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1. Introduction 
 

Reliability-based design optimization (RBDO) is 

usually expressed in a form where one is required to 

minimize a cost function subjected to some reliability 

constraints and deterministic constraints. The reliability 

constraints ensure that failure probabilities with respect to 

various failure modes are below acceptable levels (Li 2013, 

Yuan and Lu 2014, Meng et al. 2015, Wang and Qiu 2015, 

Wang et al. 2014, Fang et al. 2013). Despite the advantages 

of RBDO, its application to practical engineering problem 

is still quite challenging (Yuan and Lu 2014). Both the 

optimization and reliability evaluation require repeated 

structural analyses for different values of design variables. 

Moreover, the evaluation of the structural response may be 

computationally costly, e.g., when the analysis of finite 

element model is involved. As a result, many approximate 

methods, such as double-loop methods (Grandhi and Wang 

1998, Youn et al. 2005, Zhao and Qiu 2013), decoupled 

methods (Chen et al. 2013a, Du and Chen 2004, Cheng et 

al. 2006, Yi et al. 2008, Zou and Mahadevan 2006, Li et al. 

2010, Cho and Lee 2011, Ching and Hsu 2008) and single-

loop methods (Kirjner-Neto et al. 1998, Liang et al. 2008, 

Kharmanda et al. 2002, Shan and Wang 2008, Agarwal et 

al. 2007), have been proposed to alleviate the computational 

effort. 

Double-loop  method  is  achieved  by  a  nested 

optimization process (Enevoldsen and Sorensen 1994, Tu et 

al. 1999). Design optimization loop (outer loop) is a 

deterministic optimization process; it repeatedly calls the 
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reliability analysis loop (inner loop) in each cycle. Its 

computational effort is very high due to the multiplication 

of a number of iterations and structural analyses in both 

optimization and reliability analysis loop. Therefore, the 

double-loop method has some limitation in the use of 

practical application. Decoupling method is to transform the 

RBDO problem into a deterministic one by explicitly 

approximating the failure probability as a function of design 

variables (Gasser and Schueller 1997). The approximation 

of the failure probability occupies a considerable portion of 

the total computation effort in optimization procedure, 

because it needs a number of reliability analyses over 

various design variable values. One possible way of 

constructing the approximation is to adopt predefined 

function and select some predefined interpolation points in 

the space of the design variables. Single-loop method only 

has one loop during the design optimization process through 

replacing the reliability analysis with the Karush-Kuhn-

Tucker optimality conditions (Kuschel and Rachwitz 1997). 

Thus, RBDO problems can be solved very efficiently for 

linear and weakly nonlinear problems (Chen et al. 2013b). 

For solving RBDO problems, the failure probabilities 

are usually obtained by using standard reliability analysis 

methods like the first-order reliability method (FORM), the 

second-order reliability method (SORM), and Monte Carlo 

simulation (MCS) (Ditlevsen and Madsen 1996, Choi et al. 

2007). The FORM usually contains three methods: the 

mean value FORM, Hasofer-Lind (HL) iteration method, 

and Rackwitz-Fiessler (RF) iteration method (Choi et al. 

2007). HL and RF iteration methods are often called 

“Advanced FORM”. The mean value FORM is based on a 

linear approximation of the limit state function (LSF) at the 

mean point. The advanced FORM and SORM are based on 

linear and quadratic approximations of the LSFs at the Most 

Probable failure Point (MPP), respectively. The application 
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of advanced FORM and SORM requires the computation of 

the MPP by using iteration methods. The advanced FORM 

and SORM are perfectly adequate for linear LSFs and 

slightly nonlinear LSFs. However, the two methods are not 

accurate enough for highly nonlinear LSFs. MCS is an 

accurate technique to estimate the failure probability. 

Although it gives the exact solution, it is time-consuming 

for the large and complex structures with low failure 

probabilities and implicit LSFs. The mean value FORM is 

more efficient for reliability evaluation in terms of the total 

number of LSF evaluations because it needn’t iteration 

computation, but it may be inaccurate for nonlinear LSFs. 

Nevertheless, the accurate failure probability is often highly 

correlated with the reliability index obtained by using the 

mean value FORM. 

In this study, in order to reduce the computational effort 

of RBDO, the relationship between the reliability index 

obtained by using the mean value FORM and the failure 

probability obtained by using an accurate method is 

determined through a regression analysis. The relationship 

is called the reliability mapping function. Based on the 

reliability mapping function, an equivalent target reliability 

index corresponding to the mean value FORM can be 

determined so that the mean value FORM can be used for 

reliability evaluation in RBDO. Double-loop involved in the 

classical RBDO can be converted into single-loop by using 

the reliability mapping function. Since the computational 

effort involved in the mean value FORM is minimal, RBDO 

using the reliability mapping functions should be highly 

efficient in terms of the number of LSF evaluations. 

 

 

2. Basic mathematical formulations 
 

2.1 Reliability-based design optimization 
 

The most basically mathematical formulation of RBDO 

problem is written as follows (Li 2013, Yuan and Lu 2014) 

0

L U

min  ( )

s.t.   [ ( , ) 0] ; 1, ,
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C

C P G P k m   

 

d

d X

d d d
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where C0(d) is the objective function, Ck is the kth 

reliability constraint function, X is the vector of random 

variables, d is the vector of design variables, which can be 

physical quantities in the input parameters or distributional 

parameters of input random variables, Gk is the LSF for the 

kth reliability constraint, which defines the failure domain 

by ( , ) 0kG d X , 
c

fkP  is the target failure probability for 

the kth reliability constraint, d
L
 and d

U
 are allowable lower 

and upper bounds of d, and m is the number of reliability 

constraints. 

