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1. Introduction 
 

Thin flat plates are known as a major component and 

widely used in various industries such as mechanical, civil 

and aerospace. The emergence of a crack in this type of 

structures results in a reduction of the local stiffness and the 

strength of them. It is obvious that changing the stiffness of 

a structure is caused to change its natural frequencies which 

lead to a different structural dynamics behavior. Hence, 

investigation of the structural behavior due to the presence 

of a crack in a structure is very attractive for scientists.  

Many physical problems such as the free vibration 

analysis of thin cracked plates are expressed by partial 

differential equations. The solution of these equations is 

generally very difficult and often impossible to obtain via 

analytical means. Hence, it is inevitable to use numerical 

methods, such as FEM, Raleigh-Ritz,… (Bachene 2009, 

Huang 2009, 2011, Israr 2008, Bose 2013), to overcome 

this problem. However, the methods which have high 

accuracy, as well as low computational effort, are more 

attractive. In recent decades, some numerical tools such as 

mesh-free method, boundary element method, and DQM, 

have been developed to provide a solution of the 

aforementioned problem.  

The DQ method, which was first developed by Bellman 

and Casti (1971), has less complexity than other numerical 

methods in solving partial differential equations in simple 
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domains. In this method, the derivative of a quantity field at 

a specific point is approximated as a weighted linear 

summation of the values of the quantity at all other 

sampling points along the domain. Of course, the main 

drawbacks of this method are (i) sensitive to distribution 

type of sampling points along the domain, and (ii) the 

existence of a geometric discontinuity or complexity in a 

computational domain. Therefore, Shu and Richards (1992) 

proposed a method to overcome the first drawback by 

introducing the Generalized DQ (GDQ) method based on 

the analysis of a polynomial vector space. Afterward, many 

researchers used this method for analyzing different 

problems containing partial differential equations in 2D and 

3D problems. For example, Chen et al. (1997) introduced a 

methodology to implement the boundary conditions in the 

DQ solution of plate and beam problems. Also, the DQ 

method was used to solve the Poisson and Convection-

Diffusion Equations (Chen et al. 2002). However, the 

structural analysis of a plate structure with geometric and 

material discontinuity/complexity is impossible by using 

ordinary DQ or GDQ method. One way to vanish this 

problem is to use the Differential Quadrature Element 

Method (DQEM) (Striz et al. 1994). In this method, a 

computational domain is divided into several sub-domains 

(elements) which joined together mathematically by 

continuity conditions. The DQEM approach was utilized to 

analyze the free vibration of cracked beams and some its 

excellent features such as high accuracy and fast 

convergence were introduced (Hsu 1995, Ke et al. 2012, 

Torabi 2014). Also, Han and Liu (1996) presented a DQE 

method for partly thick plates. In another study, this method 

was implemented by Liu (1999) to investigate the vibration 
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analysis of a discontinuous Mindlin’s plate. Also, this 

method was applied to investigate the buckling, free 

vibration and static analyses of discontinuous Mindlin’s 

plates (Liu 1998, 1999a, b, 2001). Barooti et al. (2013) 

examined the effects of a through-the-width delamination 

on the buckling load of a laminated composite partly thick 

plate subjected to a compressive load by DQEM approach. 

Although the appropriate application of this approach has 

been proven in analyzing of beam and thick plate structures, 

it has some restrictions on dealing with thin plates. A 

simplified approach to analyze thin plate structures is the 

use of classical plate theory (the Kirchhoff–Love theory of 

plates) which may lead to partial differential equations 

including only deflection degree of freedom. However, the 

resultant equations cannot provide enough means for 

imposing boundary conditions and continuity conditions 

between elements via DQE method. Thus, it is inevitable to 

implement some correction techniques to overcome this 

drawback. In this regard, various approaches have been 

proposed to solve the problem of imposing boundary 

conditions in a thin plate structure by DQE method. 

However, these approaches have some restrictions such as 

they are regardless of enough boundary condition relations 

or the related equations in the vicinity of boundaries. To 

resolve this problem, many researchers have considered 

additional degrees of freedom at the boundary of a 

computational domain (element) to facilitate applying 

boundary or continuity conditions. For example, Wu and 

Liu (2001) defined a slope degree of freedom at the 

boundary of a domain via a change in the weighting 

coefficients appears in the equivalent statement of a partial 

derivative. They performed the static and dynamic analyses 

of an Euler-Bernoulli beam and a rectangular plate under 

different boundary conditions. Also, Wang et al. (2004) 

implied that the application of this routine in the DQEM is 

not suitable for a problem having discontinuities. Karami 

and Malekzadeh (2003) proposed curvature degrees of 

freedom at the boundary of a problem without any change 

in the weighting coefficient statements of GDQ method and 

investigated the free vibration behavior of a thin rectangular 

plate. However, this technique is not appropriate for the 

structural analysis of a problem having geometric 

discontinuity because of the insufficient degrees of freedom 

at corner points of each computational domain.  Moreover, 

it has some drawbacks in applying slope boundary 

conditions (Navardi 2015). In another study, Wang et al. 

