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1. Introduction 
 

Seismic analyses were first developed for elastic 

structures. In an elastic time history analysis, damping is 

approximated at the global scale to represent all the 

dissipated energy in a structure. However, this 

approximation is generally not satisfactory for the large 

inelastic deformations of structures when strong 

earthquakes occur (Chopra 1995). It is because the energy 

dissipation sources, such as viscous, friction, and hysteretic 

devices, have to be adequately considered in a nonlinear 

dynamic analysis (Deierlein et al. 2010). For a convenient 

damping model, the simplest equation for damping force is 

(Vargas and Bruneau 2007) 

Fd=-cv (1) 

where Fd is the damping force, c is the damping constant or 

damping coefficient, and v is the velocity of an object. The 

above equation is called viscous damping model, and it 

describes a typical case for an object that is dampened by a 

fluid at relatively low speeds. However, that is not the case 

for most building structures because the damping is not 

viscous, and the assumption for Eq. (1) is violated.  

The actual damping in a structure is extremely difficult 

to be identified and the formulation of the damping force is  
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very complicated. However, the classical viscous damping 

model (Rayleigh damping) is used widely in engineering 

practice. The Rayleigh damping formulation is as follows 

[C]=αm[M]+βk[K] (2) 

in which αm and βk are the mass–proportional damping 

coefficient and stiffness–proportional damping coefficient, 

respectively; [M], [K], and [C] are the mass matrix, stiffness 

matrix, and damping matrix, respectively. This model was 

originally developed in the linear-elastic dynamic analysis. 

In this model, the mass component dampens the energy at 

the low frequency domain, while the stiffness component 

dampens the energy at the high frequency domain. 

Evidently, the mass-proportional damping is difficult to be 

justified practically because the air damping is negligible 

for most structures (Hall 2006). However, mathematically it 

is very convenient because of its decoupling features. In 

fact, the internal friction is the most significant damping 

source in structures (Charney 2008, Filiatrault et al. 2002). 

Due to the presence of the friction damping, the damping 

ratios of a structure are almost frequency-independent and 

the structure exhibits hysteretic characteristics to a certain 

extent even within the elastic stage (Bernal 1994). In 

addition, there may be other damping that have not been 

studied, but they do not contribute considerably to total 

damping, such as radiation damping, which decreases with 

the decrease in frequency and the increase in slenderness. If 

the energy dissipation sources are not able to be directly 

modeled, Rayleigh damping can be used to represent the 

unknown energy dissipation at the structure level. 
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ground motions is determined in terms of the existing damping models. 
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As described above, Rayleigh damping can be used as 

an additional energy dissipation source for the purpose of 

mathematical convenience. Therefore, Rayleigh damping 

model has to be carefully designed to avoid unintended 

consequences and to provide the best control in dynamic 

analyses (Bernal 1994). In recent years, researchers have 

investigated the limitations of Rayleigh damping when it is 

used for the inelastic systems, and some methods for 

practical references are proposed. Charney (2008) 

considered that although the mass-proportional damping is 

difficult to be justified physically, it provides an additional 

control on the modal damping ratios in finite element 

practice to avoid the numerical divergence. PEER/ATC 

(2010) pointed out that it is generally accepted that the 

stiffness-proportional term of the damping matrix should 

exclude or minimize the transition effect from elasticity to 

plasticity, in which stiffnesses change dramatically during 

dynamic analyses. Another suggested approach (Hall 2006) 

