 22.90 22.90 22.90 22.90 

4 A4 13.50 14.20 14.20 14.20 14.20 14.20 14.20 

5 A5 1.62 1.62 1.62 1.62 1.62 1.62 1.62 

6 A6 1.62 1.62 1.62 1.62 1.62 1.62 1.62 

7 A7 7.97 7.97 7.94 7.97 7.97 7.97 7.97 

8 A8 26.50 22.90 22.90 22.90 22.90 22.90 22.9 

9 A9 22.00 22.00 22.00 22.00 22.00 22.00 22.00 

10 A10 1.80 1.62 1.62 1.62 1.62 1.62 1.62 

Best (lb)  5531.98 5490.74 5490.74 5490.74 5490.74 5490.74 5490.74 

Average (lb)  ―  ―  ―  ― 5510.35 5515.63 5501.49 

Worst (lb)   ―  ―  ―  ― 5734.38 5734.29 5545.79 

Standard deviation (lb)  ―  ―  ―  ―  ― 49.25 17.67 
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of the independent runs, identical initial population is 

employed by both the methods. Consequently, the 

convergence histories are drawn and statistical measures are 

derived. The results are further compared with those 

reported in literature for the corresponding problems. 

 
5.1 The 10-bar planar truss design 
 

The cantilever truss of Fig. 3 is considered as the first 

example with 10 design variables.  

Several research works have already addressed optimal 

design of this benchmark using FPGA (Turkkan 2003), SA 

(Kripka 2004), ACO (Camp and Bichon 2004), HPSO (Li et 

al. 2009) and ABC (Sonmez 2011).  

Design parameters include modulus of elasticity, 

𝐸 = 68.971 × 103MPa , density 𝜌 = 2768 kg m3⁄ , 

allowable stress, 𝐹𝑦 = ±172.25 MPa  and allowable 

displacements, ±50.8 mm. A set of 42 discrete values of 

cross section areas are available including: {10.45, 11.61, 

12.84, 13.74, 15.35, 16.90, 16.97, 18.58, 18.90, 19.93, 

20.19, 21.81, 22.39, 22.90, 23.42, 24.77, 24.97, 25.03, 

26.97, 27.23, 28.97, 29.61, 30.97, 32.06, 33.03, 37.03, 

46.58, 51.42, 74.19, 87.10, 89.68, 91.61, 100, 103.23, 

109.03, 121.29, 128.39, 141.93, 147.74, 170.97, 193.55, 

216.13} (cm2) or {1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 

2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 

3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 

7.97, 11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 

22.0, 22.9, 26.5, 30.0, 33.5} (in2). After a number of trials, 

the penalty factor p is adjusted to 30 in order to insure 

feasibility of final designs. 

As both TLBO and OTLBO are parameterless 

algorithms; they are majorly controlled by the population 

size; Np. In this regard a sensitivity analysis is performed 

using 30 independent runs. Initial population of both TLBO 

and OTLBO are taken identical at each run but different 

from the other run while the maximum iteration number is 

fixed to 100. It is observed that variation of mean fitness is 

less than 1% for the Np of 100 and greater (Fig. 4). 

Consequently, a population size of 150 is selected to obtain  

 

 

further results in this example. 

Table 1 gives the best design achieved by OTLBO,  a 

truss weighing 5490.74 lb, which is the same as the global 

optimum reported by TLBO (Rao et al. 2011), FPGA 

(Turkkan, 2003), SA (Kripka, 2004), ACO (Camp and 

Bichon, 2004), HPSO (Li et al. 2009) and ABC (Sonmez, 

2011). The best, worst and average results for a number of 

independent runs by TLBO and OTLBO are distinctly 

reported in Table 1. In this example that the best results are  

 

 

