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1. Introduction 
 

In many vibrating structures such as bridges, buildings, 

highways and so on, applying the finite element method to 

discretize the continuous structure, we can obtain the 

corresponding analytical finite element model 

 2 0   M C K x  

where M,C,Kn×n

 
are the discrete mass matrix, damping 

matrix and stiffness matrix, respectively. However, the 

finite element model is only an approximate model of the 

continuous structure. Therefore, in general, natural 

frequencies (eigenvalues) and mode shapes (eigenvectors) 

of the analytical model and experimentally measured 

frequencies and mode shapes directly collected from the 

practical vibrating system do not match very well, and some 

actions should be taken. Model updating is a common 

method to improve the correlation between the analytical 

finite element models and measured data, and plays an 

important role in many applications, such as structured 

mechanics (Gladwell 2004), pole assignment problem 

(Kautsky et al. 1985). 

In recent years, the model updating problem becomes 

more important and challenging, and many efficient 

numerical methods have been proposed, see the reviewed 

articles (Mottershead and Friswell 1993, Chu 1998) and the 

books (Gladwell 2004, Chu and Golub 2005, Friswell and  
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Mottershead 1995, Gohberg et al. 1995) and the extensive 

references collected therein for general theory, algorithms 

and applications. However, a model updating problem 

without a structure is often trivial and meaningless (Chu 

and Golub 2005), and research results advanced thus far for 

the model updating problems can not address the structured 

problems very well. From a practical point of view, the 

matrices M,C,K are got from the practical physical system, 

which often has an inherent connectivity, it is therefore 

necessary to consider the reconstruction of the physical 

system under the connectivity constraint, which implies 

each entry of the coefficient matrices is the combination of 

some physical parameters, such as the mass, the damping 

coefficient, the stiffness coefficient in a mass-spring system, 

and the voltage, the resistance in an RLC electronic network 

and so on, and furthermore, it is reasonable to require these 

parameters are positive in the process of model updating. 

Therefore, the additional specified structure discussed in 

this paper involves the connectivity of the physical system 

and the positivity of the physical parameters. Since the 

measured data in applications are unavoidably polluted by 

unknown random and systematic errors, model updating 

techniques aim at fitting the given initial analytical model in 

such a way that the model behavior corresponds as closely 

as possible to the measured behavior. Generally, the 

structured model updating problem studied in this paper can 

be stated as follows 

   

22 2
1 2

2
2
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where γ1, γ2 
are weighting parameters, ||∙|| is the Frobenius 

norm, 
nnKCM 

~
,

~
,

~
are the given discrete mass matrix, 

damping matrix and stiffness matrix of the analytical model 

and Λ=diag(λ1,…,λl) l×l
, Xn×l

, consist of given natural 

frequencies and the corresponding mode shapes obtained by 

vibration tests, respectively. The constraint “
2

2+ 0  
F

MX CX KX ” means the reconstructed model 

should match the measured data (X, Λ). The constraint 

“structure (M,C,K)=structure )
~

,
~

,
~

( KCM ” means the 

combination patten of each entry of the matrices M,C,K is 

same as that of the matrices KCM
~

,
~

,
~

.  The constraint”

0M M , 0C C , 0K K “means the 

matrices M,C,K are all symmetric and positive semidefinite. 

The constraint “parameters>0” means all physical 

parameters are positive. For convenience, we named these 

four constraints as “Equation constraint”, “Connectivity 

constraint”, “PSD constraint” and “Positivity constraint”, 

respectively. 

Little work has been done to the structured model 

updating problems due to the difficulty of handling all these 

constraints together. Several special versions of the 

optimization problem (1) have been studied. The existent 

methods, such as direct updating methods (Baruch 1978, 

Berman and Nagy 1983, Wei 1990), eigenstructure 

assignment techniques (Zimmerman and Widengren 1990, 

Datta 2002, Bai et al. 2010, Brahma and Datta 2009), 

optimization methods (Moreno et al. 2009, Bai et al. 2007, 

Chen 2014) mainly aim at model updating problems with 

the constraints “Equation constraint” and “PSD constraint” 

or only the constraint “Equation constraint”. For the 

constraint “Connectivity constraint”, the most simple 

connectivity requires the reconstructed coefficient matrices 

admit the same sparsity as the original coefficient matrices. 