was to eliminate the stiffness-proportional damping term 

and to only specify a value for the mass–proportional 

damping term. However, as shown by Jehel and Léger 

(2014), researchers also recommended to use the Rayleigh 

damping models based on the initial stiffness. Zareian and 

Medina (2010) stated that excessive damping forces can be 

generated when the initial stiffness-proportional model was 

used, and they pointed out that the tangent stiffness-

proportional damping model was recommended in 

engineering practice. Most existing guidelines (Deierlein et 

al. 2010, PEER/ATC 2010, ATC 1997, Kelly 2001) still 

suggest to use Rayleigh damping model, but do not provide 

sufficient information, such as the limitations and 

applications of different damping models for different 

building systems. In these guidelines and documents, 

Rayleigh damping models were modified. NEHRP 

(Deierlein et al. 2010) recommends that the reasonable 

periods, 0.2T and 1.5T, are used to specify the damping 

values to calculate the damping coefficients, where T is the 

fundamental vibration period of the structure. In the user 

manual of the computer program PERFORM-3D (CSI 

2007), the mass and stiffness damping coefficients are 

computed by means of ωa=1.10ω1 and ωb=4.00ω1. In SAC 

projects (Krawinkler 2000), the damping coefficients are 

defined by ωa=ω1 and ωb=0.2s. On the other hand, Charney 

(2008) suggested that the first frequency, ωa, of a building 

should be expected to be reduced to 0.667ω1 due to non-

linear softening, and the second frequency, ωb, can be set to 

3ω1. According to the above literatures, it is found that 

there is at present still no clear consensus on how to use 

Rayleigh damping in engineering practice. Although the 

viscous damping does not exist in real buildings, the 

damping in buildings can be approximated by the viscous 

damping formula even if there is no viscous material in 

structures (Tamura 2012). Therefore, it is necessary to 

further investigate the effects of these viscous damping 

models on dynamic demands when they are applied to 

engineering structures. This is one of objectives of this 

study. 

In Rayleigh damping model, the definition of the 

damping coefficients depends on not only the circle 

frequencies of a structure but also its damping ratios. The 

uncertainty of the damping ratio leads to inaccurate 

dynamic predictions. In a nonlinear analysis, PEER/ATC 

(2010) suggests a minimum value, which is 2% of the 

critical damping. The increase of damping beyond this 

value depends on whether hysteretic energy dissipation in 

the structural components is explicitly captured. Existing 

guidelines (AISC 2005) suggest to use the viscous damping 

ratio that is less than 1% for large span space structures. 

Many codes also suggest that the damping values of about 

1% be used to model the energy dissipation for steel frame 

structures under small deformations. Currently, the damping 

ratios are obtained based on the full-scale test data. Goel 

and Chopra (1997) found that the equivalent damping ratio 

for buildings in excess of 35 stories ranged between 2%-4% 

of the critical damping based on the data obtained from 

strong earthquake motions. By means of the full-scale test 

data of the buildings in Japan, the equivalent damping ratio 

of 1% to 2% in steel structures was observed (Satake et al. 

2003). Tatemichi et al. (1997) collected the data from the 

vibration test of 33 dome-shaped structures in Japan; the 

results showed that the damping ratio of the first mode 

depended on both the vibration amplitude and the span 

length, and an approximate relationship between the first 

damping ratio and the length of the span was given by 

ξ1=0.03L/100, in which L is the span length. The results of 

the wind tunnel tests on cable domes showed that the 

damping ratio increased with the increase in the wind speed, 

ranging from 2%-4% (Li et al. 2009), and it should be noted 

that these damping ratios were greatly influenced by friction 

damping. The experimental data on the damping are very 

limited due to the difficulty in obtaining enough test data, 

and they are not sufficient for giving a detailed description 

of the damping ratios for large domes. Therefore, the 

second objective of this study is to assess the sensitivity of 

the dynamic demands to the assumed damping ratios. 
In the current study, a simulation technology is 

developed to simulate the nonlinear behaviors of members, 

and a large span single-layer latticed dome that is subjected 

to earthquake ground motions is investigated and compared 

using different Rayleigh-type damping models. Finally, the 

low cycle fatigue damage values in sections of members are 

given using these damping models. 

 

 

2. Ramberg-Osgood steel material model with low 
cycle fatigue effect 
 

2.1 Ramberg-Osgood steel material model 
 

In this study, a material model is used for a large span 

single-layer latticed dome (Zhang et al. 2016) in order to 

accurately capture the steel material damping (Zhang et al. 

