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1. Introduction 
 

As one of the most important developments in new 

advanced composite materials, functionally graded 

materials (FGMs) have attracted immense attention from 

research and engineering communities since they were first 

proposed by Japanese scientists (Udupa 2014). FGMs are 

inhomogeneous composite materials containing two or 

more constituents whose material composition continuously 

and smoothly varies along certain direction(s). Compared 

with conventional homogeneous materials, mechanical 

properties of FGMs can be appropriately tailored for design 

purpose (Udupa et al. 2014, Rafiee et al. 2013). 

The FGM is widely used in many structural applications 

such as aerospace, nuclear, civil, and automotive. When the 

application of the FGM increases, more accurate beam 

theories are required to predict the response of functionally 

graded (FG) beams. Since the shear deformation has 

significant effects on the responses of functionally graded 

(FG) beams, shear deformation theories are used to capture 

such shear deformation effects. The first-order shear 

deformation theory (FSDBT) accounts for the shear 

deformation effects by the way of linear variation of in-

plane displacements through the thickness. Since the 

FSDBT violates the conditions of zero transverse shear 

stresses on the top and bottom surfaces of the beam, a shear 

correction factor which depends on many parameters is 

required to compensate for the error due to a constant shear 

strain assumption through the thickness (Tounsi 2013a, 

Benzair et al. 2008, Heireche et al. 2008). 
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The higher-order shear deformation theories (HSDTs) 

account for the shear deformation effects, and satisfy the 

zero transverse shear stresses on the top and bottom 

surfaces of the plate, thus, a shear correction factor is not 

required (Ould Larbi et al. 2013, Tounsi et al. 2013b, Hadji 

et al. 2016). Generally, HSDTs are proposed assuming a 

higher-order variations of in-plane displacements or both 

in-plane and transverse displacements through the thickness 

(Talha and Singh 2010, Reddy 2011). Bourada et al. (2015) 

studied a new simple shear and normal deformations theory 

for functionally graded beams. Hebali et al. (2015) used a 

new quasi-3D hyperbolic shear deformation theory for the 

static and free vibration analysis of functionally graded 

plates. Bennoun et al. (2016) investigated a novel five 

variable refined plate theory for vibration analysis of 

functionally graded sandwich plates. Tounsi et al. (2016) 

studied the buckling and vibration of functionally graded 

sandwich plate using a new 3-unknowns non-polynomial 

plate theory. Houari et al. (2016) used a new simple three-

unknown sinusoidal shear deformation theory for 

functionally graded plates. Belabed et al. (2014) 

investigated an efficient and simple higher order shear and 

normal deformation theory for functionally graded material 

(FGM) plates. Mahi et al. (2015) used a new hyperbolic 

shear deformation theory for bending and free vibration 

analysis of isotropic, functionally graded, sandwich and 

laminated composite plates. Hamidi et al. (2015) proposed a 

sinusoidal plate theory with 5-unknowns and stretching 

effect for thermomechanical bending of functionally graded 

sandwich plates. Ait Amar Meziane et al. (2014) used an 

efficient and simple refined theory for buckling and free 

vibration of exponentially graded sandwich plates under 

various boundary conditions. Bousahla et al. (2014) 

investigated a novel higher order shear and normal 

deformation theory based on neutral surface position for 
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bending analysis of advanced composite plates. Bourada et 

al. (2016) studied the buckling of isotropic and orthotropic 

plates using a novel four variable refined plate theory. 

Bellifa et al. (2016) analyze the bending and free vibration 

analysis of functionally graded plates using a simple shear 

deformation theory and the concept the neutral surface 

position. Bouderba et al. (2013) studied the 

thermomechanical bending response of FGM thick plates 

resting on Winkler-Pasternak elastic foundations. Bouderba 

et al. (2016) analyze the thermal stability of functionally 

graded sandwich plates using a simple shear deformation 

theory. Beldjelili et al. (2016) studied the hygro-thermo-

mechanical bending of S-FGM plates resting on variable 

elastic foundations using a four-variable trigonometric plate 

theory. Tounsi et al. (2013c) used a refined trigonometric 

shear deformation theory for thermoelastic bending of 

functionally graded sandwich plates. Zidi et al. (2014) 

analyse the bending of FGM plates under hygro-thermo-

mechanical loading using a four variable refined plate 

theory. Bounouara et al. (2016) using a nonlocal zeroth-

order shear deformation theory for free vibration of 

functionally graded nanoscale plates resting on elastic 

foundation. Tounsi et al. (2013d) studied a nonlocal effects 

on thermal buckling properties of double-walled carbon 

nanotubes. Besseghier et al. (2015) investigated a nonlinear 

vibration properties of a zigzag single-walled carbon 

nanotube embedded in a polymer matrix. Benguediab et al. 