 

2.2 Mean value FORM 
 

In the mean value FORM method, the LSF is 

represented as the first-order Taylor series expansion at the 

mean value point (Ditlevsen and Madsen 1996, Choi et al. 

2007). Assuming that the random variables X are 

statistically independent, the approximate LSF at the mean 

is written as 

)()()()(
~

XXX μXμμX  TGGG  (2) 

where X={x1,x2,…,xn}
T
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Xμ is the mean value vector of 

random variables, n is the number of random variables, and 

G(μX) is the gradient of LSF evaluated at μX. 
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XG  is 

)(~ XμG
G
  (4) 

The standard deviation of the approximate LSF )(
~

XG  is 

G
~

1
2 2

2( )
ixG

i

G

x
 

  
   

   

Xμ
%  (5) 

where
ix is the standard deviation of random variable xi. 

The reliability index βM 
is computed as 

G

G
M

~

~




   (6) 

Since the approximate LSF is obtained by linearizing 

the original LSF at the mean value point, this method is 

called the mean value FORM. The βM is called a mean 

value FORM reliability index. The mean value FORM is 

more efficient for reliability analysis because that it needn’t 

iteration computation. In this study, the mean value FORM 

and the reliability mapping function are used for reliability 

evaluation in RBDO. Double-loop involved in the classical 

RBDO can be converted into single-loop by using the 

proposed method. 

 

 

3. Definition of reliability mapping function 
 

The mean value FORM is more efficient for reliability 

analysis, but it may be inaccurate. However, the accurate 

failure probability is often highly correlated with the mean 

value FORM reliability index βM. The relationship between 

the mean value FORM reliability index βM and the accurate 

failure probability is called the reliability mapping function. 

The reliability mapping function is shown in Fig. 1. 

The reliability mapping function denoted by F is defined 

as 

( )M EF   (7) 

where 

1(1 )E fP    (8) 

where Pf 
is the failure probability obtained by using an  
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Fig. 1 Concept of reliability mapping function 

 

 

accurate method, βE 
is the generalized reliability index, and 

Φ
-1

 is the inverse of standard normal cumulative distribution 

function. 

Substituting the target failure probability 
c

fkP  into Eq. 

(8) yields 

1(1 )c c

Ek fkP    (9) 

where c

Ek  is the generalized target reliability index. 

Substituting c

Ek  into Eq. (7) yields 

( )c c

Mk EkF   (10) 

where c

Mk  is an equivalent target reliability index 

corresponding to the mean value FORM. 

From Eqs. (9) and (10), Eq. (1) can be rewritten as 
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where βMk 
is a reliability index computed by using the mean 

value FORM for the kth reliability constraint, c

Mk  is an 

equivalent target reliability index corresponding to the 

mean value FORM for the kth reliability constraint. 

Since the mean value FORM needn’t iteration 

computation, Eq. (11) is a single-loop problem. That is, 

Double-loop involved in the classical RBDO can be 

converted into single-loop by using reliability mapping 

functions. 

 

 

4. Improved response surface method 
 

As seen the above analysis in Section 3, the main 

challenge in the reliability mapping function is the 

calculation of the accurate failure probability. For this 

purpose, the improved RSM proposed by Zhao et al. (2016) 

is used, and the failure probability obtained by using the 

improved response surface method is utilized to construct 

the reliability mapping function. The algorithm of the 

improved response surface method (Zhao et al. 2016) has 

three stages. Firstly, some experimental points considering 

the region of main contribution to failure probability are 

selected based on the MPP; Secondly, a response function is 

construct to approximate the actual LSF; Thirdly, the MCS 

is utilized to evaluate the failure probability by using the 

response function. 

 

4.1 Selection of experimental points 
 

Based on the theory of structural reliability, the main 

contribution to failure probability comes from the region 

around the MPP (Zhao et al. 2016). The advanced FORM 

can find the MPP better. The algorithm of advanced FORM 

can be found in some textbooks (Ditlevsen and Madsen 

1996, Choi et al. 2007). In this work, experimental points 

are selected based on the MPP so that the response function 

approximates the actual LSF better in the region around the 

MPP. The basic steps of the selection of experimental points 

are as follows: 

1. Find the MPP using the advanced FORM. 

2. Obtain the tangent hyperplane through the MPP in the 

standard normal space (U space). The expression of the 

tangent hyperplane is given by 

) 0T

D (X X ω  (12) 

where XD 
is the MPP and ω is the unit vector form the 

origin to XD. 

3. Solve for a intersection point of the tangent 

hyperplane and the ith coordinate axis. The intersection 

points are denoted by c

iX (i=1,2,…,n). 

4. Select n experimental points along the direction form 

XD to c

iX
 

in the standard normal space, as follows 

(1)

1+ 1,2, ,i D if i n X X γ L…,n (13) 

where γi 
is the unit vector form the XD to c

iX , and f1 
is an 

arbitrary factor. 

5. Evaluate the LSF (1)( )iG X . 

6. Select n experimental points in the standard normal 

space based on the values of (1)( )iG X , as follows 
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where f2 is an arbitrary factor. 

The factors of f1 
and f2 

are selected as follows: 

For a given importance level εp, the parameter εp is 

defined as 

[ 1+ )] ( )p       （  (15) 

where Φ is the standard normal cumulative distribution 

function, and β is the reliability index. 

From Eq. (15), we have 

1[ ( )]
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Fig. 2 The parameter εβ in the two-dimensional 

standard normal space 

 

 

Fig. 3 Experimental points of the proposed method 

 

 

In the two-dimensional standard normal space (U 

space), the parameter εβ is shown in Fig. 2. Based on Eq. 