proposed slope degrees of freedom at the boundary of a 

problem to provide a manner to apply slope type of 

boundary conditions in GDQ method. However, in this 

approach, the related weighing coefficients remain 

unchanged. Despite a corner point of a domain in this 

approach has three degrees of freedom (one deformation 

along with two slopes), the slope degrees of freedom are not 

present in the twist statement. Although this approach may 

not be faced with any problem in continuous domains; 

however, it is not appropriate to model cracked or cutout 

thin plates.  

Fantuzzi (2013) introduced the generalized differential 

quadrature finite element method.  This method was used 

to investigate the free vibration of arbitrary shaped 

membranes (Fantuzzi et al. 2014) and cracked composite 

structures of arbitrary shape (Viola et al. 2013).They 

implemented the first-order shear deformation plate theories 

in their research. Although the presented results show the 

higher accuracy of this approach, the manner of applying 

continuity conditions between adjacent DQ elements and 

boundary conditions has not been explicitly proposed. It is 

worth mentioning that using the first-order shear 

deformation removes the need of considering additional 

degrees of freedom. However, the simplicity of classical 

plate theory still retains the charm of its use in the analysis 

of thin plate structures. 

In the present study, an alternative approach based on 

the Generalized Differential Quadrature Element (GDQE) 

method is developed to overcome the establishment of 

continuity between adjacent DQ elements and simulating 

thin plate structures with geometric discontinuity and mixed 

boundary conditions. For this purpose, the slope degree of 

freedom as an independent variable is introduced on the 

boundaries of a DQ element by modifying the governing 

differential equation so that three degrees of freedom are 

produced at each corner point. It should be noted that the 

present approach is similar to the new version of the 

differential quadrature element method, has been introduced 

by Wang et al. (2004), which may be lead to an ill-

conditioned problem during the analysis of a plate with 

clamped boundary conditions. Finally, the present approach 

is utilized to free vibration analysis of thin cracked plate 

structures. The obtained results are evaluated with the 

available results in the literature. 

 

 

2. Governing equations 

 

The governing equation of a thin plate, with length (a), 

width (b) and thickness (h), based on the classical plate 

theory and regardless of surface shearing forces, body 

moments and inertial forces in x and y-direction is (Reddy 

2004) 

2 2 22

0

0 02 2 2
2 ( )

xy yyxx
M M wM

N w q I
y xx y t

  
    

   
 (1) 

Also 

2

0
2

0 0

0

0 0

( ) ,

( ) (N )

(N )

h

h

xx xy

xy yy

I z dz

w w
N w N

x x y

w w
N

y x y






 
  
  

 


  



 (2) 

where Mxx, Myy and Mxy denote the components of out-of-

plate moment. q and ρ denote the intensity of transverse 

distributed load and the plate mass density per unit area, 

respectively. Nxx, Nyy and Nxy are the component of in-plane 

forces. Also, w0 and I0 are the transverse displacement and 

the plate’s mass moment of inertia.  

Based on the classical plate theory, the displacement 

field of a plate is as follows 
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( 

where u, v and w are the displacement component in the x, y 

and z directions, respectively. u0 and v0 are the in-plane 

displacement components, and w0 is the out-of-plane 

displacement component of the mid-plane of the plate.  

According to von Karman nonlinear strain-displacement 

relations, the nonlinear strains are defined as 
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 and k are the mid-plane membrane and bending 

strain vectors 
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The curvatures are also defined by 
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The out-of-plane moments are related to the curvatures 

through the following relations 
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where D denotes the plate flexural rigidity and is associated 

with Young’s modulus and Poison’s ratio via 
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The shear force and the total transverse force 

components are expressed by Viola et al. (2013) 
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In order to introduce a refined approach in the 

differential quadrature element method, one can make some 

modifications in the aforementioned relations. So, the 

transverse displacement derivatives according to the 

following relationships are firstly considered as 
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By changing the degrees of freedom according to 

rotations of the normal about x and y-axis, The curvature 

vector can be rewritten as 
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Also, the out-of-plate moment components are 

expressed by 
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Substituting Eq. (13) into Eq. (1) and neglecting in-

plane load, N(w0), yields 
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Eq. (14) can be written in a non-dimensional form as 
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where the non-dimensional parameters appeared in Eq. (15) 

are defined as follows 
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Incorporating W=we
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 into Eq. (15) gives 

3 3 3 3
2 4 2

3 2 2 3

x x y y

w
   

 
     

     
      

       
 (17) 

347



 

Hossein Shahverdi and Mohammad M. Navardi 

 

where 
4pha

D
   is the dimensionless natural frequency. 

