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1. Introduction 
 

The analysis of plates resting on point supports has long 

been a problem of interest in engineering practice. Much of 

the interest likely stems from the extensive applications of 

point-supported plates to practical problems including the 

vibration of column-supported slabs, printed circuit boards, 

vibrator of cellular phones as well as other acoustic devices, 

bolted or spot-welded aircraft and ship bodies, to mention 

but a few. The problem is also of practical importance to the 

real-world structural designs, such as for eliminating 

internal resonance, and for modeling the vibration of 

electronic advertising boards and/or notice boards (Zhao et 

al. 2002). The literature contains a wealth of research on the 

free vibration analysis of plates supported by point 

supports, of which a brief survey is presented herein.  

Cox and Boxer (1960) provided one of the early 

contributions to this topic and discussed the free vibration 

of a rectangular plate with point supports at the corners and 

free edge boundaries elsewhere, using a finite difference 

approach. Kerstens (1979) computed the first six natural 

frequencies of a point-supported rectangular plate for 

various aspect ratios by the modal constraint method. Fan 

and Cheung (1984) used a spline finite strip approach to 

treat rectangular plates having complex support conditions. 

Raju and Amba-Rao (1983) used the finite element method 

to determine an upper bound for the first few frequencies of 

a square plate resting on four symmetric point supports on 

the diagonals. Kim and Dickinson (1987) applied the 

Lagrange multiplier technique with a set of orthogonal 

polynomial functions as the basis functions in the Rayleigh- 
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Ritz method to study the vibration of point-supported 

rectangular plates. Nowacki (1953) used the multiple 

domain approach to study the simply supported rectangular 

plates with one interior point support. Bapat and 

Suryanarayan (1989) used the flexibility function approach 

to study the free vibration of rectangular plates with 

multiple interior point supports. Liew and Lam (1994) 

generated a set of orthogonal functions by using the Gram-

Schmidt algorithm to approximate the natural frequencies 

of point-supported rectangular plates. Wang et al. (1997) 

investigated the optimal location of internal rigid point 

supports in a symmetric laminated rectangular plate for 

maximum fundamental frequency, using the simplex 

method. By using the Galerkin method in conjunction with 

natural coordinates, Saadatpour et al. (2000) solved the free 

vibration problem of simply-supported plates of general 

shape with internal supports. Zhao et al. (2002), Xiang et al. 

(2002), and Wei et al. (2002) introduced the discrete 

singular convolution method to study the free vibration of 

rectangular plates with irregular internal supports. Narita 

and Hodgkinson (2005) used the layerwise optimization 

approach to maximize the fundamental frequencies of 

point-supported symmetrically laminated plates. They 

applied the Ritz method in order to solve the vibration 

problem. Hedayati et al. (2007) proposed a numerical 

method based on the Lagrange multiplier technique to solve 

the local buckling of plates with point supports. Altekin 

(2008) employed the Ritz approach to treat both the free 

vibration and the buckling of elliptical plates having point 

supports along the symmetric diagonals. Watkins and 

Barton (2010) evaluated the natural frequencies of 

elastically point-supported rectangular plates, using 

eigensensitivity analysis. Wu (2012) studied the free 

vibration of quadrilateral thick plates with internal columns, 

using a third-order shear deformation theory. Moreover, 

Watkins et al. (2010) conducted an experimental work in 

order to determine the natural frequencies for an elastically 

point-supported plate with attached masses. The static 
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analysis of a point-supported nonlinear super-elliptical plate 

under a uniform transverse pressure was also examined by 

Altekin (2014), using the Newton-Raphson method. 

By looking at the studies conducted so far on the 

vibration of point-supported plates, it can be appreciated 

that two important topics of considerable practical and 

analytical importance are absent in the current literature. 

First, no study has as yet been carried out on the dynamic 

response of point-supported plates to an external exciting 

force, although there is an excessive literature on the free 

vibration analysis of plates with various shapes. Moreover, 

in this regard, research on the plates with elastic point 

supports is considerably limited in number as compared to 

the plates with rigid point supports. Second, in all of the 

previous studies, as an a priori assumption, the stiffness of 

the supports is considered as being time-invariant, while 

adopting a time-varying stiffness for the supports is a more 

realistic assumption due to the following discussion. 