2015). The Ramberg-Osgood (R-O) steel material model in 

OpenSees is presented herein. It describes a nonlinear 

hysteretic relationship between the stress and the strain 

showing a smooth elastic-plastic transition. This model is 

very useful for modeling the materials that harden with 

plastic deformation. In the field of earthquake engineering, 

the Ramberg-Osgood model is often used to simulate the 

behavior of structural steel materials and components 
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(Mazzoni et al. 2004). The model is mathematically 

expressed as (Ramberg and Osgood 1943) 

= ( )nK
E E

 
   (3)  

where   is the strain,   is the stress, and E is the modulus 

of elasticity. K and n are constants, describing the hardening 

behavior of the material. By introducing the yield strength 

of the material    and defining a new parameter  , here, 

        ⁄    
, it is convenient to rewrite the second 

term on the right-hand side as 

0

0

( ) =

n

nK
E E

 




 
 
 

 (4)  

The expression  
  

 
 can be treated as a yield offset. The 

value of α can also be found by means of experimental data. 

According to metallic material experiments, it is observed 

that the yield offset is equal to 0.2%. Therefore, Eq. (3) is 

further expressed as 

0

= 0.002( )n

E

 



  (5)  

Through the experimental tests, it is recommended that 

the parameter n should be approximately equal to 8~10 for 

common steel material (Sheen 1984). The stress-strain 

relationship of the Ramberg-Osgood model shown in Eq. 

(5) includes the elastic part and plastic part. Different 

parameters lead to different stress-strain curves during 

loading and unloading, and this difference is caused by the 

internal friction of the material. As a result, compared with 

other bi-linear material models, this steel constitutive model 

can explicitly model the material damping even within the 

elastic region. Moreover, the formula of the Ramberg-

Osgood model given by Eq. (5) is also adopted by the 

American Society of Civil Engineers (ASCE) design 

specification (ASCE/SEI 2003). 

 

2.2 Modeling of fracture due to low cycle fatigue 

 

2.2.1 Low cycle fatigue model 
In this study, the material fatigue effect in a large span 

single-layer latticed dome is considered. The relevant 

investigation (Shemshadian et al. 2011) on various 

damaged structures subjected to earthquakes shows that the 

structural failures are related to the damage caused by the 

cumulative effects of a few cycles of high strain amplitudes. 

This type of failure is termed as “low cycle fatigue” (LCF). 

The conventional plasticity constitutive models that are 

used in the simulation of the structures normally do not 

address the fatigue damage, and LCF is not explicitly 

mentioned in the seismic design standards (AISC 2005). 

However, as stated by Lignos et al. (2011), the effects of 

fatigue damage on the structural components may become 

critical for structural design because of the large number of 

load cycles. In the recently developed Performance-Based 

Earthquake Engineering (PBEE) methodology, the 

evaluation and assessment on the fatigue damage are 

considered. Moreover, several structural cumulative 

damage models during earthquakes have been proposed 

(Mehanny and Deierlein 2001, Hindi and Sexsmith 2001, 

Park and Ang 1985, Stephens et al. 2000). Among these 

models, the Coffin-Manson law is widely used to simulate 

the mechanical fatigue damage of steel material. The 

Coffin-Manson law is expressed as (Stephens et al. 2000) 

0 ( )m

i fN   (6)  

where    is the fatigue ductility coefficient, which roughly 

indicates the strain amplitude at which one complete cycle 

on a virgin material causes failure;   is the fatigue 

ductility exponent, which describes the sensitivity of the 

strain amplitude to the number of cycles leading to failure; 

   is the number of constant amplitude cycles leading to 

failure and    is the strain amplitude experienced in each 

cycle. In the Coffin-Manson law, a linear relationship is 

assumed between the log of    and the log of   . For the 

cumulative damage under the stress cycles with varying 

magnitudes, the Palmgren-Miner linear cumulative fatigue 

damage theory (Miner’s Rule) is used to calculate the 

damage value (Mazzoni et al. 2004). According to the Rule, 

the index of damage D is as follows 

i

fi

n
D

N
  (7)  

where ni and Nfi are the applied cycle number under the i
th

 

constant amplitude loading and total cycle number leading 

to failure, respectively. In Eq. (7), D is a parameter that 

varies from 0 at undamaged state to 1 at fatigue failure. The 

stress of an element becomes zero when the fatigue life is 

exhausted. In Eq. (6), the fatigue ductility coefficient and 

exponent can be calibrated by low cycle fatigue tests. For 

wide flange beams, the typical values are m=-0.458 and 

  =0.191 (Mazzoni et al. 2004), while these values are m=-

0.5 and   =0.095 for hollow structural sections (Uriz 

2005). Based on the low cycle fatigue tests for the austenitic 

stainless steel AISI 303, it is observed that the fatigue 

ductility coefficient and exponent are m=-0.292 and 

  =0.052, respectively (Anes et al. 2014). In most general 

situations, the material is subjected to complex fatigue 

loading conditions that generate the multi-axial stress states, 

and the material easily fatigues. Using a smaller value of    

than required, it may provide an appropriate prediction.  
The material constitutive model presented in Fig. 1, 