Table 2 Available sections for the 52-bar truss design 

No. in² No. in² No. in² 

1 0.111 23 2.620 45 7.970 

2 0.141 24 2.630 46 8.530 

3 0.196 25 2.880 47 9.300 

4 0.250 26 2.930 48 10.850 

5 0.307 27 3.090 49 11.500 

6 0.391 28 1.130 50 13.500 

7 0.442 29 3.380 51 13.900 

8 0.563 30 3.470 52 14.200 

9 0.602 31 3.550 53 15.500 

10 0.766 32 3.630 54 16.000 

11 0.785 33 3.840 55 16.900 

12 0.994 34 3.870 56 18.800 

13 1.000 35 3.880 57 19.900 

14 1.228 36 4.180 58 22.000 

15 1.266 37 4.220 59 22.900 

16 1.457 38 4.490 60 24.500 

17 1.563 39 4.590 61 26.500 

18 1.620 40 4.800 62 28.000 

19 1.800 41 4.970 63 30.000 

20 1.990 42 5.120 64 33.500 

21 2.130 43 5.740   

22 2.380 44 7.220   

  
(a)  (b)  

Fig. 5 DI in (a) independent runs of TLBO and OTLBO, (b) its mean for the 10-bar truss design 
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the same, OTLBO has been superior in the mean or the 

worst results than ABC (Sonmez 2011) which itself has 

outperformed the employed TLBO. 

Both TLBO and OTLBO have captured the global 

optimum in less than 40 iterations. However, OTLBO has 

obtained its results with lower standard deviation than 

TLBO. Numerical simulations show that OTLBO has 

captured the global optimum of this example by 10350 

structural analyses; that is 15% lower than 12150 analyses 

required by TLBO.  

The trace of diversity index over independent runs of 

TLBO and OTLBO is given in Fig. 5. It can be realized that 

both the methods obey from a decreasing trend of DI 

variation from higher values in early iterations toward lower 

ones near the end. However, OTLBO exhibits more stable 

convergence about its mean over different runs with respect 

to TLBO. Mean DI among iterations is lower for OTLBO 

than TLBO, specially in final iterations after it has found 

the global optimum. Such a DI trace, also confirms less 

standard deviation about the final solution leading to more 

success rate of OTLBO. That means the proposed 

hybridization has successfully improved TLBO features via 

OTLBO algorithm. 

 
5.2 The 52-bar truss design 
 

As the second benchmark example, the 52-bar planar 

truss of Fig. 6 is treated here. It has already been studied 

implementing GA (Wu and Chow 1995), HS (Lee and 

Geem 2004), HPSO (Li et al. 2009), DHPSACO (Kaveh 

and Talatahari 2009) and SDE (Kaveh and Hosseini 2014). 

All members have elasticity modulus of   𝐸 = 2.07 ×

105 MPa ,  material density of 𝜌 = 7860 kg m3⁄  and  

 

 

 

Fig. 6 The 52-bar planar truss 

 

 

Fig. 7 Convergence trace in the 52-bar truss design 

 

 
Fig. 8 Mean DI for the 52-bar truss design 

 

 

allowable stress of  𝜍max = 180.5 MPa . The uppermost 

nodes are imposed to the loads 𝑃𝑥 = 100 kN  and 

𝑃𝑦 = 200kN in x and y directions, respectively. 

Table 2 gives the available sections for optimization. 

The structural members are associated with 12 groups: 

(1)    4  (2) 5     , (3)      3 , (4)  4    7 , 

(5)  8   23, (6) 24   26, (7) 27   3 , (8) 3   36, 

(9) 37   39 , (10) 4   43 , (11) 44   49 , (12) 5  
 52. In this example p  is taken 50. The population size 

and total number of iterations are taken the same as 

previous example. 

Table 3 declares that OTLBO has outperformed TLBO 

not only in the best result but also regarding the mean and 

the worst designs with 40% lower standard deviation. 

According to Table 3, OTLBO has also captured better final 

design than those reported by GA, HS, HPSO, DHPSACO 

and SDE (Li et al. 2009, Wu and Chow 1995, Lee and 

Geem 2004, Kaveh and Talatahari 2009, Kaveh and 

Hosseini 2014). 

According to Fig. 7, OTLBO has considerably superior 

convergence rate over TLBO. It is confirmed by reporting 

the required number of fitness evaluations to capture the 

optimum which is 15450 for OTLBO; i.e., 18% less than 

18750 for TLBO.  
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The overall trend of mean DI decrease in Fig.8 is similar 

to the previous example except that it exhibits more 

difference between TLBO and OTLBO as the search 

progresses to the final iterations. According to Fig.8 and 

Table 3, OTLBO has exhibited better capability of 

intensification than TLBO in capturing the optimum. 