In recent years, the analysis of the civil and mechanical 

engineering structures whose properties, such as stiffness 

and mass, are time-variant has been receiving wide 

attention. It is because the dynamic characteristic properties 

of engineering structures often change over time during 

their service life (Udwadia and Jerath 1980, Loh and Tsaur 

1988, Li 2000, 2002, Liu et al. 2008 a, b, Lin et al. 1990, 

Liu and Kujath 1994, Ghanem and Shinozuka 1995, 

Staszewski 1997, Shi and Law 2007, Basu et al. 2008, Bao 

2012). For example, the mass distribution and stiffness of a 

vehicle-bridge interacted system constantly change over 

time when a vehicle or train passes through the bridge, and 

the stiffness of a cable often changes with the cable tension 

force (Barber et al. 2003, Wang et al. 2013). Moreover, in 

quite a few active and semi-active control devices, the time 

variation of the device stiffness plays an important role in 

mitigating structural responses (Soong 1990, Spencer and 

Nagarajaiah 2003). Therefore, the use of such control 

devices as point supports may be another potential 

application in which considering the time variation in the 

supports stiffness is inevitable in the model. 

Composite steel-concrete members, commonly applied 

in building and bridge applications, also exhibit a time-

dependent behavior. When a composite column is subjected 

to an axial load, its response will be time dependent 

(Bradford and Gilbert 1990). The time effects of composite 

steel-concrete columns, mainly used as supports for the 

deck slab of bridges, are put forward and investigated by 

Bradford and Gilbert (1990), Wang et al. (2011), Geng et al. 

(2012), and Ranzi et al. (2013). Their findings revealed that 

time effects can influence the ultimate response of the 

composite structure, including both the slab and the column 

supports. 

Apart from this, under certain circumstances, the 

structural stiffness varies over time due to accumulated 

damages under both service loads and environmental 

excitations as a result of inevitable material aging, fatigue, 

deterioration, etc., or sudden damage caused by accidents or 

natural disasters (Lin et al. 1990, Ghanem and Romeo 2000, 

Lin et al. 2005, Bao 2012). In such cases, a time-varying 

model may better capture the behavior of the real-world 

structure. 

In this paper, a simple, yet general analytical-numerical 

approach is proposed in order to determine the dynamic 

response of plates resting on multiple elastic point supports. 

To the best of the authors’ knowledge, it seems that the 

treatment and examples on the behavior of point-supported 

plates that are reported in the current literature have been 

limited to the free vibration response of plates with time-

invariant supports. However, the method presented in the 

current study is readily applicable to the plates resting on 

time-varying elastic supports and subjected to an arbitrary 

exciting force. Moreover, the proposed solution can be 

exercised to treat step functions and discontinuous time 

variations in the support stiffness. This will be interesting 

since for example, the elimination of one or more supports 

at particular instants of time can then be modeled with no 

difficulty. At the same time, an illustrative example is 

presented in order to demonstrate how the work proceeds. 

In the provided example, the dynamic response of a plate on 

a time-varying spring, acted upon by a moving force, is 

studied for three different variations of stiffness with time. 

The support elimination is also examined in the example. 

As far as the time-invariant problems are concerned, the 

proposed method can streamline the analysis of point-

supported plates, as compared with the methods introduced 

in the preceding studies. In this particular case, by having 

the eigenfunctions of the plate in the absence of the point 

supports, one can easily determine the natural frequencies 

corresponding to the plate that is placed on the elastic point 

supports. In practice, the solution only requires finding the 

eigenvalues of a known symmetric matrix, which could be 

readily carried out on personal computers. Moreover, this 

method is applicable for any plate geometry with any type 

of boundary condition. Also, the methodology can 

potentially be generalized to evaluate the dynamic response 

of nanoplates resting on multiple elastic point supports, 

which has been received attention in recent years (e.g., see 

Akgöz and Civalek 2012, Farajpour et al. 2012, Akgöz and 

Civalek 2013). 

Since the reported values in the literature are confined to 

time-invariant problems, the verification of the proposed 

method and the comparative study are performed only for 

the case of time-invariant stiffness. For the sake of 

coherence of the whole paper, the verification example is 

included in Appendix. In the mentioned example, the 

veracity of the results is corroborated through comparison 

with recognized solutions in the literature. 

In the ensuing section, the case of a plate on a single 

elastic point support is treated first. The solution is then 

generalized for the case of multiple elastic point supports. 