By substituting Eq. (13) into of Eq. (9), the shear force 

components become 
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Also, in a similar manner the total transverse force 

components can be written as follows 
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3. Refined differential quadrature element method 
 

In this section, the formulation of the refined 

conventional DQEM is presented. For this purpose, the 

governing equation of thin plates in the form of Eq. (15) is 

firstly discretized by using the GDQ method. The key of 

this method is to determine the derivative of a function with 

respect to a space variable at a specific point as a weighted 

linear summation of all the functional values at all other 

sampling points along the domain (Shu and Richards 1992). 

Therefore, the r-th order partial derivative of a function f(x) 

with respect to the space variable 𝑥 may be written as 
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where N is the number of sampling points in the domain 

and 
( )r
ikA  is the weighting coefficients to be defined as 

follows (Shu and Richards 1992): 
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Also, the higher-order weighting coefficients are   
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It should be noted that the weighting coefficients are 

only dependent on the derivative order and on the number 

and distribution of sampling points along the domain. A 

well-known method of defining these points is to use 

Chebyshev-Gauss-Lobatto point distribution as follows 

(Shu 2012 and Zong and Zhang 2009) 
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(25) 

Although 
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expressed by 
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However, it must be approximated by 
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where N and M denote the number of computational/ 

sampling points in ξ and η direction, respectively. In the 

above equations, it can be seen that there are two and three 

degrees of freedom at the edges and the corner points of a 

computational domain (element), respectively, via the 

equivalent summations of the aforementioned partial 

derivatives. Also, each of the remaining points (called 

domain points) has only one degree of freedom. In addition 

to the presence of transverse displacement degrees of 
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freedom, there are slope degrees of freedom in Eq. (25) 

which are the difference between the present study and the 

conventional DQEM (Wang et al. 2004). 

Substituting the partial derivatives in Eq. (15), in a 

similar manner of Eq. (25), the following equation will be 

achieved.
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(29) 

where, C
ξ
ij and B

ξ
ij are the weighting coefficients 

corresponding to the third and second order partial 

derivative to the  direction and C
η
ij, B

η
ij 

are those to the  

direction. 

 
 
4. Simulation of a crack in the refined DQEM 

 
As it was mentioned earlier, the free vibration analysis 

of a thin plate with a central crack is impossible by using 

the conventional DQ or GDQ method. One way to 

overcome this problem is to use the Differential Quadrature 

Element Method (DQEM) (Striz et al.1994). In this method, 

a computational domain is divided into several subdomains 

(elements) which joined together mathematically by 

continuity conditions. 

Hence, in order to simulate such a plate, a plate 

including a central crack of length b2 is considered as 

depicted in Fig. 1. For implementing the EDQM, the pale 

surface divides into six elements so that the crack edges lies 

on the common side of the third and fourth elements (shown 

by the dashed line in Fig. 1).   
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Fig. 1 Mesh grid of central cracked plate 
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It should be noted that the physical connection between 

the adjacent elements is provided by the compatibility 

conditions including continuity of transverse displacement, 

rotation, bending moments and shear forces. So, the 

continuity conditions can be expressed in y direction as 

follows 

   

   

1,3

2,4
, (q, l)

3,5

4,6

q l

y y

q l

yy yyq l
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w w
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V V


 

    
 

  
 
 

 (30) 

Also, in a similar manner the continuity conditions in x 

direction can be written as follows 

   

   

1,2
, (q, l)

5,6

q l
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q l
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w w

M M
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

    
  

  



 (31) 

where (q, l) indicates the common side of the qth and lth 

elements in the desired direction. However, because of the 

existence of free condition on the crack edges, the boundary 

conditions over that region are considered to be 

30
,

40

q

xx

q

x

M
q

V

  
  

  
 (32) 

Also, the compatibility conditions at the crack tip, 

including continuity of vertical displacements, rotations, 

and the equilibrium of the bending moments, are porposed 

by 

       

       

       

 

0

0

0

1, 2,3, 4
, , ,

3, 4,5,6

x x y y

q l q n q l

x x y y

n m l m n m

x x y y

q n q l q n

xx xx xx xxq l n m

yy yy yy yyq l n m

xy xy xy xyq l n m

w w

w w

w w

M M M M

M M M M

M M M M

q l n m

      

      

      

   

   

   

 
  
 

 (33) 

where q, l, n and m represent the elements are around the 

cracked tips. 