(15), the contribution to failure probability coming from the 

region, which is the region outside of β hypersphere and 

inside of β(1+εp) hypersphere, should be 1-εp. For example, 

if the reliability index β=3, the failure probability 

( ) ( 3)fP     =1.3499×10
-3

. For a given value of 

importance level εp=0.05, we have εβ=0.2724. The failure 

probability 
* [ 1+ )]fP   （ =6.7495×10

-5
, the ratio of 

*

f fP P = p =0.05. The contribution to failure probability 

coming from the region is 
*( )f f fP P P =1-εp=95%. 

Therefore, for a given importance level εp, the parameter εβ 

can define the size of main region influencing failure 

probability. In addition, the importance level εp 

characterizes the size of region of interest: lower it is, 

bigger is the region of interest. As seen from Eq. (15), the 

value of εp should be relatively low, such as 0.05. Actually, 

the importance level εp defines the region of interest outside 

of which the failure probability is considered as negligible. 

Since the parameter εβ can define the size of main region 

influencing failure probability, the factors of f1 and f2 are 

selected as 

2 2

1 [ 1+ )]f    （  (17) 

2 0.5f   (18) 

In the two-dimensional standard normal space, 

experimental points (1)

iX , (2)

iX and DX are shown in Fig. 3. 

As seen from Fig.3, experimental points of the proposed 

method can consider the size of main region influencing 

failure probability. 

4.2 Response function 
 

The experimental points (1)

iX , (2)

iX and DX are used to 

solve for the unknown coefficients of response function. 

Since these experimental points can consider the size of 

main region influencing failure probability, the fitting 

precision of the response function to the actual LSF in the 

region of interest is increased. The total number of 

experimental points used to construct the response function 

is 2n+1, thus a quadratic polynomial without cross terms is 

used as a response function, as follows 

2

1 1

( )
n n

i i i i

i i

G a b x c x
 

   X  (19) 

where a, bi and ci are unknown coefficients, these unknown 

coefficients are obtained from the values of the LSF at 

experimental points. 

 

4.3 Evaluation of failure probability 
 

In the paper, the MCS is performed to evaluate the 

failure probability by using the response function. The 

failure probability Pf is given by 

1
f

s

m
P

N
  (20) 

where Ns 
is the number of sample points for MCS, m1 

is the 

number of failure points. 

Substituting Pf described by Eq. (20) into Eq. (8), the 

equivalent reliability index βE 
can be obtained. 

 

4.4 Discussion on accuracy and efficiency 
 

Since the quadratic polynomial response function is 

used in the improved response surface method, the accuracy 

of the improved response surface method should be higher 

than that of the advanced FORM. 

Since the improved response surface method is 

constructed based on the MPP resulting from the advanced 

FORM, the efficiency of the improved response surface 

method is slightly lower than that of the advanced FORM. 

As seen from experimental design, the total number of LSF 

evaluations of the improved response surface method is 

m2+4n, where m2 is the number of LSF evaluations used to 

obtain the MPP by using the advanced FORM, n is the 

number of random variables. The improved response 

surface method isn’t used to solve RBDO problems directly, 

but it is used to construct reliability mapping functions. 

Thus, its efficiency is acceptable. 

 

 

5. Construction of reliability mapping function 
 

The regression analysis is used to construct the 

reliability mapping function. The basic steps are as follows: 

1. Select a sample point corresponding to design 

variables in the design region. 

2. Compute the MPP by using the advanced FORM. 

3. Construct the response function based on the MPP. 
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4.Compute the failure probability Pf by using MCS in 

terms of the response function. 

5. Compute the equivalent reliability index βE by using 

the failure probability Pf. 

6. Extract the reliability index βM from the results of the 

advanced FORM. 

7. Repeat steps 1-6 until enough data sets (βE,
 
βM) are 

obtained. 

8. Fit the relationship between βE 
and βM, i.e., obtain the 

reliability mapping function. 

The first sample point (1)

SX can be chosen with an 

appropriate engineering criterion. Subsequent sample points 

are determined as 

( ) ( 1) ( ) ( )(1 )j j j j

S S  X X S  (21) 

where ( )j

SX is the jth sample point, S
(j)

 is the search direction 

vector, and λ
(j)

 is the step size along the search direction. 

The vector of S
(j) 

is determined by using the unit 

gradient of LSF evaluated at the sample point ( )j

SX .  
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Usually, if the mean value of LSF is increased, the 

reliability index will be increased for a given LSF. In 

addition, if design variables are not random variables, 

reliability sensitivities with respect to design variables will 

not be given directly in the process of reliability analysis. In 

this paper, the main objective is to construct the reliability 

mapping function. Thus, for the sake of simplicity, the unit 

gradient of the limit state function is used to determine S
(j)

.  

The value of λ
(j)

 can be chosen based on the value of βE 

at jth sample point. If c

E E  , then 0<λ
(j)

<1; If c

E E  , 

then −1<λ
(j)

<0. If the value of βE is close to the generalized 

target reliability index c

E , then the small value of λ
(j)

 will 

be chosen. 

In order to obtain an accurate reliability mapping 

function using samples as few as possible, the criterion of 

enough data sets (βE,
 
βM) is checked as follows: 1) at least 

two βM 
in data sets (βE,

 
βM) are greater than the generalized 

target reliability index c

E ; 2) at least two βM 
in data sets 

(βE,
 
βM) are less than the generalized target reliability index

c

E . 