 

 

2. Problem statement and solution 
 

Fig. 1 illustrates a thin plate with an arbitrary geometry 

having a constant thickness   and placed on a time-varying 

linear spring of stiffness       at point        . As shown 

in Fig. 1, the plate is also acted upon by a transverse forcing 

action         . Moreover, the plate could have any type 

of boundary condition. The governing partial differential 

equation of this plate could be expressed as 
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Fig. 1 Plate supported by a linear elastic spring 
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where   is the deflection of the plate,   is the mass 

density of the material, which is assumed to be a constant 

value,   is the flexural rigidity of the plate, and   

indicates the Dirac delta function. Using the separation of 

variables technique, one may write the deflection of the 

plate in the following form 
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n

w x y t x y F t
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
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where   ’s are the known eigenfunctions of a plate with 

the same boundary conditions and with no spring attached 

to it. They have the form of 

4 2Φ Φ 0n n n    (3) 

and 
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where   ’s are the natural frequencies of the plate (without 

spring), and   ’s are amplitude functions, which remain to 

be calculated. The eigenfunctions along with the natural 

frequencies for different types plates with various boundary 

conditions may be found in (Leissa 1969, Soedel 1993). 

In addition, one could rewrite the first term on the right-

hand side of Eq. (1) in the form of a series as follows 
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where the time-dependent coefficients,      , are to be 

determined. Multiplying both sides of Eq. (5) by         

and making use of Eq. (2), one can reach 
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Integrating Eq. (6) on the area of the plate, yields 
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(7) 

On taking into consideration the properties of Dirac delta 

function and the orthogonality of   ’s, Eq. (7) will be 

simplified as 
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where 
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Furthermore, the loading function can also be 

represented in a series in terms of the eigenfunctions, that is 
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Multiplying both sides of Eq. (10) by        , integrating 

it on the area of the plate, and employing the orthogonality 

property of   ’s, yield 
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where    has been defined in Eq. (9). Substituting Eqs. (5), 

(8), and (10) into Eq. (1) results in an equation for       
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Applying Eq. (3), the preceding equation becomes 
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This equation must be satisfied for arbitrary ( ,  ) (i.e., 

each point of the plate), and this is possible only when 

 
   

     

   

2
02

2

0 0 0 0

1

Φ , Φ ,

젨젨? ,2,3,?

n
n n

n

n q q

q

n

d F t k t
D F t h

Vdt

x y x y F t

P t n

 





 

  



1,2,3,...)(      )(  ntPn  

(14) 

This system is a linear system of coupled ordinary 

differential equations, and a standard numerical procedure 

could be employed to solve it. Retaining only the first   

modes, dividing by   , and rearranging the outcome in the 

matrix form, results in 
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It is very important to note that there is no need to 

calculate Eq. (9) in each mode, because it can always be 

normalized to a constant, say unity 
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Interestingly, for the special case of a spring with a 

time-invariant or constant stiffness,   , the general Eq. (15) 

reduces to a linear system of ordinary differential equations 

with constant coefficients. In this particular case, 

normalizing (i.e., Eq. (21)) makes possible a symmetric 

matrix K, indicating that the contribution of each mode can 

be studied individually. Further discussion on the case of 

time-invariant stiffness will be presented in the forthcoming 

section. 

A convenient method to solve Eq. (15), using a 

computer program, is to transform the equation into a set of 

first-order linear equations, that is, to employ the state-

space representation. The following equation expresses the 

state-space form of Eq. (15) 
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and I is the identity matrix of order  . Built-in routines to 

solve Eq. (23) are available in virtually all mathematical 

software packages. Alternatively, Eq. (23) may be solved 

numerically by using the so-called transition matrix 

approach (Brogan 1991). In this regard, the state vector 

{Q(t)}, when the initial conditions are defined at t=t0, can 

be expressed as 
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where χ (t, τ) is the transition matrix. Assuming that {t0, t1, 

…, tk, …} is a set of discrete time points sufficiently close 

together, Eq. (25) can be used to write the solution at tk+1 by 

treating {Q(tk)} as the initial condition 
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Eq. (26) is an approximating difference equation for {Q(t)}. 