which combines the R-O model with the fatigue effect 

shown in Fig. 2, is implemented in OpenSees. Here, it is 

assumed that the fatigue properties is similar to austenitic 

stainless steel AISI 303, and the fatigue ductility coefficient 

and exponent are set as m=-0.29 and   =0.05, respectively. 

It should be noted that the fatigue material model wraps 

around R–O steel material in OpenSees and does not 

influence the stress–strain relationship of the parent 

material, and the damage value and fracture behavior of the 

material can be computed and captured by this model. 

 

2.2.2 Hysteresis of a tubular member 
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In a single-layer latticed dome, the members are mostly 

subjected to large axial loads and a small amount of end 

moments (Zhang and Han 2013, Zhang and Wang 2015). 

The members with large slenderness ratios are easier to lose 

stability under cyclic loads. Although the failure of an 

individual member does not necessarily lead to an overall 

structural collapse, it causes the internal force redistribution 

in the members, and ultimately reduces the loading capacity 

of the dome. During the last decade, the overall and local 

buckling behaviors of cylindrical tubular members have 

been intensively investigated. Gupta et al. (1993, 2004) 

pointed out that the loading capacity, deformation and 

failure mode of thin tubes depend on the diameter-to-

thickness ratio, material constitutive model, initial 

geometrical imperfection, and constraint conditions of a 

member. Teng (1996) considered that the theoretical 

buckling load based on the assumption of a perfect 

geometry shape significantly overestimates the actual 

strength of a thin steel tube. Therefore, the initial 

imperfection, such as the initial deflection, has an important 

effect on the loading capacity of a thin tubular member. 

Here, a tubular member (the cross sectional diameter 

Di=355.6 mm and wall thickness t=6.3 mm) with the length 

5.64 m and initial deflection d=0.0564 m is investigated to 

present the loading capacity under cyclic loading using the 

OpenSees software, as shown in Fig. 3. The tubular member 

is modeled as two Displacement-Based Beam-Column 

elements. The ends of the tube are connected with the 

elastic members in order to model the constraint conditions. 

The stiffnesses of the elastic members are far larger than 

that of the tube, and each elastic member is modeled as two 

elasticBeamColumn elements.  

Fig. 4 shows the hysteretic response of the tube under 

varying axial loads. It is observed that the ductility of the 

tube with the imperfection under compression is lower than 

that under tension. The loading capacity decreases with the 

increase in the cycles and the strength deterioration occurs. 

The loading capacity under compression is less than that 

under tension. As a result, the backbone curves (the dot 

curves in Fig. 4) under the compression and tension states 

are asymmetric. However, if without this initial deflection, 

the tube will behave as an ideal member without a global 

buckling. It is because a small initial imperfection can 

initialize a deviation and overall buckling of the member. 
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Fig. 1 R-O material with fatigue effect 
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Fig. 2 Fatigue damage value of material 
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Fig. 3 Mechanical model of tubular member 
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Fig. 4 Hysteretic response of tubular member 

 

 

3. Numerical example 
 

3.1 Model description 
 

A single-layer latticed dome with welded ball joints is 

considered in this study, as shown in Fig. 5. Its span length 

is 100 m and the height is 22.22 m. The span-rise ratio is 

4.5. 

In the model, the elastic modulus and yield strength of 

the steel material are 200 GPa and 310 MPa, respectively. 