(2014) studied the chirality and scale effects on mechanical 

buckling properties of zigzag double-walled carbon 

nanotubes. Larbi Chaht et al. (2015) analyses the bending 

and buckling of functionally graded material (FGM) size-

dependent nanoscale beams including the thickness 

stretching effect. Ahouel et al. (2016) investigated the size-

dependent mechanical behavior of functionally graded 

trigonometric shear deformable nanobeams including 

neutral surface position concept. Zemri et al. (2015) studied 

the mechanical response of functionally graded nanoscale 

beam: an assessment of a refined nonlocal shear 

deformation theory beam theory. Al-Basyouni et al. (2015) 

used size dependent bending and vibration analysis of 

functionally graded micro beams based on modified couple 

stress theory and neutral surface position. Hadj et al. (2015) 

studied the influence of the porosities on the free vibration 

of FGM beams. 

The study of the wave propagation in the FG structures 

has received also much attention from various researchers. 

Sun and Luo (2011a) also studied the wave propagation and 

dynamic response of rectangular functionally graded 

material plates with completed clamped supports under 

impulsive load. Considering the thermal effects and 

temperature-dependent material properties, Sun and Luo 

(2011b) investigated the wave propagation of an infinite 

functionally graded plate using the higher-order shear 

deformation plate theory. Recently, Ait Yahi et al. (2015) 

studied Wave propagation in functionally graded plates with 

porosities using various higher-order shear deformation 

plate theories.  

Considering FG structural members, it is evident from 

the above discussed literature that there is no study on wave 

propagation in FG beams.  

 

Fig. 1 Geometry and coordinate of a FG beam 

 

 

Thus, the objective of this work is to investigate the 

wave propagation of FG beam using various simple higher-

order shear deformation theories. The displacement fields of 

the proposed theories are chosen based on cubic, sinusoidal, 

hyperbolic, and exponential variation in the displacements 

through the thickness. By dividing the transverse 

displacement into the bending and shear parts and making 

further assumptions, the governing equations of the wave 

propagation in the FG beam are derived by using the 

Hamilton’s principle. The analytic dispersion relations of 

the FG beam are obtained by solving an eigenvalue 

problem. The dispersion, phase velocity and group velocity 

curves of the wave propagation in FG beams are plotted. 

The influences of the volume fraction index on the 

dispersion and phase velocity of the wave propagation in 

the FG beam are clearly discussed. 

 

 

2. Functionally graded beams 
 

Consider a functionally graded beam with length L and 

rectangular cross section b×h, with b being the width and h 

being the height as shown in Fig. 1. The beam is made of 

isotropic material with material properties varying smoothly 

in the thickness direction. 

 

2.1 Material properties 
 
The properties of FGM vary continuously due to the 

gradually changing volume fraction of the constituent 

materials (ceramic and metal), usually in the thickness 

direction only. The power-law function is commonly used 

to describe these variations of materials properties. The 

expression given below represents the profile for the 

volume fraction. 

p

C
h

z
V 










2

1
 (1a) 

p is a parameter that dictates material variation profile 

through the thickness. The value of p equal to zero 

represents a fully ceramic beam, whereas infinite p 

indicates a fully metallic beam, and for different values of p 

one can obtain different volume fractions of metal.  

The material properties of FG beams are assumed to 

vary continuously through the depth of the beam by the rule 

of mixture (Marur 1999) as 

  bbt PPPzP  CV )(  (1b) 
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where P denotes a generic material property like modulus, 

Pt and Pb denotes the property of the top and bottom faces 

of the beam respectively, Here, it is assumed that modules 

E, G and v vary according to the Eq. (1). However, for 

simplicity, Poisson’s ratio of beam is assumed to be 

constant in this study for that the effect of Poisson’s ratio v 

on deformation is much less than that of Young’s modulus 

(Delale and Erdogan 1983, Benachour et al. 2011).  

 
 
3. Fundamental equations 
 

3.1 Basic assumptions and constitutive equations 
 
The displacement fields of various shear deformation 

beam theories are chosen based on following assumptions: 

- The axial and transverse displacements are partitioned 

into bending and shear components; 

- The bending component of axial displacement is 

similar to that given by the classical beam theory (CBT); 

- The shear component of axial displacement gives rise 

to the higher-order variation of shear strain and hence to 

shear stress through the thickness of the beam in such a 

way that shear stress vanishes on the top and bottom 

surfaces. 

Based on these assumptions, the displacement fields of 

various higher-order shear deformation beam theories are 

given in a general form as 

x
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where u, w are displacements in the x, zdirections, u0 is  

the median surface displacements. wb and ws are the 

bending and shear components of transverse displacement, 

respectively; and f(z) is a shape function determining the 

distribution of the transverse shear strain and shear stress 

through the thickness of the beam. 

The shape functions f(z) are chosen to satisfy the stress-

free boundary conditions on the top and bottom surfaces of 

the beam, thus a shear correction factor is not required. In 

this study, these shape functions are chosen based on the 

third-order shear deformation theory (TSDBT) of Reddy 

(2000), sinusoidal shear deformation theory (SSDBT) of 

Touratier (1991), hyperbolic shear deformation theory 

(HSDBT) of Soldatos (1992), and exponential shear 

deformation theory (ESDT) of Karama et al. (2003), as 

presented in Table 1. 