An approximate solution to χ (t, τ) is 

1( , ) exp( ( ) )k k k kt t t t  χ A  (27) 

where Δtk=tk+1−tk is an assumed time interval. Provided that 
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A(tk) is invertible, a stepwise solution to Eq. (23) will found 

to be 
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Further details about the transition matrix approach may be 

found in reference (Brogan 1991). 

A similar approach can be applied for the case when the 

plate is supported by   time-varying linear springs of 

constants      ,      , …, and         placed at points 
       ,        , …, and            , respectively. The 

governing equation of this plate may be expressed as 
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where all the parameters have the same definitions as in Eq. 

(1). Moreover, the deflection is assumed to have the form as 

shown in Eq. (2). In following the same procedure as 

discussed above for a single spring, one will arrive at a 

similar equation to Eq. (15) with matrix K(t) having the 

following general form 
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with   ’s being previously defined. Additionally, in 

deriving Eq. (30), use is made of Eq. (21), that is to say, 

  ’s must first be normalized in order to satisfy Eq. (21). 

This will guarantee the symmetry of matrix K. It should be 

added that the state-space formulation introduced in Eqs. 

(23)-(28) is still valid for this general case. 

The solution method presented herein involves direct 

use of the governing differential equation, so it does not 

assume the existence of a functional that is usually 

minimized as in other techniques. Therefore, the method 

actually covers a broader range of application as compared 

to the Rayleigh-Ritz technique, which has been widely used 

by numerous researchers (e.g., see Kim and Dickinson 

1987, Liew and Lam 1994, Altekin 2008). One of the 

advantages of this method is that the proposed solution does 

not necessarily require the eigenfunctions as being 

described analytically. In the cases where the shape of the 

plate or the boundary conditions are such that the 

eigenfunctions cannot be analytically determined, the 

solution can be carried out by using numerical 

eigenfunctions in the equations. Numerical techniques to 

determine the eigenfunctions are well established in the 

literature.  

Additionally, the method can be applied to multiple-

support problems just as simple as for the problems with a 

single support without any significant increase in the 

computational cost. However, such techniques as the finite 

element method (e.g., Raju and Amba-Rao 1983) are 

computationally expensive, especially when the number of 

point supports is large, as they require finer meshing around 

the point supports in order to properly capture the response 

of the plate. Also, the proposed approach, as discussed 

previously, has no limit in terms of the boundary condition, 

the configuration of the plate, and the loading condition. 

Moreover, any time variation in the support stiffness, even a 

discontinuous variation, may be readily treated by using the 

proposed method.A possible weakness of the proposed 

solution, however, may be referred to the selection of the 

appropriate number of modes, N, which cannot be 

determined beforehand. To proceed with the solution, a 

small number of modes is selected in the first step, and then 

the convergence is checked by increasing the number of 

considered modes in the subsequent steps. The iteration 

terminates once the convergence takes place. Despite this, 

since the convergence of the solution is fast, this may not be 

considered as a serious weakness. 

 

 

3. Special case of time-invariant stiffness 
 

In view of Eq. (15), when the spring stiffness is not 

time-varying, the frequency equation corresponding to the 

free vibration of the plate, i.e., when {    }  { }, would 

be the characteristic equation of matrix K, that is 

 2det Ω 0 K I  (31) 

where K is obtained from Eq. (30) with variable   dropped, 

I is the identity matrix of order  , and    indicates the 

square of the natural frequency of vibration of the plate, 

which is basically the eigenvalue of matrix K. For the 

special case of a single point support, K may be substituted 

from Eq. (16). In regard to the symmetry of matrix K, Eq. 

(31) has   real roots for   . These   roots determine the 

  natural frequencies of vibration of the system. 

Moreover, the mode shapes could be readily determined 

from the eigenvectors of matrix K, as follows. Suppose 

{    } to be the eigenvector of matrix K corresponding to 

eigenvalue   
 , so that { }  {    }        is a solution 

for Eq. (15). Therefore, in referring to Eq. (2), the  -th 

mode shape of the elastically supported plate,        , 

would be 

     

1

Ψ , Φ ,
N

i

i n n

n

x y x y q


  (32) 
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where   
   

’s are the components of vector {    }. Eq. (32) 

could be rewritten in the form of an inner product of two 

vectors 

       Ψ , Φ ,
i

i x y x y q   (33) 

where  

         1 2Φ , Φ , ,Φ , ,  , Φ ,
T

Nx y x y x y x y   (34) 