 
5.3 The 72-bar truss design 
 

The 72-bar truss of Fig. 9 is treated here to verify 

performance of the algorithms in optimal design of such a 

spatial structure. This example is solved by Wu and Chow 

(1995), Lee and Geem (2004), Li et al. (2009). Material 

density is 0.1 𝑙𝑏 𝑖𝑛3⁄  and the modulus of elasticity is 

10000 𝑘𝑠𝑖 . The allowable tension/compression stresses 

are ±25 𝑘𝑠𝑖 while nodal displacement in each direction is 

limited to  ±0.25 𝑖𝑛 . Loading applied to the structure 

consists of  5 𝑘𝑖𝑝 , 5 𝑘𝑖𝑝  and -5 𝑘𝑖𝑝  in the x, y and z 

directions, respectively. Structural members are subdivided 

into 16 groups for sizing: (1)𝐴  𝐴4, (2) 𝐴5  𝐴 2, (3) 

𝐴 3  𝐴 6, (4) 𝐴 7  𝐴 8, (5) 𝐴 9  𝐴22, (6) 𝐴23  𝐴3 , 

(7) 𝐴3  𝐴34 , (8) 𝐴35  𝐴36 , (9) 𝐴37  𝐴4 , (10) 

𝐴4  𝐴48 , (11) 𝐴49  𝐴52 , (12) 𝐴53  𝐴54 ,  (13) 

𝐴55  𝐴58 , (14) 𝐴59  𝐴66 , (15) 𝐴67  𝐴7 , (16) 

𝐴7  𝐴72. List of available cross section areas is given as: 

D={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 

1.2, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 

2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2}(𝑖𝑛.2 ). 
The propsed algorithms in this example are run with a 

population of 100 classmates for 100 iterations where p  

is taken 30. According to Table 4, the reported best result of 

GA, HS, HPSO, DHPSACO and SDE varies from 

 

 
Fig. 10 Convergence trace in the 72-bar truss design 

 

 

400.66 𝑙𝑏 to 385.54𝑙𝑏 while it is obtained 371.95 𝑙𝑏  by 

TLBO and 370.52 𝑙𝑏 by OTLBO. Convergence superiority 

of OTLBO over TLBO is also evident from Fig.10. OTLBO 

has captured it via 7500 fitness evaluations that is nearly 

23% lower than 9700 analyses taken by TLBO up to its last 

fitness improvement.  

Statistical study reveals average results of 371.65 𝑙𝑏 vs 

378.98 𝑙𝑏  and the worst results of 373.91 𝑙𝑏  vs 

396.24 𝑙𝑏 for OTLBO vs TLBO, respectively. It is notable 

that OTLBO has found these results with a standard 

deviation of 1.14 𝑙𝑏 which is 80% lower than 5.65 𝑙𝑏 by 

TLBO. 

Analyzing DI variation in Fig.11, OTLBO shows more 

stable trend of diversity decrease than TLBO among 

different optimization runs. Such a dynamic balance 

between diversification and intensification has resulted in 

higher quality of final solution of OTLBO, as reported in 

Table 4. 
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Table 3 Optimal design comparison for the 52-bar planar truss 

 
Optimal cross section area ( mm² ) 

  