In Kabe (1985), the Hadamard product is applied to solve 

the model updating problem with this sparsity constraint, 

however, this method can not ensure the positive 

semidefiniteness of the coefficient matrices and the 

positivity of the parameters. Furthermore, in Yuan (2012, 

2013), the matrix linear variational inequality approach and 

the proximal-point method are respectively applied to solve 

the model updating problems with the sparsity constraint, 

however, these two methods can not keep the positivity of 

parameters. In Bai (2008), the sufficient and necessary 

conditions on the given eigenpairs so that the model 

updating problems with a special connectivity constraint 

and positivity constraint are solvable is presented. In Chu et 

al. (2007), the model updating problems with the 

constraints “Equation constraint”, “Connectivity constraint” 

and “Positivity constraint” are considered. However, the 

methods in Bai (2008), Chu et al. (2007) do not consider 

the “PSD constraint” and only aim at special structures and 

can hardly be generalized to other systems. In Dong et al. 

(2009), a general and robust numerical method is presented 

to solve the structured quadratic inverse eigenvalue 

problems with the constraints “Connectivity constraint” and 

“Positivity constraint”, however, the constraint “PSD 

constraint” can not preserved. In Lin et al. (2010), the 

semidefinite programming technique is proposed to solve 

the structured quadratic inverse eigenvalue problems, but 

this method relies on the interior point methods and 

probably can not handle large scale problems. The methods 

in Li (2002), Halevi and Bucher (2003), Sako and Kabe 

(2005) also consider the constraint “Connectivity 

constraint” but fail to guarantee the constraint “PSD 

constraint”. The numerical methods for the parameter 

updating problems (Berman and Nagy 1983, Chen and 

Garbat 1980, Mottershead et al. 2011, Zhao et al. 2016) 

also can not be used to solve our problem due to the 

existence of the constraint “PSD constraint”.  

In this paper, we present a numerical method to solve 

the structured model updating problem with incomplete 

measured data, in which the solution to dynamic equations, 

the symmetry and positive semidefiniteness of the matrices, 

the inherent connectivity of the physical system and the 

positivity of the physical parameters are imposed as the 

constraints of the formulated optimization problem. Our 

method is based on semidefinite programming technique 

and can reduce the number of the variables greatly, and thus 

it can solve the structured model updating problems of large 

scale efficiently.  

This paper is organized as follows. In Section 2, we 

apply QR decomposition technique to approximately solve 

a linear system, and then derive a constraint optimization 

problem with less variables, which is a necessary condition 

for the existence of a positive solution to a structured model 

updating problem with prescribed connectivity. The precise 

description of the algorithm also is presented in Section 2. 

The numerical tests are done in Section 3 to show the 

effectiveness of our algorithm. 

 

 

2. Model reduction 
 

Given a mass-spring system, applying the well-known 

Hook’s law and the damping is negatively proportional to 

the velocity, the structure of the coefficient matrices M,C,K 

can be determined, (Dong et al. 2009, Johnson 2000, see). A 

typical way in the literature to describe the structure of a 

 

 

 

 

Fig. 1 An electric car model 
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general mass-spring system is that the mass matrix M, is 

diagonal, both the damping matrix C and the stiffness 

matrix K are symmetric. Moreover, the structures of the 

coefficient matrices M,C,K are related to the internal 

connectivity of the masses and springs. A different 

configuration of the connectivity leads to a different 

structure. 

Example 1. The coefficient matrices M,C,K 

corresponding to the electric car model depicted in Fig. 1 

should be constructed as follow 

1

2

3


 
 
 
 
 
 

m
m
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m
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(2) 

and 
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(4) 

where l1,l2,l3,ρ are all given values. Furthermore, the 

physical parameters m1,m2,m3,m and c1,c2,c3,k1…k5 are all 

required to be positive. 

The matrix 
2 +  MX CX KX in the first constraint 

of the problem (1) can be transformed to a vector. Now we 

consider to construct the vector through rewriting the

 , -thi j entry of the matrix 
2 +  MX CX KX . Let 

 
11, , nm m m ,  

21, , nc c c ,  
31, , nk k k , and 

Mi,Ci,Ki be the i-th row of M,C,K, and let (XΛ
2
)

j
, (XΛ)

j
, (X)

j

 
be j-th column of XΛ,XΛ,X, Mi=(Mst)n1×n Ci=(Cst)n2×n,, 

Ki=(Kst)n3×n, where Mst, Cst, Kst are respectively the 

coefficients of variables ms,cs,ks (1≤s≤n) in the t-th element 

of the vector Mi,Ci,Ki.  