After enough data sets (βE,
 
βM) are obtained, the 

functions of polyfit and polyconf in Matlab software are 

used. [p,s]=polyfit (βE,
 
βM, h) returns a h-order polynomial, 

coefficients p and a structure s. [z, Δz]=polyconf (p, c

E , s) 

takes outputs p and s from polyfit and generates a prediction 

interval [z−Δz, z+Δz] with a confidence level of 95% for a 

observation at the value of c

E . In this paper, the upper 

bound z+Δz is used as a prediction value of the equivalent  

 

Fig. 4 Cantilever beam design problem 

 

Table 1 Example 1-Statistical properties of random variables 

Random 

variable 
Mean value 

Standard 

deviation 
Distribution 

X1/lb 1000 100 Normal 

X2/lb 500 100 Normal 

X3/psi 4×104 2×103 Normal 

X4/psi 29×106 1.45×106 Normal 

 

 

target reliability index in order to obtain relatively 

conservative optimization results, i.e., c

M z z   . 

 

 

6. Examples 
 
6.1 Example 1 
 

The cantilever beam design is chosen as the first test 

problem as shown in Fig. 4. The RBDO problem can be 

formulated as follows (Li 2013) 

0 1 2

1 2
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d
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where d is the vector of design variables, X1 and X2 are 

applied loads, X3 is the yield stress, and X4 is Young’s 

modulus of the material. Their statistical properties are 

given in Table 1. 

For this example, the first sample point is chosen as
(1) T{2,4}S X . The corresponding βE and βM are calculated. 

The values of βE1 and βM1 are 0.5383 and 0.5382 with 

respect to LSF 1, and the values of βE2 and βM2 are 0.2126 

and 0.2224 with respect to LSF 2, respectively. The value of 

βE1 is less than the generalized target reliability index 

1 2.5c

E  , and the value of βE2 is also less than the 

generalized target reliability index
2 3.5c

E  . Thus, the 

value of λ
(1)

 is chosen as 0.1 in this step. The unit gradients 

of LSF1 and LSF2 evaluated at the sample point (1)

SX
 

are 

{0.8944, 0.4472}
T
 and {0.9656, 0.2600}

T
, respectively. 

Since the two LSFs are considered in this example, the 

mean value of two unit gradients is used to compute the 

search direction vector S
(1)

, i.e., S
(1)

=0.5×({0.8944, 

0.4472}
T
+{0.9656, 0.2600}

T
)={0.9300, 0.3536}

T
. The  

 X1 X1 

X2 

100in 

d1 

d2 
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second sample point (2) (1) (1) (1)(1 )S S  X X S ={2.1860, 

4.1414}
T
. The corresponding βE and βM are calculated 

repeated at the second sample point. The values of βE1 and 

βM1 are 2.2268 and 2.2269 with respect to LSF 1, and the 

values of βE2 and βM2 are 2.1286 and 2.2788 with respect to 

LSF 2, respectively. The values of βE1 and βE2 are both less 

than the generalized target reliability indices, thus the value 

of λ
(2)

 is chosen as 0.1 in this step. The unit gradients of 

LSF1 and LSF2 evaluated at the sample point (2)

SX
 

are 

{0.8808, 0.4734}
T
 and {0.9557, 0.2943}

T
, respectively. 

Thus, the search direction vector S
(2)

={0.9183, 0.3839}
T
, 

and the third sample point (3) (2) (2) (2)(1 )S S  X X S

={2.3867, 4.3004}
T
. The above steps are repeated until 

enough data sets (βE, βM) are obtained. 

Data sets (βE, βM) are listed in Table 2. In Table 2, βAF 
is 

the reliability index obtained by using the advanced FORM, 

and βMCS is the generalized reliability index obtained by 

using the MSC with 10
6
 samples. As seen from Table 2, all 

βE are close to βMCS, that is, the accuracy of the proposed 

improved response surface method is enough. Compared 

with the advanced FORM, the proposed improved response 

surface method is more accurate. 

The relationships between βE and βM are shown in Fig. 

5, a linear and a quadratic polynomials are used to construct 

reliability mapping functions, as follows: 

LSF1: 

1 11.00015 0.00016M E    (25) 

LSF2: 
2

2 2 20.03857 0.99404 0.05729M E E      (26) 

Substituting the target reliability index 
1 2.5c

E   into 

Eq. (25), a prediction interval [2.5002-0.0013, 

2.5002+0.0013] with a confidence level of 95% are 

obtained. Thus, 
1

c

M =2.5002 +0.0013=2.5015. Similarly, 

substituting the target reliability index 
2 3.5c

E   into Eq. 

(26) yields 
2

c

M =3.9573+0.1177=4.0750. 

Based on reliability mapping functions, Eq. (24) can be 

rewritten as 

0 1 2

1 1 1

2 2 2
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(a) LSF1 

 
(b) LSF2 

Fig. 5 Reliability mapping functions (Example 1) 

 

 

As seen from Eq. (27), double-loop involved in the 

classical RBDO can be converted into single-loop by using 

reliability mapping functions. 

The same optimization algorithm (sequential quadratic 

programming) and initial design (d0={2,4}
T
) as the study of 

Li (2013) are selected in this example. Optimization results 

by using various methods for the cantilever beam are listed 

in Table 3. In Table 3, * * * T

1 2{ , }d dd expresses the optimal 

design. As seen from Table 3, the results show that all 

methods attain the same optimum value (≈9.21) of the 

objective function. The proposed method is satisfactory in 

terms of the total number of LSF evaluations, optimal 

design, constraints and objective function. Compared with 

the advanced FORM, the proposed method can obviously 

reduce the total number of LSF evaluations as the result of 

using reliability mapping functions. 