Present work 
Kaveh & 

Hosseini 
Kaveh & Talatahari Li et al. Lee & Geem Wu & Chow Section Element 

OTLBO TLBO 2014 2009 2009 2004 1995 Variable Group 

4658.055 4658.055 4658.055 4658.055 4658.055 4658.055 4658.055 A1 ~ A4 1 

1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 A5 ~ A10 2 

494.193 388.386 363.225 494.193 363.225 506.451 645.16 A11 ~ A13 3 

3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 A14 ~ A17 4 

939.998 939.998 939.998 1008.385 939.998 939.998 1045.159 A18 ~ A23 5 

494.193 729.031 641.289 285.161 494.193 494.193 494.193 A24 ~ A26 6 

2238.705 2238.705 2238.705 2290.318 2238.705 2290.318 2477.414 A27 ~ A30 7 

1008.385 1008.385 1008.385 1008.385 1008.385 1008.385 1045.159 A31 ~ A36 8 

494.193 363.225 363.225 388.386 388.386 2290.318 285.161 A37 ~ A39 9 

1283.868 1283.868 1283.868 1283.868 1283.868 1535.481 1696.771 A40 ~ A43 10 

1161.288 1161.288 1161.288 1161.288 1161.288 1045.159 1045.159 A44 ~ A49 11 

494.193 506.451 641.289 506.451 792.256 506.451 641.289 A50 ~ A52 12 

1902.606 1903.092 1904.126 1904.830 1905.49 1906.760 1970.142 
 

Best (kg) 

1930.662 1972.846  ―  ―  ―  ―  ― 
 

Average(kg) 

2158.994 2383.310  ―  ―  ―  ―  ― 
 

Worst (kg) 

63.941 108.016  ―  ―  ―  ―  ― Standard deviation (kg) 
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(b) Top view 

 
(a) Side view (c) 3D view of the first story 

Fig. 9 The 72-bar space truss 

Table 4 Optimal design comparison for the 72-bar space truss 

 
Optimal cross section area in² (cm²) 

  
Present work Kaveh & Hosseini Kaveh & Talatahari Li et al. Lee & Geem Wu & Chow Section Element 

OTLBO TLBO 2014 2009 2009 2004 1995 Variable Group 

1.9(12.26) 1.8(11.62) 2.0 1.9 2.1 1.9 1.5 A1 ~ A4 1 

0.5(3.23) 0.5(3.23) 0.5 0.5 0.6 0.5 0.7 A5 ~ A12 2 

0.1(0.65) 0.1(0.65) 0.1 0.1 0.1 0.1 0.1 A13 ~ A16 3 

0.1(0.65) 0.1(0.65) 0.1 0.1 0.1 0.1 0.1 A17 ~ A18 4 

1.3(8.39) 1.5(9.68) 1.3 1.3 1.4 1.4 1.3 A19 ~ A22 5 

0.5(3.23) 0.5(3.23) 0.5 0.5 0.5 0.6 0.5 A23 ~ A30 6 

0.1(0.65) 0.1(0.65) 0.1 0.1 0.1 0.1 0.2 A31 ~ A34 7 

0.1(0.65) 0.1(0.65) 0.1 0.1 0.1 0.1 0.1 A35 ~ A36 8 

0.5(3.23) 0.6(3.87) 0.5 0.6 0.5 0.6 0.5 A37 ~ A40 9 

0.5(3.23) 0.5(3.23) 0.5 0.5 0.5 0.5 0.5 A41 ~ A48 10 

0.1(0.65) 0.1(0.65) 0.1 0.1 0.1 0.1 0.1 A49 ~ A52 11 

0.1(0.65) 0.1(0.65) 0.1 0.1 0.1 0.1 0.2 A53 ~ A54 12 

0.1(0.65) 0.1(0.65) 0.2 0.2 0.2 0.2 0.2 A55 ~ A58 13 

0.5(3.23) 0.5(3.23) 0.6 0.6 0.5 0.5 0.5 A59 ~ A66 14 

0.4(2.58) 0.4(2.58) 0.4 0.4 0.3 0.4 0.5 A67 ~ A70 15 

0.6(3.87) 0.5(3.23) 0.6 0.6 0.7 0.6 0.7 A71 ~ A72 16 

370.52 371.95 385.54 385.54 388.94 387.94 400.66 
 

Best (lb) 

371.65 378.98  ―  ―  ―  ―  ― Average (lb) 

373.91 396.24  ―  ―  ―  ―  ― Worst (lb) 

1.14 5.65  ―  ―  ―  ―  ― Standard deviation (lb) 
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5.4 The 582-bar truss design 
 

As an example of a large-scale problem a 582-bar truss 

of Fig. 12 (80 m tower) is considered. This optimization 

problem has already been solved with discrete variables by 

Hasançebi et al. (2009), Kaveh and Talatahari (2009) and 

Kaveh and Mahdavi (2014).To keep symmetry of the tower 

around x- and y-axes its members are considered in 32  

 