As noted earlier, when the spring stiffness is not time-

varying, the contribution of each mode can be accounted for 

independently. Therefore, the solution of Eq. (15) may be 

given by a linear combination of {    }’s, that is 

       
1

 
N

i

i

i

F t T t q


  (35) 

where, by virtue of the orthogonality property of {    }’s, 

     ’s are determined from the following equation 

   
 

  
2

2
Ω

i
i i i

i

f t
t T t

q

T    
(36) 

where 

                
2

?젨?
i i i i

if t q P t q q q        )()(2)(, iii qqq   (37) 

If {    }’s are normalized so that ‖{    }‖
 
  , the right-

hand side of Eq. (36) will simply be reduced to      . On 

substituting Eq. (35) into Eq. (2), and applying Eq. (32), the 

deflection function for the case of time-invariant spring 

stiffness would become 

     
1

, , Ψ ,
N

n n

n

w x y t x y T t


  (38) 

where      ’s are determined from Eq. (36). 

It is worth mentioning that the proposed method can be 

applied to plates of various configurations. Despite this, 

since most of the problems in practice are concerned with 

rectangular plates, the examples and results presented in the 

current paper are limited to the rectangular configuration. 

 

 

4. Illustrative example 
 

Consider a simply supported square plate resting on a 

point spring at its center, as shown in Fig. 2. The spring 

may be considered to act as a control device. Also, the plate 

is subjected to a moving concentrated force of magnitude 

        , travelling at a uniform velocity of   
     ⁄  along line         from     to    . 

Other relevant data are as follows:       ,        
      ⁄ ,        ,                , and 
    ⁄     ⁄            .  

The loading function of the problem can be expressed as 

)0.25()(),,( 0 ayδvtxδPtyxP   (39) 

where   indicates the Dirac delta function. The plate is 

initially at rest, i.e.,            and            ⁄  
 . Moreover, the stiffness of the centrally located spring is 

time-varying. The object is to determine the deflection of 

the plate, right under the moving force, as a function of the 

moving force position. In order to demonstrate the 

versatility of the method, the problem is to be solved for 

three different variations of device stiffness with time, 

namely:  

a) Time-invariant: k(t)=1.0×10
9
 N/m  

b) Linear variation: k(t)=1.0×10
9
+4.0×10

8
t N/m  

c) Harmonic variation: 

k(t)=1.0×10
9
+4.0×10

8
sin(0.8πt) N/m 

In addition, the response of the system in the case when 

the spring with a linear variation is suddenly eliminated at 

 =1.5 s is to be investigated. In this case, the stiffness can 

be defined as follows 

   
  

9 8
1.0 10 4.0 10

1 H 1.5 젨N / m

k t t

t

   

  N/m 1.5)]([1  tH  

(40) 

where      stands for the Heaviside function. 

The well-known shape functions as well as the natural 

frequencies of the plate under study, when no spring is 

attached to it, are (Leissa 1969, Soedel 1993) 

   
2

Φ , Φ , sin sini mn

m x n y
x y x y

a a a

 
   

(41

) 

 
2

2 2

2
,젨, , 1, 2,3,i mn

D
m n i m n

ha


 


    1,2,3,...,, nmi  (42) 

To begin with, one should determine the non-

homogeneous term in Eq. (15). Using Eq. (11), one will get 

 

 

 

 

Fig. 2 A simply supported square plate supported by 

a linear elastic spring 
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(43) 

Making use of Eq. (43) and considering an appropriate 

number of modes, Eq. (15) can be solved to give      ’s. 

Any standard numerical method may be applied in order to 

solve the resulting system of differential equations. In this 

example, the fourth order Runge-Kutta method is employed 

to this end. Having determined      ’s, the deflection 

response could be readily attained, using Eq. (2), wherein 

       ’s should be substituted from Eq. (41). By doing 

so, the deflection of the plate, right under the moving 

concentrated force, is obtained for the three aforementioned 

variations of stiffness, of which the results are plotted in 

Fig. 3. In this figure, the improvement in the results is also 

demonstrated, as the number of the considered modes 

increases. 