Example 2. For the matrices M,C,K in Example 1, let 

m=(m1,m2,m3,m), c=(c1,c2,c3), k=(k1,…,k5), we have 
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We must stress that a different configuration of the 

connectivity leads to different Mi,Ci,Ki, and these matrices 

can be constructed exploiting the rules which are well 

developed in the field of structural mechanics (Johnson 

2000). Once we obtain Mi,Ci,Ki, for the (i,j)-th
 
entry of the 

matrix 2 +  MX CX KX , we have 
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Thus the first constraint in the optimization problem (1) 

can be transformed to find the solution to 

0
2
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Ax  (5) 

where 

,

))(())(())((

))(())(())((

))(())(())((

))(())(())((

2

1112

11
2

1

1
1

1
1

12
1































Tl
n

Tl
n

Tl
n

T
n

T
n

T
n

TlTlTl

TTT

XKXCXM

XKXCXM

XKXCXM

XKXCXM

A  






































T

T

T

nnn k

c

m

x

x

x

321

1

  

(6) 

The objective function in the optimization problem (1) 

can be written as 



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n

ji

ijij KK  

where Mij, ijM
~

(Cij, ijC
~

,Kij, ijK
~ ) are respectively the (i,j)-th

 

elements of the matrices M, M
~

(C, C
~

,K, K
~

). Since Mij, Cij 

and Kij
 
are the linear combinations of the parameters m,c,k

the function f(x) is a quadratic polynomial.  

Let Ai, An1+j, An1+N2+k
 
be the coefficient matrices of the 

variables xi, xn1+j, xn1+N2+k
 
in matrices M,C,K respectively, 

the matrices M,C,K can be rewritten as 
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1 1

1 2 1 21 1

1 2 3 1 2 31 2 1 2

1 1

1 1

1 1

,

,

.

  

      

  

  
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n n

n n n nn n
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Thus, the structured model updating problem is 

transformed to find the optimal solution of the following 

problem 

 

 
 

1 1 1 1

1 1 1 2 1 2 1 1 1 2 1 2

1 2 1 2 1 2 3 1 2 3
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

,
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1 2 3 1 2 3+ + + +

1 2 3

+ 0,

         0, 1, , + + .
n n n n n n

i

x A
x i n n n



   

(7) 

For the constraint “Equation constraint” in (7), since the 

measured data are inexact, the matrix A in (6) may be full 

rank and the solution to 0
2

2
Ax  is zero. Furthermore, 

the solution to the optimization problem in (7) also is zero. 

However, in applications, it is more desirable to find an 

approximate positive solution to 0
2

2
Ax . Performing the 

orthogonal-triangular decomposition of the matrix A, we get 

A=QUP, (8) 

where Q is an orthogonal matrix, U is an upper triangular 

matrix, and the absolute values of its diagonal elements are 

decreasing, P is a permutation matrix. The function Ax is 

homogeneous, then the solution x to 0
2

2
Ax

 
is satisfies 

0xU , where Pxx  , and x̅1,…, x̅n1+n2+n3 is a 

permutation of x1,…, xn1+n2+n3. When the matrix U is 

nonsingular, (5) does not have a positive solution, therefore, 

we need to truncate the matrix U. Let Ue be the truncated 

matrix of rank r, the solution to Uex̅=0 is an approximate 

solution of Ux̅=0, and hence an approximate solution to
2

2
=0Ax . Furthermore, we have 
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The solution x̅ is obtained from the truncated linear 

system Uex̅=0 and just an approximate solution to the linear 

system Ax=0. Theorem 4.1 in Dong et al. (2009) states how 

the truncation of the matrix U affect the accuracy of the 

solution. 

For the constraint “PSD constraint” in (7), applying the 

variable substitution (9), we have 
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where ),...,( 3211 nnnri xxg  (1≤i≤n1+n2+n3) are all linear 

functions in the variables x̅r+1,…, x̅n1+n2+n3, and all three 

constraints have the following forms 
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For the constraint “Positivity constraint” in (7), applying 

the variable substitution (9), we have 
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For the objective function in (7), since x̅ only is a 

permutation of x, we have 
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Thus, combining (11), (12) and (13), the structured 

model updating problem can be transformed to the 

following problem with n1+n2+n3−r variables 
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where g1,…,gn+n2+n3 are defined as (10). And the physical 

parameters 

),...,,...,((),,( *
321

*
11 nnnr

T xxgPkcm   

,)),...,( *
321

*
1321

T
nnnrnnn xxg 

 

where ),...,( *
321

*
1 nnnr xx   is the optimal solution of the 

optimization problem (14). 