In this study, the hardening parameter and yield offset are 

set as 8 and 0.2% for the Ramberg-Osgood steel material, 

respectively. The used members are steel tubes and the 

section sizes are listed in Table 1. The uniform roof load is 

180 kg/m
2
, and it is assumed to be concentrated at the joints 

as masses. OpenSees software is used to develop the 3D 

model of the dome. The Displacement-Based Beam-Column 

element with a distributed plasticity and linear curvature 

distribution is used to model the nonlinear behaviors of the 

members. The geometric nonlinearity is also considered in 

this study. Each member is modeled as one element and 

each element has five integration points along the element 

length to evaluate the dynamic response of the element. The 

section of each tube is dispersed into 16 fiber areas. 
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Through an eigenvalue analysis, the dynamic characteristics 

of the dome are shown in Table 2. According to Table 2, it 

is observed that the first ten frequencies are very close to 

each other, therefore, a step-by-step integration method for 

the dynamic analysis of this kind of structural system is 

more effective than a mode superposition method due to the 

mode coupling. 

The earthquake loads with different hazard levels from 

the PEER strong ground motion database are applied to the 

structure, as listed in Table 3. These seismic loads are 

applied after the gravity loads. 

 

 

 

Table 1 Section sizes of the single-layer latticed dome 

Member 
Hoop 

member 

Ridge 

member 

Diagonal 

member 

Tension 

member 

Size 
355.6×8 

mm 

355.6×6.3 

mm 

355.6×6.3 

mm 

700.0×14.0 

mm 

 

Table 2 Frequencies of the single-layer latticed dome (roof 

load 180 kg/m
2
) 

Mode 1 2 3 4 5 6 7 8 9 10 

Frequency 

/(rad/s) 
13.80 13.80 15.06 15.06 15.28 15.32 15.35 15.39 15.47 15.51 

 

Table 3 Three earthquake ground motion records 

Earthquake ground 

motions 

PGA/g 
Duration 

Scale 

factor x y z 

Tabas, Iran 1978/09/16 

(9102 Dayhook) 
0.406 0.328 0.183 23.84s 1 

Victoria, Mexico 

1980/06/09  

(6604 Cerro Prieto) 

0.621 0.587 0.304 24.45s 1 

Northridge 1994/01/17 

(24087 Arleta) 
0.344 0.308 0.552 40s 1 

 

Table 4 Damping models for dynamic analyses 

 Damping models Damping coefficients 

Model 1 
Mass-proportional 

damping, α[M] 
α=2ξ1ω1 

Model 2 

Initial stiffness-

proportional damping, 

β[K] 

β=2ξ1/ω1 

Model 3 

Tangent stiffness-

proportional damping, 

β[Kt] 

β=2ξ1/ω1 

Model 4 
Rayleigh damping, 

α[M]+β[K] 

α=2ξ1ωiωj/(ωj+ωi); 

β=2ξ1/(ωj+ωi) 

Model 5 
Rayleigh damping, 

α[M]+β[K] 

α=2ξ1ωiωj/(ωj+ωi); 

β=2ξ1/(ωj+ωi) 

(ωi=0.667ω1, ωj=3ω1) 

Model 6 
Rayleigh damping, 

α[M]+β[K] 

α=4Rξωi/(1+R+2R0.5); 

β=4ξ/[ωi(1+R+2R0.5)] (R>1) 

(ωi=0.667ω1) 

 

 
3.2 Viscous damping models 
 
According to Tatemichi et al. (1997), the equivalent  

 

Fig. 5 A typical large span single-layer latticed dome 
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Fig. 6 Damping ratio vs frequency curves of models 

 

 

viscous damping ratio of the first mode of the dome is about 

0.03. The damping ratio of the high mode is also assumed 

as 3% in order to define the damping coefficients. For a 

parametric study, the damping ratios are selected as 1%, 3%, 

and 5%, respectively. The damping models selected are 

listed in Table 4, which are widely used in dynamic 

analyses. In models 1-3, the first damping ratio and circle 

frequency are used to determine the damping coefficients. 

For model 4, the classical Rayleigh damping model is used, 

and the first and third circle frequencies are selected to 

determine the mass and stiffness damping coefficients, 

respectively. While model 5 proposed by Charney (2008) 

takes the soft effects of the structure into account due to 

yielding, in which ωi and ωj are set as 0.667ω1 and 3ω1, 

respectively. Model 6 that was proposed by Hall (2006) is 

more sophisticated, in which the bound Δ on the damping 

ratios within the specified frequency is determined by the 

following equation 

∆ 𝜉
1 + 𝑅 − 2√𝑅

1 + 𝑅 + 2√𝑅
 (8)  

where R>1. If the bounds are considerably narrow, the 

damping coefficients can be fixed by the equations in model 

6. The frequency range is from ωi to Rωi in model 6. Here, 

R is set as 1.7 for the dome and it ranges from 9.21 rad/s to 

15.66 rad/s, which includes the first ten mode frequencies. 