 

independent groups for sizing. A single load case consisting 

of 5 kN lateral forces in both x and y directions and vertical 

forces of 30 kN in the downward z-direction is applied at 

every node of the tower. The tower is optimized for 

minimum volume while member cross-sections are to be 

selected from a list of AISC W-sections based on area and 

radii of gyration (Hasançebi et al. 2009). The corresponding 

lower and upper bounds of section area are  39.74 cm2 and  

Table 5 Optimal design results for the 582-bar tower design 

OTLBO TLBO 
Kaveh & Mahdavi 

2014 

Kaveh & Talatahari 

2009 

Hasançebi 

et al. 2009 Element 

Group Area 

(cm2) 
Section 

Area 

(cm2) 
Section 

Area 

(cm2) 
Section 

Area 

(cm2) 
Section 

Area 

(cm2) 
Section 

39.74 W8X21 39.74 W8X21 39.74 W8X21 45.68 W8X24 39.74 W8X21 1 

136.13 W12X72 156.77 W21X83 149.68 W12X79 136.13 W12X72 149.68 W12X79 2 

53.23 W8X28 53.23 W8X28 53.23 W8X28 53.16 W8X28 45.68 W8X24 3 

118.06 W21X62 123.23 W12X65 90.96 W10X60 109.68 W12X58 113.55 W10X60 4 

45.68 W8X24 45.68 W8X24 45.68 W8X24 45.68 W8X24 45.68 W8X24 5 

39.74 W8X21 39.74 W8X21 39.74 W8X21 45.68 W8X24 39.74 W8X21 6 

92.90 W10X49 90.97 W8X48 128.38 W10X68 92.90 W10X49 90.97 W8X48 7 

45.68 W8X24 45.68 W8X24 45.68 W8X24 45.68 W8X24 45.68 W8X24 8 

39.74 W8X21 39.74 W8X21 39.74 W8X21 45.68 W8X24 39.74 W8X21 9 

90.97 W8X48 90.97 W8X48 90.96 W14X48 75.48 W12X40 85.81 W10X45 10 

39.74 W8X21 39.74 W8X21 49.35 W12X26 56.71 W12X30 45.68 W8X24 11 

136.13 W12X72 140.64 W14X74 118.06 W21X62 136.13 W12X72 129.03 W10X68 12 

144.52 W24X76 109.68 W12X58 143.87 W18X76 143.87 W18X76 140.65 W14X74 13 

92.90 W10X49 92.90 W10X49 100.64 W12X53 92.90 W10X49 90.97 W8X48 14 

149.68 W12X79 155.48 W14X82 115.48 W14X61 155.48 W14X82 143.87 W18X76 15 

58.9 W8X31 74.19 W10X39 75.48 W8X40 58.84 W8X31 55.90 W8X31 16 

118.06 W21X62 140.64 W14X74 101.93 W10X54 115.48 W14X61 39.74 W8X21 17 

45.68 W8X24 53.23 W8X28 49.35 W12X26 45.68 W8X24 127.10 W16X67 18 

39.74 W8X21 39.74 W8X21 39.74 W8X21 39.74 W8X21 45.68 W8X24 19 

87.10 W18X46 94.84 W12X50 81.29 W14X43 75.48 W12X40 39.74 W8X21 20 

39.74 W8X21 41.87 W10X22 45.68 W8X24 45.68 W8X24 75.48 W8X40 21 

39.74 W8X21 39.74 W8X21 39.74 W8X21 41.87 W14X22 45.68 W8X24 22 

47.35 W6X25 57.03 W10X30 41.87 W10X22 58.84 W8X31 39.74 W8X21 23 

39.74 W8X21 39.74 W8X21 45.68 W8X24 53.23 W8X28 41.87 W10X22 24 

39.74 W8X21 39.74 W8X21 39.74 W8X21 39.74 W8X21 45.68 W8X24 25 

39.74 W8X21 39.74 W8X21 39.74 W8X21 39.74 W8X21 39.74 W8X21 26 

39.74 W8X21 39.74 W8X21 45.68 W8X24 45.68 W8X24 39.74 W8X21 27 

39.74 W8X21 39.74 W8X21 39.74 W8X21 53.23 W8X28 45.68 W8X24 28 

39.74 W8X21 39.74 W8X21 39.74 W8X21 68.39 W16X36 39.74 W8X21 29 

39.74 W8X21 39.74 W8X21 47.35 W6X25 45.68 W8X24 39.74 W8X21 30 