In our algorithm, to find a positive solution, we often 

have to truncate the matrix U in (8), however, in many 

cases, we do not know how to truncate the matrix U. If we 

truncate the matrix too much, then we might miss a more  
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accurate solution, and if the truncation is too little, we can 

not get an approximate solution. Since the absolute values 

of the diagonal elements of U are decreasing, it is 

reasonable to dynamically truncate the matrix U from the 

bottom to the top, that is, we solve (14) from r=rand(A) to 

r=1, where rand(A) is the rank of the matrix A, and 

• if for some r, the optimization problem (14) is 

solvable, then we claim that we get an approximate 

solution of the structured model updating problem.  

• if for all r , the optimization problem (14) has no 

solution, then we state the structured model updating 

problem has no solution.  

Our proposed method in this paper is carried out in three 

steps: formulate the optimization problem in (1); construct 

the matrix A and approximately solve the problem 

0
2

2
Ax  through the QR decomposition technique; reduce 

the optimization problem in (1) and solve the reduced 

optimization problem by the semidefinite programming 

technique. The following is the algorithm for reconstructing 

a structured model according to the measured data and the 

connectivity of the physical system.  

Algorithm 3.1: Model Reconstruction:  

Input the connectivity of the physical system and 

measured data (X, Λ)  

• Step 1. Construct the structure of the coefficient 

matrices M,C,K based on the connectivity. 

• Step 2. Calculate 
2 + MX CX KX and vectorize 

it to the vector Ax. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Step 3. Perform QR decomposition A=QUP.  

• from  rankr A  to 1r  

- Obtain the truncated matrix Ue and solve the linear 

system UePx=0; 

- Reduce the optimization problem in (1);  

- Solve the reduced optimization problem (14) by the 

free software Yalmip;  

- If for some r, the optimization problem (14) has a 

solution, then stop.  

• Step5. Output the solution or state the reconstruction is 

impossible. 

There is a limitation in the stated procedures in that the 

structure of the model is known and, thus, in order to allow 

for the correction of a larger model, it is necessary to obtain 

an estimate of the model structure. 

 

 

3. Illustrative numerical examples 
 

In this section, we give some examples to state our 

method has the high specificity in determining a structured 

model updating problem is not solvable and high sensitivity 

in predicting a problem is solvable. All the computations are 

carried out on a Dell PC with an Intel Core(TM) CPU of 

2.40GHz, 8GB of memory. The package is written in 

MATLAB. The free MATLAB-based toolbox Yalmip can 

serve as a simple but powerful tool to handle our 

optimization problem.  

Table 1 True eigenpairs 

 1 2 3 4 

λj -8.3531655419 -6.4981553681 -0.3043306852 -0.1026321280 

xj 0.1197150942 0.1538898261 0.18693339163 -1 

 -0.1197150942 0.1538898261 -0.1869333916 -1 

 -0.0387088666 0 0.1367498450 0 

 0 -0.0774192048 0 0.0038356771 

 -0.0122873455 0 -1 0 

 5,6 7,8 9,10 

λj -0.0220591068 1.0618348626i  -0.2870361602 0.8563423876i  -0.2185228687 0.2333626416i  

xj -0.1331430470 0.4145412462i  -0.3208892811 0.0219877872i  -0.0515597052 0.1632009434i  

 -0.1331430470 0.4145412462i  0.3208892811 0.0219877872i  0.0515597052 0.1632009434i  

 0  -0.7132866341 0.2867133659i  -0.0028037930 0.1605881350i  

 -0.0946888694 0.8630392663i  0  0  

 0  0.0287378149 0.3187586742i  0.8904814639 0.1095185361i  

Table 2 Approximation error 

s ||m−me||F ||c−ce||F ||k−ke||F Residual PSD Positive 

1 2.36×10-10 2.45×10-10 3.73×10-10 2.56×10-16 Yes Yes 

2 4.14×10-10 3.34×10-10 2.51×10-9 3.42×10-15 Yes Yes 

3 6.98×10-10 4.86×10-10 3.53×10-9 1.78×10-10 Yes Yes 

4 1.09×10-9 2.05×10-9 9.76×10-10 2.34×10-10 Yes Yes 

6 3.10×10-9 3.57×10-9 6.12×10-9 4.53×10-10 Yes Yes 

8 5.35×10-9 5.67×10-9 7.65×10-9 6.25×10-10 Yes Yes 

10 7.21×10-9 8.01×10-9 9.34×10-9 8.13×10-10 Yes Yes 
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Example 3. For the physical system in Example 1, we 

set l1=l2=l3=ρ=1 and randomly generate the vectors m,c,k 

 
 