Fig. 6 depicts the different viscous damping models 

used in this analysis. These viscous damping models have a 
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similar characteristic, and it is that the damping ratio is only 

frequency-dependent regardless of the structural systems. In 

the figure, it shows that models 4, 5, and 6 have a near-

constant damping ratio within the elastic range, whereas the 

difference can be observed. However, the damping ratio in 

model 1 decreases with the increase in the frequency, and 

the damping ratios of models 2 and 3 increase with the 

increase in the frequency. Among these models, model 5 

provides relatively small structural damping ratios within 

the elastic range, while models 2 and 3 provide relatively 

large structural damping ratios within the elastic range. It 

should be noted that the modal properties of damaged 

structure in Fig. 6 are only assumed to define the damping 

coefficients  and  and there is no shift of modal 

properties between the undamaged structure and the 

damaged structure. The damping model with the moderate 

damping effect should be a good option among these 

damping models because it is important to make sure that 

the damping forces generated by the uncertain viscous 

damping models is kept at an appropriate level, and the 

errors of the damping forces in the dome may be the 

smallest in this case. Therefore, the effects of these 

damping models on the damping forces should be 

quantified and discussed to find the appropriate viscous 

damping model for the dome. 
 

 

4. Results 

 
4.1 Response analysis 

 
4.1.1 Effect of the damping model on the response 
In the current earthquake performance-base and 

assessment methodology, the peak displacement is a critical 

parameter. Fig. 7 represents the vertical peak displacements 

at the top of the dome. It shows that the use of the damping 

models 2 and 3 leads to the smaller response, whereas 

model 1 gives the maximum peak demand. The clear 

difference is observed due to the use of different damping 

models. This can be explained as follows. For model 1 (the 

mass-proportional damping model), the damping ratio 

decreases with the increase in the frequency, and the higher-

mode effect on the seismic behavior of the dome is 

noticeable due to the low damping ratio. Compared with 

other models, the use of model 1 reduces the damping effect 

in the dome. For models 2 and 3 (the stiffness-proportional 

damping model), the damping ratio increases with the 

increase in the frequency, and the contribution of the 

higher-mode to the dynamic response will be dampened due 

to the high damping ratio. It is also found that the difference 

between the initial stiffness-proportional damping model 

and the tangent stiffness-proportional damping model is not 

significant. While models 4, 5, and 6 have the moderate 

damping effects on the dome, and the responses are among 

models 1, 2, and 3.  

 

4.1.2 Effect of the damping ratio on the response  
Damping ratio is an important dynamic factor in 

controlling the structural response. In this study, the single-

layer latticed dome with a roof load of 180 kg/m
2
, which 
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Fig. 7 Vertical peak deformations under different models 
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Fig. 8 Vertical peak displacements at top 
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Fig. 9 Normalized vertical peak displacements at top 

 

 

is subjected to Victoria (Mexico, 1980) earthquake ground 

motion, is investigated. 

Fig. 8 shows the vertical peak deformations under the 

damping ratios of 1%, 3%, and 5%. It indicates that the 

damping ratio has a significant effect on the response. The 

peak response remarkably decreases with the increase in the 

damping ratio. This observation may be a crucial issue in 

the earthquake performance-base assessment because the 

overestimation of the damping ratio not only underestimates 

the dynamic response, but also overestimates the earthquake 

performance of the structures, which is not conservative for 

structural safety. Although the underestimation of the 

damping ratio can lead to the non-conservative dynamic 

response, more members have to be used in this case and 
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this increases the construction cost in order to ensure the 

structural safety. Therefore, the selection of an appropriate 

damping ratio can not only accurately predict the structural 

seismic performance, but also limit the cost at an 

appropriate level.  
With the increase in the damping ratio, the effect of each 

viscous damping model on the efficiency in controlling 

dynamic response is different, which is of particular 

concern in structural engineering. Fig. 9 represents the 

changing trends in the normalized vertical peak responses 

under damping ratios ranging from 1% to 5%. It should be 

noted that the peak deformations of models 2, 3, 4, and 6 

rapidly decrease with the increase in the damping ratio, 

therefore, these models have a larger inhibiting effect on the 

peak responses as compared to the model 1. It is also 

observed that the sensitivity of model 5 to the damping ratio 

falls in between these models. In model 5, the peak 

deformation of the structure with damping ratio 5% is 

around 0.55 times that of the structure with the damping 

ratio 1%.  