It can be observed that, for all the three studied cases, it 

is sufficient to consider only the first    modes to obtain 

reasonable results, and the effect of higher modes becomes 

less pronounced. In order to make a better comparison 

between the solutions corresponding to the three foregoing 

 

 

 

(a) time-invariant stiffness 

 

(b) linearly varying stiffness 

Fig. 3 Participation of different number of modes in the 

deflection of the plate under the moving force for three 

cases 

 

(c)harmonically varying stiffness 

Fig. 3 Continued 

 

 

 

Fig. 5 Deflected geometry of the plate at the instant 

when the moving force is at one-half of the span. 

(Plotted for the case of a linearly varying stiffness) 

 

 
Fig. 6 Deflected geometry of the plate at the instant 

when the moving force is at one-fourth of the span. 

(Plotted for the case of a linearly varying stiffness) 

 

 
Fig. 4 Final results for the deflection of the plate under 

the moving force for the time-invariant, linearly 

varying, and harmonically varying stiffness 
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stiffness variations, the final results of the three cases are 

shown in a single plot in Fig. 4. In this figure, the deflection 

under the moving force when the linearly varying spring is 

suddenly removed at  =1.5 s is also shown. In this case, the 

maximum deflection is about three times as large as that 

obtained in the case when the spring is not removed. 

Furthermore, the deflected geometry of the plate, for the 

case of a linearly varying stiffness, is displayed in Figs. 5-6, 

at two different instants, that is, when the moving force is at 

one-half and at one-fourth of the span, respectively. 

 

 

5. Conclusions 
 

The present study offers a simple analytical-numerical 

method in order to investigate the dynamic response of 

plates with elastic point supports. Moreover, this approach 

is general, to the extent that the stiffness of the elastic 

supports can vary as an arbitrary function of time.  

Discontinuous functions can also be incorporated in the 

solution. This is particularly interesting when dealing with 

problems with one or more supports eliminated at specific 

instants of time. The use of active or semi-active control 

devices with time-varying stiffness as point supports may 

be another potential application in which considering the 

time variation in the supports stiffness is inevitable in the 

model. The solution is based on orthogonal functions, and 

the results indicate that the governing differential equation 

can be transformed into a system of linear ordinary 

differential equations. Making use of this method, the 

dynamic response of the point-supported plate could be 

determined for an arbitrary loading function, using the 

mode shapes of the same plate in the absence of point 

supports. Furthermore, the approach can be applied for any 

plate geometry. An illustrative example has also been 

presented to demonstrate the procedure. 

In the case of time-invariant stiffness, the general 

system reduces to a linear system of ordinary differential 

equations with constant coefficients, and the contribution of 

each mode could be studied individually. Therefore, when 

dealing with the free vibration problem, in this particular 

case, the solution requires finding the eigenvalues of a 

known symmetric matrix, which is simple enough to carry 

out on personal computers. In addition, the convergence is 

very fast with any desirable accuracy.  
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Appendix: Verification example 
 

Consider the simply supported square plate in Fig. 2, 

resting on a time-invariant spring. The object of this section 

is to study the variation of the natural frequencies of the 

plate with the stiffness and location of the spring. The 

relevant data are:      ,               ⁄ , 

      ,                  , and     ⁄     ⁄   
         .  

The shape functions as well as the natural frequencies of 

this plate, in the absence of the spring, are obtained from 

Eqs. (41)-(42), respectively. Note that the shape functions 

in Eq. (41) are multiplied by an additional normalizing 

coefficient, i.e.,   ⁄ , so that Eq. (21) will be satisfied. This 

guarantees the symmetry of matrix K. 

In considering only the first 200 modes, Eq. (31) can be 

solved for      . Having solved this equation for 

various values of   , the frequencies can be obtained as a 

function of the spring constant. The effect of the spring 

constant on the vibration frequency is shown in Fig. 7. In 

this figure, the frequency and the spring constant are 

expressed in terms of non-dimensional parameters   

√         and      
   , respectively. Fig. 7 reveals 

that as the spring constant increases, the frequencies of the 

plate also increase. In addition, when the spring constant is 

larger than about    , no significant change will occur in 

the frequency parameter. Interestingly, it can be observed 

that, when the spring constant approaches infinity, the 

frequency parameters of both the first and the second modes 

converge to the common value of 49.3480. This observation 

is in line with the previously reported results in references 

(Johns and Nataraja 1972, Liew and Lam 1994). 