According to the aforementioned statements, Eq. (28) 

can be rewritten in the following form for the free vibration 

analysis of a discretized domain (See more details in Shu 2012) 
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(34) 

 

 

5. Boundary conditions 
 

In this study, the boundary conditions of the cracked 

plate are considered to be simply supported on all edges.  

At ξ=0:  

0 and 0 , (1 3 5)xx

q qw M q    (35) 

At ξ=1:  

0 and 0, (2 4 6)xx

q qw M q    (36) 

At η=0: 

0 and 0, (1 2)yy

q qw M q    (37) 

At η=1: 

0 and 0, (5 6)yy

q qw M q    (38) 

The simply supported boundary conditions on the 

common nodes located on η=0 and η= 1 are 

   
 

0
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q l q
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 (39) 

Also, at ξ=0 and ξ=1, they can be written as follows 
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 (40) 

At the corner points, the boundary conditions can be 

expressed by 

0

1,2,5,60

0

q

x

q

y

q

w

q









 (41) 

In other words, at the edges of a classical plate having 

simply supported boundary conditions, the slope and its 

derivatives are zero. In order to explain more, 

2

2

w

y




 equal 

to zero at an edge with simply supported boundary 
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conditions at ξ=0 or ξ=1, respectively. With regard to this 

issue, Eq. (25) can be expressed by 

1 1 0y y y y

j i jM iMA A    (42) 

It can be seen that the trivial solution of this equation is 

zero. 

  

 

6. Solution methodology 
 

The combination of the aforementioned discretized 

governing equations and the associated boundary condition 

equations can be represented by a system of linear 

equations through an assembling procedure so that the 

continuity conditions between adjacent DQ elements are 

satisfied (See more details in Navardi 2015). 

2
0 0

0

BB BD B

DB DD D D

K K

K K



 

       
        

      
 (43) 
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w
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

 
 
 
 
 
 

 (44) 

where the subscripts B and D denote the boundary and 

interior points along the domain, respectively. KBB, KBD, KDB 
and KDDimply the influence coefficients appeared in the 

discretized equations. δB 
is the degree of freedom vector 

including transverse displacements and slope states which 

considered on the boundaries of domain and defined by: 

Also, δD is the degree freedom vector including 

transverse displacement of the interior points along a 

domain and defined by 

 D D
w   (45) 

Computing δB from the first row of Eq. (43) and 

substituting it into its second row results in the following 

relation. 

2

D DK     (46) 

where 

1

1

B BB BD D

DD DB BB BD

K K

K K K K K

 



 

 
 (47) 

The eigen-frequencies of Eq. (47) can be determined 

through a standard eigenvalue solver.  

 

 

7. Results and discussion 
 

In this section, in order to validate the present approach, 

two test cases including a square thin plate with a central 

crack and a square thin plate with a side crack are 

investigated by the refined DEQM. The results are validated 

by those obtained via FEM and available results in the 

literature. 

Table 1 The first nine non-dimensional natural frequencies 

of a square plate with a central crack 

Frequency FEM[2] Ref.[2] 
Grid point numbers in each element 

18 22 26 30 

Ω1 16.397 16.41 16.5889 16.3101 16.2592 16.2406 

Ω2 27.703 27.77 28.0030 27.8095 27.7047 27.6418 

Ω3 47.179 47.21 46.8498 46.8946 46.9217 46.9387 

Ω4 65.642 65.76 62.3396 62.3513 62.3125 62.2732 

Ω5 76.297 76.37 77.0309 76.3710 76.2417 76.1917 

Ω6 78.308 - 78.23887 78.152 78.1088 78.0835 

Ω7 96.702 - 97.03991 96.5751 96.4934 96.4647 

Ω8 113.338 - 113.0641 113.047 113.038 113.0328 

Ω9 121.207 - 122.2504 121.854 121.646 121.524 

 

Table 2 The first five non-dimensional natural frequencies 

of a square plate with side crack 

Frequen-

cy 
FEM 

Grid point numbers 

of each rear element in y direction 

10 14 16 17 20 22 24 

Ω1 17.832 27 17.5394 17.8081 17.8680 17.1515 16.8730 16.3651 

Ω2 40.339 35.1634 40.7690 41.1847 41.1517 41.5708 42.1345 43.6626 

Ω3 46.020 35.1634 44.9926 46.7988 47.1076 44.9404 44.7239 44.0295 

Ω4 62.118 56.5341 61.4402 61.4810 61.3314 60.1237 58.7240 57.3540 

Ω5 72.902 56.5341 73.4507 73.7366 73.7582 73.5844 73.6852 73.6831 

 