 

4.2 Viscous damping force 
 
4.2.1 Effects of the damping models on the viscous 

damping force  
In this study, a comparison on the damping forces of 

joints is made for better understanding the damping forces 

generated in the dome. Figs. 10 and 11 represent the mean 

values of the vertical peak damping forces of the joints of  
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Fig. 10 Mean values of damping forces (Section A-A) 
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Fig. 11 Mean values of damping forces (Section B-B) 

Sections A-A and B-B (Fig. 5) under all earthquake ground 

motions.  

It is observed that model 1 leads to the lowest damping 

force, whereas the model 2 leads to the highest one. The 

peak viscous damping forces of the joints range from 

approximately 3 kN to 60 kN, and it is found that these 

damping force are considerably different due to the use of 

different damping models. Therefore, the selection of an 

appropriate viscous damping model is the basis for 

accurately predicting the viscous damping force. Based on 

these results, the use of model 1 may underestimate the 

structural damping performance, whereas model 2 may 

overestimate the structural damping performance. However, 

the results for model 5 are approximately close to the mean 

values of these damping models. Through a comparative 

analysis, it is found that the use of model 5 is a good 

compromise because it gives the mean damping forces in 

dynamic analyses, and there are no unrealistically high or 

low damping forces in the dome. 

 

4.2.2 Effects of the damping ratio on the viscous 
damping force  

Here, the effects of the different damping ratios on the 

damping forces of the joints are investigated. The damping 

ratios of 1%, 3%, and 5% are selected and the damping 

model 5 is used. Figs. 12 and 13 represent the vertical peak 

damping forces under the earthquake ground motion 

Victoria (Mexico, 1980). It can be seen that the damping 

forces of the joints increase with the increase in the 

damping ratio. The mean values of these damping forces are 

8.8 kN (damping ratio of 1%), 14.5 kN (damping ratio of 

3%), and 17 kN (damping ratio of 5%), respectively, which 

are approximately equal to 0.14 to 0.28 times the dead load 

of a joint. The vertical peak seismic force of a joint Fp can 

be calculated as 

Fp=-m× PGAv (9)  

in which m is the mass of a joint and PGAv is the vertical 

peak acceleration applied to the dome. According to the 

results, it is found that the vertical peak damping force is 

about 45%-90% of the vertical peak seismic force of a joint. 

It indicates that the summation of inertial force and 

restoring force accounts for approximately 10%-55% of 

total seismic force.  

Moreover, it is evident that the damping force, as shown 

in Eq. (1), depends on not only the damping ratio but also 

the vibration velocity. The damping force is proportional to 

the damping ratio and velocity, while the increase of the 

damping ratio has an inhibiting effect on the velocity. 

Overall, however, it is observed that the damping force Fd 

increases with the increase in the damping ratio from Figs. 

12 and 13. Therefore, it is clear that the damping ratio has a 

more significant effect on the damping forces as compared 

to the velocity. 

 

4.2.3 Effects of the roof load on the viscous damping 
force  

The increase in the roof load can lead to the increase in 

the seismic force, and the increase of mass can also change 

the structural dynamic characteristics, especially 
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Fig. 12 Peak damping forces (Section A-A) 
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Fig. 13 Peak damping forces (Section B-B) 
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Fig. 14 Peak damping forces (Section A-A) 

 