 

m= 0.58526409,  0.54972360,  0.91719366,  0.28583908

c = 0.75720022,  0.75372909,  0.38044584

k = 0.56782164,  0.07585428,  0.05395011,  0.53079755,  0.77916723 .

,

,

 

then the matrices M,C,K in (2) and (3) are generated.  

The resulting pencil has 6 complex conjugate eigenpairs 

and 4 real eigenpairs, see Table 1. 

 

3.1 Test 1 
 

We first reconstruct the masses, damping coefficients 

and stiffness coefficients from the exact eigenpairs 
s
jji x 1)},{(  for s=1,2,3,4,6,8,10

 
through solving the 

optimization problem in (1). Since s
jji x 1)},{(   are exact 

eigenpairs, there must exist a positive solution to the 

optimization problem in (1). Tables 2 presents the residuals 

of the reconstructed parameters me,ce,ke 
and 

.)(max 2

1 P
ieejej

sj
xKCM 


  

The residual of parameters are all smaller than 810 , 

which states the reconstructed parameters agree with the 

true parameters at the ninth decimal. The residual 

,)(max 2

1 P
ieejej

sj
xKCM 


 denoted by “Residual”, is 

smaller than 10
-9

, which states reconstructed coefficient 

matrices M,C,K have a good coincidence with the given 

eigennpairs. The “Yes” in columns “PSD” and “Positive” in 

Table 2 show our reconstructed coefficient matrices are 

positive semidefinite and the reconstructed parameters are 

all positive. Furthermore, these results hold independent of 

the number of the given eigenpairs. Therefore, the results in 

Table 2 state our method is reliable and independent of the 

number of the given eigenpairs. 

 
3.2 Test 2 

 

In this subsection, we consider the problem with the 

noisy eigenpair. We obtain the perturbed eigenpairs through 

truncating the exact eigenpairs at the fifth decimal. Taking 

the perturbed data as the measured frequencies and mode 

shapes, we apply our method to reconstruct the parameters 

and obtain a solution, see Table 3.  

For a given data nearby the true eigenpairs in Table 1, it 

is still not clear that there exists a quadratic model with 

positive semidefinite coefficient matrices and prescribed 

 

 

 

 

 

 

 

 

 

 

 

 

connectivity structure can match the data, our method 

presents a numerical justification to the problem. When 

s=1,2, the matrix A in (6) is of size 5×12 and 10×12, 

therefore, the matrixin (8) is singular and no truncation 

happens in the process U of finding the solution to the 

problem 0
2

2
Ax , and thus the residual 

.)(max 2

1 P
ieejej

sj
xKCM 


 is approximately zero. 

However, when s≥3, the matrix A is of size 5s×12, and its 

number of rows is larger than that of columns, and since the 

measured data are noisy, the matrix U in (8) is nonsingular 

and the truncation has to be done to get a nonzero solution, 

and thus the residual .)(max 2

1 P
ieejej

sj
xKCM 


  is not 

zero, the maximal value of the residual 

iejeje xKCM ~)
~~

( 2    is of the order 10
-4

, which is 

almost same as the order of the truncation. 

 
3.3 Test 3 

 
The above two tests show that if a solution or a nearby 

solution ever exists, our method will find it. However, in 

practical applications, we do not know whether the 

measured data are feasible in advance. In this test, we will 

prove our software can serve as a numerical tool to indicate 

a structured model updating problem is not solvable.  