39.74 W8X21 49.61 W14X26 62.64 W10X33 39.74 W8X21 45.68 W8X24 31 

39.74 W8X21 39.74 W8X21 53.22 W8X28 45.68 W8X24 45.68 W8X24 32 

 

 

20.9835  

 

21.5155  
21.8376 

 
22.0607 

 
22.3958 Best (m3) 

 
21.2646 

 
21.9798 

 
----- 

 
----- 

 
----- Mean (m3) 

 
21.5845 

 
22.5555 

 
----- 

 
----- 

 
----- Worst (m3) 

 
0.2172 

 
0.3385 

 
----- 

 
----- 

 
----- St. Dev.(m3) 
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Fig. 11 Mean DI for the 72-bar truss design 

 

 

1387.09 cm2, respectively. Nodal displacements are limited 

to 8.0 cm (3.15 in.) in each direction. 

The allowable tensile and compressive stresses are 

calculated due to the ASD_AISC (1989) provisions as 

𝜍𝑖
: = 0.6 𝐹𝑦           𝑓𝑜𝑟                 𝜍𝑖 ≥ 0

𝜍𝑖
;                             𝑓𝑜𝑟                𝜍𝑖 < 0 

 (15) 

and 𝜍𝑖
; is calculated according to the slenderness ratio 

{
 
 

 
 *( 1  

𝜆𝑖
2

2𝐶𝑐
2)  𝐹𝑦 + (

5

3
+ 
3 𝜆𝑖
8 𝐶𝑐

  
𝜆𝑖
3

8 𝐶𝑐
3)⁄  𝑓𝑜𝑟 𝜆𝑖 < 𝐶𝑐

12 𝜋2𝐸

23 𝜆𝑖
2                                           𝑓𝑜𝑟           𝜆𝑖 ≥ 𝐶𝑐

 (16) 

whereas E (the modulus of elasticity) is 203893.6 MPa and 

Fy (the yield stress of steel) is taken 253.1 MPa.  𝜆𝑖 is the 

slenderness ratio (𝜆𝑖 = 
𝑘 𝐿𝑖

𝑟𝑖
 )  where  𝐿𝑖 stands for the 

length of members and 𝑟𝑖  is the corresponding minimal 

radius of gyration.  𝐶𝑐 = √2𝜋
2𝐸 𝐹𝑦⁄  denotes the 

slenderness measure by which the elastic and inelastic 

buckling regions are distinguished from each other. 

Furthermore, the maximum slenderness ratio 𝜆𝑚  for 

tension and compression members is limited to 300 and 

200, respectively.  

{
𝜆𝑚 ≤   300      𝑓𝑜𝑟 𝑡𝑒𝑛𝑠𝑖𝑜𝑛  𝑚𝑒𝑚𝑏𝑒𝑟𝑠    

         
       𝜆𝑚 ≤    200    𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑚𝑒𝑚𝑏𝑒𝑟𝑠   

 (17) 

The tower is optimized to obtain its minimum volume 

by a population of 120 classmates. Fig. 13 shows superior 

convergence history of OTLBO with respect to TLBO in 

this example. OTLBO has captured the global optimum by 

80400 fitness evaluations which is 36% lower than 125520 

by TLBO. 

Table 5 provides the results for comparison of OTLBO 

with TLBO and the other literature works which have 

treated this problem. According to the reported results, 

OTLBO has revealed the best quality of final solution 

among the others. It has outperforms TLBO not only in the 

best but also in average and worst results. Besides, OTLBO 

has obtained its solutions with less standard deviation. It 

confirms more stable trend of DI variation for OTLBO with 

respect to TLBO, as shown in Fig. 14. The mean DI is 

similar for both the algorithms at early iterations but takes 

lower values for OTLBO as its search progresses toward the 

final higher quality solution. 