 

frequencies. It is necessary to investigate the effect of the 

roof load on the viscous damping force to further 

understand the damping performance of the dome. Figs. 14 

and 15 show the vertical peak damping forces of the joints 

under different roof loads. The results indicate that the 

roof load has significant effects on these damping forces. It 

is found that the peak damping forces of the joints increase 

with the increase in the roof load. The mean values of 

damping forces are 8 kN (roof load of 90 kg/m
2
), 14.5 kN 

(roof load of 180 kg/m
2
), and 16 kN (roof load of 270 

kg/m
2
), respectively, and they are approximately equal to 

0.17 to 0.26 times the dead load of a joint. The vertical 

peak damping force is around 50%-80% of the vertical peak 

seismic force of a joint. From the above analyses, it is found  
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Fig. 15 Peak damping forces (Section B-B) 

 

 

that the viscous damping force is an important energy dissi

pation source during earthquakes and most of the energy 

dissipation depends on the viscous damping. However, it 

is difficult to accurately predict the damping forces in the 

dome and it should be paid more attention in engineering 

design. 

 

4.3 Prediction of fatigue damage 
 

The material fatigue damage depends on not only the 

intensity of earthquake but also the duration. Here, two 

earthquake ground motions (Tabas and Northridge) are 

combined in series as an earthquake excitation. After Tabas 

earthquake ground motion ends at 23.84s, Northridge 

earthquake ground motion is applied to the structure. The 

scale factor is set as 5 and the duration of earthquake is 

63.84s.  

Figs. 16 and 17 represent the cumulative fatigue damage 

in the mid-span sections of the elements 1 and 2 shown in 

Fig. 5. It is observed that the viscous damping model has a 

significant effect on the fatigue damage values of these 

sections. The effects of different damping models on the 

behaviors of the sections in the early cycles are limited. 

After a few cycles, the damage values rapidly increase. 

According to the analyses in Figs. 16 and 17, the model 

developed in the current study, which combines the R–O 

steel material with the fatigue effect, can describe the 

cumulative fatigue damage. 
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Fig. 16 Damage of mid-span section (element 1) 
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Fig. 17 Damage of mid-span section (element 2) 

 

 

5. Conclusions 
 

In the PBEE methodologies, the selection of the viscous 

damping model for large span single-layer latticed domes is 

a challenging topic for engineers because the damping 

cannot be accurately evaluated. Each existing damping 

model may have its individual limitations. As discussed in 

the current study, different viscous damping models have 

significant effects on the dynamic response, damping 

performance of structures, and fatigue damage of the 

material. Based on the above analyses and discussions, the 

following conclusions can be obtained: 

(1) The mass-proportional damping model leads to the 

maximum peak response, whereas the initial stiffness-

proportional damping model leads to the minimum peak 

response. Moreover, the initial–stiffness proportional 

damping model and tangent–stiffness proportional 

damping model approximately have the same vertical 

peak response. However, it should be noted that there is 

no shift of the modal properties between the undamaged 

structure and the damaged structure in the inelastic time 

history analysis, and those curves in Fig. 6 are only used 

to determine the damping coefficients  and , which 

are used to construct the Rayleigh damping 

([C]=[M]+[K]).  

(2) The vertical peak displacement at the top decreases 

with the increase in the damping ratio. The inappropriate 

damping ratio may not accurately predict the structural 

seismic performance. It should be noted that the 

stiffness-proportional models (models 2 and 3), 

Rayleigh damping model (model 4), and Hall’s damping 

model (model 6) are more sensitive to damping ratio 

than the mass-proportional damping model (model 1) in 

inhibiting the response. The sensitivity of Charney’s 

damping model (model 5) to the damping ratio falls in 

among these models. 

(3) Through the analyses for the viscous damping forces 

in the dome subjected to earthquake ground motions, it 

is observed that the mass-proportional damping model 

leads to the lowest peak damping force, whereas the 

initial stiffness-proportional damping model leads to the 

highest one. The mean values of the peak damping 

forces of the joints under all the damping models are in 

accordance with the peak damping forces under the 

Charney’s damping model (model 5). If the damping 

forces generated by the uncertain viscous damping 

models can be kept at an appropriate level, as a 

compromise, it is found that the Charney’s damping 

model (model 5) may be a good option for a large-span 

single-layer latticed dome subjected to the earthquake 

ground motions.  

(4) In the current study, the results show that the roof 

load and damping ratio have the significant effects on 

the damping forces. The peak damping forces generally 

increase with the increase in the roof load and damping 

ratio. It is also observed that the viscous damping 

models have a significant effect on the fatigue damage 

of the members. 
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