The strains associated with the displacements in Eq. (3) 

are 

s
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The state of stress in the beam is given by the 

generalized Hooke’s law as follows 

xx zQ   )(11  and xzxz zQ   )(55  (5a) 

211
1

)(
)(




zE
zQ  and 

 


12

)(
)(55

zE
zQ  (5b) 

 

3.2 Governing equations 
 
Hamilton’s principle is used herein to derive the 

equations of motion. The principle can be stated in 

analytical form as Reddy (2002) 

  0
2
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dtTU  (6) 

where t is the time; t1 and t2 are the initial and end time, 

respectively; δU is the virtual variation of the strain energy;  

and δT is the virtual variation of the kinetic energy. The 

variation of the strain energy of the beam can be stated as 
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where N, Mb, Ms and Q are the stress resultants defined as 
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The variation of the kinetic energy can be expressed as 
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(9) 

where dot-superscript convention indicates the differentiation 

with respect to the time variable t; ρ(z) is the mass density; 

and (I0, I1, J1, I2, J2, K2) are the mass inertias defined as 
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Substituting the expressions for δU and δT from Eqs. (7) 

and (9) into Eq. (6) and integrating by parts versus both 

space and time variables, and collecting the coefficients of 

δu0, δwb, and δws the following equations of motion of the 

functionally graded beam are obtained 
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Eq. (11) can be expressed in terms of displacements 

(u0,wb,ws) by using Eqs. (3), (4), (5) and (8) as follows 
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where A11, B11, D11, etc., are the beam stiffness, defined by 
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4. Dispersion relations 
 

We assume solutions for u0, wb and ws representing 

propagating waves in the x direction with the form 
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where U, Wb and Ws are the coefficients of the wave 

amplitude, k is the wave number of wave propagation along 

x-axis direction, ω is the frequency.

 

 

Substituting Eq. (14) into Eq. (12), we obtain 
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(16b) 

The dispersion relations of wave propagation in the 

functionally graded plate are given by  

    02  MC   (17) 

Assuming k1=k, the roots of Eq. (17) can be expressed 

as  

 kW11  ,   kW22  and  kW33   (18) 

They correspond with the wave modes M0, M1 and M2 

respectively. The wave modes M0 and M2 correspond to the 

flexural wave, the wave mode M1 correspond to the 

extensional wave. 

The phase velocity of wave propagation in the 

functionally graded beam can be expressed as 

 
,

k

kW
C i

i 
 
 3,2,1i  (19) 
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Fig. 2 The dispersion curves of the different functionally 

graded beams 

 
 
5. Numerical results and discussion    
 

In this section, a FG plate made from Si3N4/SUS304; 

whose material properties are: E=380.43 GPa, ρ=2370 

kg/m
3
, v=0.3 for Si3N4 and E=201.04 GPa, ρ=8166 kg/m

3
, 

v=0.3 for SUS304; are chosen for this work. The thickness 

of the FG plate is 0.02 m. The analysis based on the present 

TSDBT, SSDBT, HSDBT, and ESDBT are carried out using 

MAPLE.    
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Fig. 3 The phase velocity curves of the different 

functionally graded beams 

 

 

Fig. 2 plots the dispersion curves of the different FG 

beams using various shear deformation plate theories. It can 

be seen that the dispersion curves predicted by all proposed 

beam theories are almost identical to each other and this 

regardless the power law index n and wave modes (M0, M1 

and M2).  

For the same k, the frequency of the wave propagation 

in the FG beam decreases with the increase of the power 

law index n whatever the wave modes. Also the frequency 
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of the wave propagation becomes maximum in the 

homogeneous beam (n=0). 

Fig. 3 shows the phase velocity curves of the different 

FG beams predicted using various shear deformation beam 

theories. It can be seen that the phase velocity of the wave 

propagation in the FG beam decreases as the power law 

index n increases for the same wave number k. 

The phase velocity for the extensional wave mode M1 of 

the beam is a constant (n=0), but it is not a constant for the 

beam (≠0), In the case of the homogeneous beam (n=0), the 

phase velocity takes the maximum among those of all FG 

beams. Also, it can be seen that the phase velocity curves 

predicted by all proposed plate theories are almost identical 

to each other.  

 

 

6. Conclusions 
 

The wave propagation of functionally graded beam is 

analyzed using various higher-order shear deformation 

beam theories. The main advantage of the proposed theories 

over the existing higher-order shear deformation theories is 

that the present ones account for higher-order variation of 

transverse shear strain through the depth of the beam and 

satisfies the zero traction boundary conditions on the 

surfaces of the beam without using shear correction factors. 

The governing equations of the wave propagation in the FG 

beams are established. The analytic dispersion relation of 

the functionally graded beam is obtained by solving an 

eigenvalue problem. From the present work, it can be 

concluded that the influence of the volume fraction 

distributions on wave propagation in the FG beam is 

significant. An improvement of present formulation will be 

considered in the future work to account for the thickness 

stretching effect by employing quasi-3D shear deformation 

models (Hebali et al. 2014, Houari et al. 2014, Larbi Chaht 

et al. 2014, Swaminathan and Naveenkumar 2014, Sayyad 

and Ghugal 2014). 
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