For large values of spring constant (     ), the spring 

behaves like a rigid point support. Table 1 represents the 

frequency parameters corresponding to the first six modes 

of a centrally supported square plate. Moreover, the results 

are compared with the values available from the literature. 

It is discernible from Table 1 that there is an excellent 

agreement between the present results and those from other 

studies. 

Furthermore, Liew and Lam (1994), by applying a 

different approach, as referred in section 1, studied the 

variation of the frequency parameter with spring stiffness 

and produced a similar diagram to the one shown in Fig 7. 

Comparing the results that are shown in Fig. 7 with their 

diagram, a very close agreement is observed between them. 

In making use of Eq. (32), the first four mode shapes of the 

square plate under study with a centrally located rigid point 

support are obtained, whose shapes are plotted in Fig. 8. 

Upon comparison of Fig. 8(a) and Fig. 8(b), it is observed 

that, introducing an appropriate transformation of the 

coordinate axes, the shapes of the first and second modes 

can be transformed to each other. This observation confirms 

the aforementioned convergence of the first and second 

frequency parameters, as the spring constant approaches 

infinity, to a single value, i.e., 49.3480.  

The approximation of the natural frequencies could be 

further improved by retaining a higher number of modes. 

Table 2 depicts the improvement in the successive 

approximations of the frequencies, when the number of the 

considered modes,  , increases. As can be observed in this 

table, except for the third mode, the approximation of the 

frequencies does not improve for    , so that the 

calculated values for     are exact. For the third mode, 

however, acceptable values are obtained for  ’s beyond 50.  

As the second part of the example, the variation of the 

frequency parameter with the location of the interior spring 

is to be investigated for the aforementioned square plate. 

Fig. 9(a) displays this variation for the first six modes in the 

case when      , and the interior spring is moving 

along l ine  ⁄     ⁄     .  Moreover,  Fig.  9(b) 

illustrates the corresponding results for the case of a rigid 

point support. As expected, in general, the value of the  

 

 

Table 1 Values of the frequency parameter,  , for the first 

six modes of a square plate with a centrally located rigid 

point support 

 Mode number 

Reference 1 2 3 4 5 6 

Present 

study 
49.3480 49.3480 52.9329 78.9568 98.6960 128.3049 

LL
* 

49.3480 49.3480 53.2697 78.9568 98.6983 128.3049 

KD
*
 49.3480 49.3480 53.1700 78.9568 98.6962 128.3049 

FC
*
 49.35 49.35 52.78 78.96 98.71 128.32 

N
*
 49.3 49.3     

JN
*
 53.4 53.4     

* 
LL=Liew and Lam (1994); KD=Kim and Dickinson (1987); 

FC=Fan and Cheung (1984); N=Nowacki (1953); JN=Johns 

and Nataraja (1972) 

 

Table 2 Rate of convergence of the frequency parameter for 

a square plate with a centrally located rigid point support 

Number of retained modes ( ) 

Mode 
No. 

7 20 50 100 150 200 

Mode 1 49.3480 49.3480 49.3480 49.3480 49.3480 49.3480 

Mode 2 49.3480 49.3480 49.3480 49.3480 49.3480 49.3480 

Mode 3 59.2040 55.7037 53.8130 53.2488 53.0191 52.9329 

Mode 4 78.9568 78.9568 78.9568 78.9568 78.9568 78.9568 

Mode 5 98.6960 98.6960 98.6960 98.6960 98.6960 98.6960 

Mode 6 128.3049 128.3049 128.3049 128.3049 128.3049 128.3049 

 

 

Fig. 7 Variation of the first six frequency parameters with 

the spring constant for a simply supported square plate 

with a centrally located elastic point support 
 

440



 

Dynamic response of thin plates on time-varying elastic point supports 

 

 
(a) 1

st
 mode 

 
(b) 2

nd
 mode 

 
(c) 3

rd
 mode 

 
(d) 4

th
 mode 

Fig. 8 Mode shape plots for a simply supported square 

plate with a centrally located rigid point support 

  

 

frequency parameter decreases as the spring moves towards 

the edges. The results so obtained for the case of a rigid 

point support have been compared with the results available 

in (Bapat and Suryanarayan 1989) and are found to be in a 

very good agreement. 

 
(a)        

 
(b)    approaches infinity (rigid point support) 

Fig. 9 Variation of the first six frequency parameters of 

a square plate with the location of interior spring along 

line    ⁄      
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