The constraints associated with the optimal design 

generated by each method are evaluated by using the MCS  
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Table 2 Example 1 - Reliability indices of sample points 

Sample points LSF1 LSF2 

d1 d2 βM βAF βE βMCS βM βAF βE βMCS 

2.0000 4.0000 0.5382 0.5382 0.5383 0.5385 0.2224 0.2209 0.2126 0.2129 

2.1860 4.1414 2.2269 2.2267 2.2268 2.2268 2.2788 2.1356 2.1286 2.1290 

2.3867 4.3004 4.1143 4.1139 4.1142 4.1141 5.1637 4.4699 4.4402 4.4405 

2.2787 4.0288 2.4485 2.4483 2.4484 2.4486 2.9733 2.7198 2.6958 2.7063 

2.3812 4.1149 3.4237 3.4234 3.4228 3.4226 4.4873 3.9332 3.8967 3.9091 
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Fig. 6 A 10-bar truss structure 

 

 

(10
6
 samples), and the results are also listed in Table 3. It 

appears that the advanced FORM slightly violates the 

second constraint with a maximum error of 7.51% in 

calculating the failure probability. In contrast, no such 

violations are observed in the proposed method. This is 

because 1) the proposed improved response surface method 

is more accurate than the advanced FORM in performing 

reliability analysis; 2) the upper bound of prediction interval 

is used as a prediction value of the equivalent target 

reliability index in order to obtain relatively conservative 

optimization results. 

 

6.2 Example 2 
 

A 10-bar structure (Yuan and Lu 2014) is considered 

which is shown in Fig. 6. The length of all the horizontal 

and vertical bars is L. Pi (i=1,2,3) are loads. The section 

area and Young’s modulus of each bar are Ai (i=1,2,…,10) 

and E, respectively. The fifteen random variables, i.e. 

1 2 3 4 5 6 7 8 9 10 1 2 3{ , , , , , , , , , , , , , , }TA A A A A A A A A A L E P P PX  (28) 

are all normally distributed and their distribution 

information is given in Table 4. 

The means of L and Ai (i=1,2,…,10) are taken as design 

variables, i.e. 

1 2 3 4 5 6 7 8 9 10
{ , , , , , , , , , , }T

A A A A A A A A A A L          d  (29) 

The optimization model is given by 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 4 Example2-Statistical properties of random variables 

Random 

variable 

Mean 

value 

Coefficient of 

variance 
Distribution 

Ai/cm2 
iA  0.1 Normal 

L/m μL 0.1 Normal 

E/Gpa 70 0.1 Normal 

P1/kN 500 0.2 Normal 

P2/kN 100 0.2 Normal 

P3/kN 100 0.2 Normal 

 

Table 5 Example 2-Reliability indices of sample points 

Sample points βM βAF βE βMCS 

{8,8,8,8,8,8,8,8,8,8,1.6}T 3.2245 2.5720 2.5286 2.5284 

{8.7097,7.9904,8.7747,8.0078,7.9884,8.0078, 

8.5351,8.6651,8.1940,8.0221,1.3083}T 
5.7209 3.9469 4.0118 4.0128 

{8.3843,7.9950,8.4276,8.0041,7.9945,8.0041, 
8.2894,8.3585,8.0993,8.0116,1.4419}T 

4.4534 3.2995 3.2386 3.2389 

{8.0430,7.9998,8.0598,8.0002,8.0005,8.0002, 
8.0315,8.0375,8.0026,8.0007,1.5823}T 

3.3519 2.6526 2.6069 2.6075 

{8.2198,7.9974,8.2524,8.0022,7.9976,8.0022, 

8.1651,8.2033,8.0512,8.0062,1.5096}T 
3.8975 2.9838 2.9540 2.9537 
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(30) 

where C0(d) is the objective function represents the volume 

of the 10-bar structure, D=0.1 m, and dy(X) is the 

displacement of Node 3 in vertical direction. 

Data sets (βE, βM) are listed in Table 5. As seen from 

Table 5, all βE are close to βMCS, that is, the accuracy of the 

proposed improved response surface method is enough. 

Compared with advanced FORM, the proposed improved 

response surface is more accurate. 

The relationship between βE and βM is shown in Fig. 7, a 

linear polynomial is used to construct a reliability mapping 

function, as follows 

1.69196 1.06127M E    (31) 

Substituting the target reliability index 1 3(1 10 ) 3.0902c

E
    

 

 

1 2 3 

4 5 6 

(1) (2) 

(3) (4) 

(5) (6) 

(8) 

(7) 

(10) 

(9) 

L 

 
L

 

P1 P2 

L 

P3 

Table 3 Example 1 - Optimization results 

 
Advanced FORM 

(Li 2013) 
Li (2013) 

Proposed 

method 

Monte Carlo 

(Li 2013) 

No. of iterations 7 6 6 7 

No. of LSF evaluations 1900 302 294 29×106 

*

1d
� 

2.4533 2.4588 2.4621 2.4629 

*

2d
 

3.7545 3.7462 3.7412 3.7403 

*

1[ ( ) ( 2.5)]

( 2.5)

C  

 

d

 
0.01 % -0.02% -0.01% -0.08% 

*

2[ ( ) ( 3.5)]
 

( 3.5)

C  

 

d

 

7.51% -4.13% -2.23% 1.03% 

*

0 ( )C d
 

9.2109 9.2115 9.2112 9.2119 
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=3.0902 into Eq. (31), a prediction interval [4.1672-0.1078, 

4.1672+0.1078] with a confidence level of 95% is obtained. 

Thus, c

M = 4.1672+0.1078 = 4.2750. 

Based on the reliability mapping function, Eq. (30) can 

be rewritten as 

6 10

0

1 7

1

min ( ) 2

s.t. 4.2750
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(32) 

The same optimization algorithm (sequential quadratic 

programming) and initial design (d0={10,10,10,10,10,10, 

10, 10,10,10,1.7}
T
) as the study of Yuan and Lu (2014) are 

adopted in this example. Optimization results obtained by 

using various methods are listed in Table 6. The constraint 

associated with the optimal design generated by each 

method is evaluated by using MCS (10
6
 samples), and the 

results are also listed in Table 6. As seen from Table 6, the 

proposed method does not excessively violate the constraint 

in calculating the failure probability, that is, the accuracy of 

the proposed method is enough. Compared with the 

advanced FORM, the proposed method is more effective 

and accurate in terms of LSF evaluations and constraint. 