We randomly generate one real number and two pairs of 

complex conjugate numbers  

 = 0.1839  0.6557 0.7060  0.0357 0.0318i i  , ,
 

as the given frequencies and one real vector and two pairs 

of complex conjugate vectors 

0.9340 0.3371 0.7482 0.1656 0.1524

0.1299 0.1622 0.4505 0.6020 0.8258

= .0.5688 0.7943 0.0838 0.2630 0.5383

0.4694 0.3112 0.2290 0.6541 0.9961

0.0119 0.5285 0.9133 0.6892 0.0782

i i
i i

X i i
i i
i i

  
  
 

  
  

   

 

as the given mode shapes, whose real part and imaginary 

part are all uniformly distributed random numbers on the 

interval [0,1]. Applying our method, we find all parameter 

values are of order 10
-16

, it implies all reconstructed 

parameters are zero and there does not exist such a 

structured coefficient matrices M,C,K. 

In fact, the coefficient matrices M,C,K
 
have a special 

structure, and hence the set consisting of the eigenvalues 

and the eigenvectors of the quadratic pencil λ2
M+λC+Kis a 

zero-measure subset of C×C
n
. Therefore, it is reasonable  

Table 3 Approximation error 

s ||m−me||F ||c−ce||F ||k−ke||F Residual PSD Positive 

1 5.21×10-5 6.23×10-5 5.32×10-6 8.34×10-16 Yes Yes 

2 1.36×10-4 2.43×10-4 7.89×10-5 5.76×10-16 Yes Yes 

3 1.02×10-4 0.14×10-3 5.01×10-4 3.28×10-5 Yes Yes 

4 1.78×10-4 3.12×10-4 2.12×10-4 4.58×10-5 Yes Yes 

6 6.21×10-4 5.21×10-4 1.67×10-5 3.23×10-5 Yes Yes 

8 2.12×10-4 6.23×10-5 1.97×10-4 2.78×10-5 Yes Yes 

10 2.34×10-4 7.54×10-5 2.45×10-5 3.46×10-5 Yes Yes 
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Fig. 2 A damped mass-spring system 

 

Table 4 Results of problems with different size 

n # data ||m−me||F ||c−ce||F ||k−ke||F Time Residual 

10 6 7.26×10
-12

 1.25×10
-11

 1.79×10
-11

 1.12(s) 1.39×10
-12

 

50 30 3.39×10
-12

 7.38×10
-12

 7.98×10
-12

 3.01(s) 1.73×10
-12

 

100 60 .27×10
-12

 4.17×10
-12

 2.85×10
-12

 12.87(s) 2.86×10
-12

 

150 90 9.85×10
-12

 2.26×10
-11

 2.34×10
-11

 60.83(s) 6.82×10
-10

 

200 120 3.56×10
-12

 9.31×10
-10

 9.77×10
-10

 208.45(s) 2.13×10
-112

 

 

 

that we can not find (m,c,k) for randomly generated (Λ,X). 

Example 4. The coefficient matrices M,C,K 

corresponding to the mass-spring system depicted in Fig. 2 

should be constructed as follows: 

1 2 2

1 2 2 3

1

, ,

n n n n

n n

c c c

m c c c

M C

m c c c

c c


  
 
    

             
  

 

1 2 2

2 2 3

1n n n

n n

k k k

k k k

K

k k k

k k


  
 
  

 
 

  
  

 

In this test, we consider to apply our algorithm to solve 

the structured model updating problems of different sizes n. 

We take the first 30% of eigenpairs as the measured data 

and reconstruct the parameters by our algorithm.  

Table 4 shows our algorithm can handle the structured 

model updating problems of large size due to the variable 

reduction in the process of solving the structured model 

updating problems.  

 
 
4. Conclusions 
 

In many applications, the structured model updating 

problems are becoming more important and challenging due 

to the introducing of the special constraints: the inner 

connectivity of the system and the positivity of the physical 

parameters. 

 The main contribution of this paper is presenting an 

efficient and robust numerical method to solve the 

structured model updating problem, in which the solution to 

dynamic equations, the symmetry and positive 

semidefiniteness of the coefficient matrices, the in-

terconnectivity of the physical system and the positivity of 

the physical parameters are all imposed as the constraints. 

And our method has no limitation on the number of 

measured data and can handle any physical system if the 

structure of the corresponding coefficient matrices can be 

presented. Through the returned residual estimate given by 

our method, we can confidently determine whether a 

structured model updating problem is solvable, and if yes, 

we present the reconstructed parameters.  

We must stress that, in this paper, we mainly focus on 

reconstructing the physical parameters based on the known 

model structure. However, obtaining an estimate of the 

model structure is the limitation in our proposed algorithm 

and for very large problem it could be time consuming. We 

hope we could do some further work on the estimation of 

the model structure in the near future. 
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