 

7.1 Free vibration analysis of a square thin plate with 
a central crack  

 
A thin plate with a central crack and under simply 

supported boundary conditions is considered here and it is 

divided into six elements as shown in Fig. 1. By using the 

present approach, the first nine dimensionless natural 

frequencies of a cracked thin plate have been determined and 

presented in Table 1.  

In this table, the convergence of the results is shown by the 

use of a different number of grid points. Also, the obtained 

results are compared with those reported by Huang et al. 

(2011). It should be noted that they utilized the Ritz method 

and FEM to the free vibration analysis of a cracked plate. Also, 

the maximum percentage error is less than 5 percent. The 

results reveal that the present approach gives satisfactory 

results in comparison with FEM and analytical methods. Also, 

the related mode shapes of that plate obtained by the present 

approach are illustrated in Fig. 2. 

The effect of crack length on the non-dimensional 

natural frequencies of the plate is shown in Fig. 3. Indeed, 

Ansys software has been utilized to investigate the 

validation of the obtained results. For this purpose, 

Solid185 was used for 3D modeling of the cracked plate. 

Also, the location of the crack tip (a1) is considered to be 

0.2 in all cases. There is a good correlation between the 

present approach and FEM. It must be noted that a sampling 

point distribution including 15×15 grid points in each 

element is considered here 
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Fig. 2 The first nine mode shapes of a square plate with a central crack 
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Fig. 3 Effect of crack length on the frequencies of a square plate with a central crack 
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Fig. 4 Mesh grid of a plate with a side crack using four 

elements 
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Fig. 5 Effect of crack length on the frequencies of a square 

plate with a side crack 
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a side crack 
 

Here, the results of the free vibration analysis of a 

square plate with a side crack are presented by using the 
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four elements (as shown in Fig. 4) and a sampling point 

distribution including 15×15 grid points in each element 

adjacent to the crack edges is considered. The crack 

location is illustrated by the dotted line in this figure. 

Table 2 indicates the first five non-dimensional natural 

frequencies of a thin cracked plate by the present method 

and FEM. The geometric specifications of the side crack 

have been defined by 3 0.6
b

b
  and 1 0.2

a

a
 . The related FE 

models have been constructed using the previously 
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mentioned element in Ansys software. The effect of a 

number of grid points in the y direction which considered 

on the elements behind of the crack tip on the convergence 

of the results is studied and presented in this table. It must 

be noted that the number of grid points is 15 in the x 

direction inside each element. This subject reveals that the 

importance of the number of computational nodes on the 

results because of asymmetry of the whole computational 

domain (the cracked plate). 

According to the results, it is found that the results are 

affected by the number of computational points which 

located behind the crack tip. So, the correct answer can be 

achieved when the number of points considered along the 

edgewise orientation (y direction) in each rear element is 

(16 points) higher than those in the direction perpendicular 

to the edge of the crack (15 points). Of course, using of 

more computational nodes results in incorrect answer due to 

computational problems. 

Finally, Fig. 5 shows the effect of the crack length on 

the first five non-dimensional natural frequencies of the 

cracked thin plate. Also, it is shown that the obtained results 

have a good correlation with those obtained by FEM.   

The results show that the natural frequencies decrease 

with increasing the crack length because of increasing 

flexibility of the plate.  

 

 

8. Conclusions 
 

 In this study, a refined approach in the generalized 

differential quadrature element method has been proposed 

to provide the free vibration analysis of cracked thin plate 

structures. The framework of this study was established 

based on the classical plate theory. Thus, the main feature 

of this approach is to refine the GDQ formulation based on 

the classical plate theory through incorporating an 

additional degree of freedom. Also, an appropriate form of 

continuity equations has been proposed to model a crack tip 

which surrounded by some DQ elements. To show the 

accuracy and fidelity of the present approach, the free 

vibration analyses of some different test cases including a 

square thin plate with a central crack and the other with a 

side crack under simply supported boundary conditions 

were conducted. The evaluation of the obtained results 

clarifies the accuracy and convergence of the present 

method. However, it was found that for analyzing a plate 

with a side crack, one can need more computational points 

in the crack edgewise, in the elements located behind the 

crack tip, to achieve acceptable results.   
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