Table 6 reports TR for the treated examples in two cases: 

first, it is calculated for the same total Np iterations but in 

the second case the elapsed time of each algorithm up to its 

optimal-design capture, is employed. Note that after such a 

capture of final optimum, no fitness improvement occurs 

for the corresponding algorithm. 

It can be realized that variation of the total elapsed time 

within Np iterations, is negligible between OTLBO and 

TLBO. However, according to the second row of Table 6 

the time required for the capture of final optimum has been 

considerably lower for the proposed OTLBO specially for 

larger-scale problems. 

 

 

 
(a) Top view 

 
(b) Side View 

Fig. 12 The 582-bar tower truss 
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Table 6 CPU time comparison between OTLBO and TLBO 

TR 
10-bar 

Truss 

52-bar 

Truss 

72-bar 

Truss 

582-bar 

Truss 

Up to the 

last iteration 
0.970 1.005 0.991 1.013 

Up to the 

first capture 
0.826 0.828 0.766 0.649 

 

 

Fig. 13 Convergence trace in the 582-bar truss design 

 

 

Fig. 14 Mean DI for the 582-bar truss design 

 

 

6. Conclusions 
 

In the present work, an improved variant of TLBO is 

developed by introducing it a new artificial agent called the 

observer. It is constructed by memory exploitation over the 

current population of classmates. In this regard, the teacher 

phase is split into the teacher and the observer phases 

without adding any extra parameters. It is declared that the 

standard TLBO takes benefit of vector-sum movements and 

does not include the proposed method of information 

exchanges via the observer phase. The matter provides 

theoretical support for expecting performance improvement 

of the method especially for the discrete problems when 

such memory exploitations are effective. It was further 

confirmed by numerical simulation in the present work. An 

elitist strategy was also employed in both TLBO and 

OTLBO in order not to loose the already-found elite 

solution during next iterations. 

As a rewarding structural application, discrete sizing 

problem was formulated and solved by the proposed 

method. An integer coding is thus suited introducing a 

proper design vector. Performance of the utilized TLBO and 

OTLBO was then evaluated via a number of literature 

benchmarks. Consequently, OTLBO exhibited superior 

capability in capturing high quality solutions with respect to 

the other reported results in the treated examples. Besides, 

the proposed OTLBO revealed rapid convergence toward 

the optimum in less number of iterations and also less 

fitness evaluations than TLBO. The higher the number of 

structural members, the more difference in the required 

function calls is generally observed. 

Further statistical study confirmed superior effectiveness 

of OTLBO over TLBO not only in the best but also in the 

worst and mean results. In addition, lower standard 

deviation of final fitness has been achieved by OTLBO that 

means higher succeed rate among various runs of the 

algorithm. 

Tracing the trend of the diversity index, OTLBO is 

found capable of providing considerable diversification in 

early iterations and great intensification in the final 

iterations. The DI trace and the resulted standard deviation, 

exhibits more stable convergence by OTLBO with respect 

to TLBO among independent runs. The matter has been 

confirmed treating several truss sizing examples. 

It is worth mentioning that the proposed hybridization 

preserves simplicity and parameter-less structure of TLBO 

so that the total run time remains constant in the same 

number of iterations. However, OTLBO requires less 

computational effort and function calls than TLBO to 

capture the same quality design. It is important for sizing 

problems when structural analyses constitute major part of 

time consumption during optimization. Besides, the 

computational time ratio declared superiority of the 

proposed method over TLBO for larger-scale structures.  

Comparison of final results by the present work with 

those already reported in literature confirmed capability of 

OTLBO in capturing high quality global optima in discrete 

problems. Proper hybridization of evolutionary and 

vector-sum search operators has empowered the proposed 

method to overcome search refinement as a general 

challenge of parameter-less methods. In the light of the 

revealed theoretical points and numerical tests, the proposed 

OTLBO can be offered as a powerful optimization 

algorithm for structural design that combines quality of 

solution with computational efficiency. 
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