The proposed method can obviously reduce the total 

number of LSF evaluations, that is, the proposed method 

can obviously alleviate the computational effort for RBDO 

problems. Compared with the study of Yuan and Lu (2014), 

the proposed method is more effective and accurate. But, 

the advantage of the study of Yuan and Lu (2014) is also 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Reliability mapping function (Example 2) 

 

 

obvious as it needs only one reliability analysis and it seems 

insensitive to the number of design variables. 

In order to investigate the effect of sample points on the 

construction of reliability mapping function, 10 sample 

points are selected randomly from the design space. The 

corresponding reliability indices βM and βMCS are computed 

by using the mean value FORM and the MCS with 10
6
 

samples. The relationship between βM and βMCS, i.e., the 

reliability mapping function based on MCS is shown in Fig. 

8. A prediction value of c

M =4.2733 is obtained, the 

corresponding optimum value of the objective function is 

98.6670, and the corresponding optimal design is 

{6.9446,6,8.0509,6,6,6,8.5718,6,6,6,1.3}
T
. Compared with 

results in Table 6, the consistent results are obtained, that is, 

the reliability mapping function does not depend on the 

selection of sample points, and the use of reliability 

mapping function to solve RBDO problem is feasible. In 

addition, the consistent results also indicate that the 

accuracy of proposed method is enough. 

 

6.3 Example 3 
 

A rod of circular cross-section is considered, it is 

subjected to a tensile force P, and its radius is r. The yield 

stress is σy. Three random variables X={σy,P,r}
T
are 

considered, and their means and standard deviations are 

given in Table 7. The mean of r is taken as a design 

variable, i.e., d=μr. The optimization model based on the 

static-strength reliability is given by 
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Fig. 8 Reliability mapping function based on MCS  

(Example 2) 

Table 6 Example 2 - Optimization results 

 
No. of 

iterations 

No. of LSF 

evaluations 
*

0 ( )C d
 

* 3

1

3

[ ( ) 10 ]

10

C 



d

 

*
d  

Advanced 

FORM 
14 3772 98.1930 7.3% {6.8083,6,8.0374,6,6,6,8.4113,6,6 ,6,1.3}T 

Yuan and Lu 

(2014) 
13 2.6×104 99.0155 18.1% {6.5887,6,8.6081,6,6,6,8.1410,6,6,6,1.3}T 

Proposed 

method 
14 1114 98.6657 -5.8% {6.9435,6,8.0505,6,6,6,8.5707,6,6,6,1.3}T 
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Table 7 Example 3-Statistical properties of random 

variables 

Random variable Mean value Standard deviation 

X1/MPa 360 36 

X2/kN 200 20 

X3/mm μr 2 

 

Table 8 Example 3 - Six Cases 

 LSF 
Distribution 

X1 X2 X3 

Case 1 Eq.(34) Normal Normal Normal 

Case 2 Eq.(35) Normal Normal Normal 

Case 3 Eq.(34) Normal Normal Gumbel 

Case 4 Eq.(35) Normal Normal Gumbel 

Case 5 Eq.(34) Lognormal Normal Gumbel 

Case 6 Eq.(35) Lognormal Normal Gumbel 

 

 

where C0(d) is the objective function represents the area of 

the rod. 

It has been well known that the reliability indices 

obtained by the mean value FORM are usually different in 

terms of different LSFs with the same physical meaning. 

Thus, two LSFs with the same physical meaning are 

discussed, the one is 

2
( , ) s

P
G

r



 X d  (34) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the other is 

2( , ) sG r P  X d  (35) 

In addition, distribution types of random variables have 

an important effect on the reliability. Therefore, the 

different distribution types of random variables are also 

discussed in this example. Six Cases are listed in Table 8. 

Since the only one design variable d=μr is considered, 

five sample points used to construct reliability mapping 

function are uniformly selected from interval [8,12]. The 

calculation results of reliability indices of sample points, 

reliability mapping functions and prediction values of c

M  

are all listed in Table 9. The reliability mapping functions of 

six Cases are shown in Fig. 9. As seen from Table 9 and 

Fig. 9, the reliability indices of sample points, reliability 

mapping functions and prediction values of c

M  are all 

different in terms of six Cases. The main reason is follows: 

the reliability indices obtained by the mean value FORM 

are usually different in terms of different LSFs with the 

same physical meaning. 

Since the only one design variable d=μr is considered, 

the brute-force approach is adopted to obtain the optimal 

solution. That is, the 10
5
 points are uniformly selected from 

interval [8,12], and at each point, the failure probability is 

estimated by direct MCS with 10
6
 samples. Optimization 

results obtained by using various methods in terms of six 

Cases are all listed in Table 10. As seen from Table 10, for 

six Cases, the optimal solutions obtained by using the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 9 Example 3 - Calculation results 

Sample points 8 9 10 11 12 Reliability mapping functions and c

M  

Case 1 

βM 4.3225 5.7005 6.8146 7.6343 8.2118 20.54818 5.10629

3.33469

M E E    


 

c

M =7.1069 

βAF 1.8857 2.3824 2.8793 3.3759 3.8732 

βE 1.8792 2.3736 2.8715 3.3689 3.8586 

βMCS 1.8774 2.3718 2.8707 3.3674 3.8552 

Case 2 

βM 1.4264 1.7247 2.0068 2.2761 2.534 

0.55878 +0.38990M E   

c

M =2.1134 

βAF 1.8857 2.3825 2.8793 3.3761 3.8727 

βE 1.8791 2.3733 2.8719 3.3683 3.8572 

βMCS 1.8774 2.3718 2.8707 3.3674 3.8552 

Case 3 

βM 4.3312 5.7091 6.8224 7.6413 8.2181 20.55021 5.11563

3.33801

M E E    


 

c

M =7.1147 

βAF 1.8911 2.3878 2.8847 3.3813 3.8788 

βE 1.8786 2.3775 2.8698 3.3684 3.8656 

βMCS 1.8765 2.3751 2.8693 3.3655 3.8638 

Case 4 

βM 1.4291 1.7271 2.0089 2.2779 2.5358 

0.55654 +0.39705M E   

c

M =2.1176 

βAF 1.8911 2.3879 2.8847 3.3815 3.8783 

βE 1.8786 2.3784 2.8705 3.3687 3.8668 

βMCS 1.8765 2.3751 2.8693 3.3655 3.8638 

Case 5 

βM 4.3055 5.6804 6.7931 7.6121 8.1894 20.54259 5.07188

3.31140

M E E    


 

c

M =7.0457 

βAF 1.8861 2.3829 2.8801 3.3765 3.8739 

βE 1.8797 2.3786 2.8765 3.3681 3.8674 

βMCS 1.8786 2.3762 2.8719 3.3675 3.8656 

Case 6 

βM 1.4196 1.7164 1.9972 2.2651 2.5221 

0.55444 +0.39063M E   

c

M =2.1025 

βAF 1.8861 2.3831 2.8801 3.3771 3.8741 

βE 1.8795 2.3784 2.8751 3.3695 3.8673 

βMCS 1.8786 2.3762 2.8719 3.3675 3.8656 
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proposed method are all close to the those obtained by using 

MCS. Compared with Case 1 and 2, Case 3 and 4, and Case 

5 and 6, the consistent results are obtained. That is, the use 

of reliability mapping function to solve RBDO problems is 

feasible even thought the different LSFs with the same 

physical meaning are used to construct the reliability 

mapping function. In addition, for non-normally distributed 

random variables, the proposed method can also obtain 

satisfying results. This illustrates the robustness of the 

proposed method in solving the RBDO problems. 

 

6.4 Example 4 
 

A 72-bar space truss structure (Ho-Huu et al. 2016) 

shown in Fig. 10 is considered. The weight of the truss is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

the objective function and cross-sectional area for the truss 

members are defined as design variables. The density and 

Young’s modulus of material are 0.1 lb/in
3
 and E, 

respectively. Design variables are collected in 16 groups as 

shown in Table 11. Loads are applied at Node 1 with value 

5 kips in x direction, 5 kips in y direction and -5 kips in z 

direction, respectively. Therefore, this RBDO problem 

involves 16 design variables d={
1621

,...,, AAA  }
T 

and 20 

random variables X={A1,A2,…,A16,E,Px,Py,Pz}
T
. The 

minimum and maximum cross-sectional area of each 

member are set to 0.1 and 4.5 in
2
, respectively. The 

displacement limits at Node 1 in x and y directions are both 

±0.25in. The probabilistic constraints, subjected to 

displacement limitations at Node 1 in x and y directions, are 

both not less than 99.865%, i.e., β
c
=3.0. 

  
(a) Case 1 (b) Case 2 

  
(c) Case 3 (d) Case 4 

  
(e) Case 5 (f) Case 6 

Fig. 9 Reliability mapping functions (Example 3) 
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Table 10 Example 3 - Optimization results 

 Method d* C0(d
*)

 
[C1(d

*)−Φ(−3.0)]/Φ(−3.0) 

Case 1 

Advanced 

FORM 
10.2433 329.63 -0.06% 

Proposed 

method 
10.2415 329.51 0.03% 

MCS 10.2422 329.56 0.01% 

Case 2 

Advanced 

FORM 
10.2430 329.61 -0.05% 

Proposed 

method 
10.2413 329.50 0.03% 

MCS 10.2421 329.55 0.02% 

Case 3 

Advanced 

FORM 
10.2323 328.92 -0.05% 

Proposed 

method 
10.2310 328.84 -0.02% 

MCS 10.2302 328.79 0.01% 

Case 4 

Advanced 

FORM 
10.2320 328.90 -0.05% 

Proposed 

method 
10.2309 328.83 -0.01% 

MCS 10.2305 328.81 0.01% 

Case 5 

Advanced 

FORM 
10.2414 329.51 -0.06% 

Proposed 

method 
10.2401 329.43 -0.02% 

MCS 10.2387 329.34 0.01% 

Case 6 

Advanced 

FORM 
10.2413 329.50 -0.06% 

Proposed 

method 
10.2396 329.39 -0.02% 

MCS 10.2385 329.32 -0.01% 

 

 

In order to further verify the robustness and efficiency 

of the proposed method, two Cases listed in Table 12 are 

discussed. Case 1: all random variables follow normal 

distribution. Case 2: Px, Py, Pz and E follow lognormal 

distribution, and Ai follow normal distribution. 

The results of example 2 indicated that the reliability 

mapping function does not depend on the selection of 

sample points. Thus, for the sake of simplicity, five sample 

points used to construct reliability mapping function are 

uniformly selected from interval [0.8,1.2] in terms of all 

design variables. But, it is noted that the choice strategy of 

sample points presented in this paper is more efficient than 

the one of random selection, the results of example 2 has 

confirmed it. The calculation results of reliability indices of 

sample points, reliability mapping functions and prediction 

values of c

M  are listed in Tables 13 and 14. The 

reliability mapping functions under two Cases are shown in 

Fig. 11. 

The sequential quadratic programming with an initial 

design d0={2.3,2.3,…,2.3}
T
 is adopted in this example. 

Optimization results obtained by using various methods are 

listed in Table 15. The constraints associated with the 

optimal design generated by each method are evaluated by 

using MCS (10
6
 samples), and the results are also listed in 

Table 15. 

As seen from Table 15, the proposed method can obtain 

 

Fig. 10 The 72-bars pace truss structure (Example 4) 

 

Table 11 Example 4 - Group assignments for members of 

72-bar truss 

Area group Truss members 

A1 1, 2, 3, 4 

A2 5, 6, 7, 8, 9, 10, 11, 12 

A3 13, 14, 15, 16 

A4 17, 18 

A5 19, 20, 21, 22 

A6 23, 24, 25, 26, 27, 28, 29, 30 

A7 31, 32, 33, 34 

A8 35, 36 

A9 37, 38, 39, 40 

A10 41, 42, 43, 44, 45, 46, 47, 48 

A11 49, 50, 51, 52 

A12 53, 54 

A13 55, 56, 57, 58 

A14 59, 60, 61, 62, 63, 64, 65, 66 

A15 67, 68, 69, 70 

A16 71, 72 

 

Table 12 Example 4 - Statistical properties of random 

variables 

Random 

variable 

Mean 

value 

Coefficient of 

variance 

Distribution 

Case 1 Case 2 

Ai/in
2 

iA  0.05 Normal Normal 

E/ksi 104 0.05 Normal Lognormal 

Px/kip 5 0.05 Normal Lognormal 

Py/kip 5 0.05 Normal Lognormal 

Pz/kip -5 0.05 Normal Lognormal 
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satisfying results in terms of LSF evaluations and 

constraints. For Case 1, the results obtained by using the 

proposed method and other methods are almost the same, 

the accuracy of the proposed method is enough. For Case 2, 

the proposed method can also obtain satisfying results, that 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

is, the accuracy of the proposed method is also enough 

when non-normally distributed random variables are 

involved. Compared with the other methods, the total 

number of LSF evaluations of the proposed method is much 

less than the ones of other methods. This hence confirms 

Table 13 Example 4- Calculation results (Case 1) 

Sample points 
LSF1 LSF2 

βM βAF βE βMCS βM βAF βE βMCS 

{0.8,0.8,...,0.8}T 0.4180 0.4075 0.4124 0.4123 0.418 0.4075 0.4123 0.4126 

{0.9,0.9,...,0.9}T 1.8055 1.6893 1.7096 1.7101 1.8055 1.6893 1.7096 1.7102 

{1.0,1.0,...,1.0}T 3.1931 2.8656 2.8999 2.9003 3.1931 2.8656 2.9000 2.9004 

{1.1,1.1,...,1.1}T 4.5806 3.9424 3.9897 3.9899 4.5806 3.9424 3.9896 3.9891 

{1.2,1.2,...,1.2}T 5.9682 4.9271 4.9862 4.9836 5.9682 4.9271 4.9863 4.9872 

Reliability mapping 

functions and c

M  

20.04646 0.96055 0.01810M E E      

c

M =3.3734 

20.04648 0.96051 0.01819M E E      

c

M =3.3728 

 

Table 14 Example 4- Calculation results (Case 2) 

Sample points 
LSF1 LSF2 

βM βAF βE βMCS βM βAF βE βMCS 

{0.8,0.8,...,0.8}T 0.4184 0.4064 0.4084 0.4083 0.4184 0.4064 0.4084 0.4083 

{0.9,0.9,...,0.9}T 1.8067 1.6709 1.6792 1.6789 1.8067 1.6709 1.6793 1.6791 

{1.0,1.0,...,1.0}T 3.1951 2.8226 2.8367 2.8359 3.1951 2.8226 2.8367 2.8354 

{1.1,1.1,...,1.1}T 4.5835 3.8796 3.899 3.8993 4.5835 3.8796 3.8989 3.8987 

{1.2,1.2,...,1.2}T 5.9719 4.8559 4.8802 4.8806 5.9719 4.8559 4.8803 4.881 

Reliability mapping 

functions and c

M  

20.04746 0.98252 0.00904M E E      

c

M =3.4090 

20.04744 0.98259 0.00896M E E      

c

M =3.4082 

 

 

 

 
(a) LSF1-Case1 (b) LSF2-Case1 

  
(c) LSF1-Case2 (d) LSF2-Case2 

Fig. 11 Reliability mapping functions (Example 4) 
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Table 15 Example 4- Optimization results 

 

Advanced 

FORM 

Ho-Huu et 

al.(2016) 

Proposed 

method 

Case 1 Case 2 Case 1 Case 1 Case 2 

No. of iterations 31 41 - 27 27 

No. of LSF 

evaluations 
95592 121296 170280 10689 10731 

*

1d
�

 0.1000 0.1000 0.100 0.1000 0.1000 

*

2d  0.6821 0.6859 0.682 0.6840 0.6856 

*

3d  0.5353 0.5388 0.533 0.5383 0.5397 

*

4d  0.6642 0.6647 0.661 0.6635 0.6648 

*

5d  0.7371 0.7474 0.727 0.7491 0.7516 

*

6d  0.6692 0.6731 0.670 0.6712 0.6728 

*

7d  0.1000 0.1000 0.100 0.1000 0.1000 

*

8d  0.1000 0.1000 0.100 0.1000 0.1000 

*

9d  1.6683 1.6784 1.665 1.6757 1.6799 

*

10d  0.6649 0.6688 0.668 0.6669 0.6685 

*

11d  0.1000 0.1000 0.100 0.1000 0.1000 

*

12d  0.1000 0.1000 0.100 0.1000 0.1000 

*

13d  2.4460 2.4591 2.447 2.4540 2.4600 

*

14d  0.6658 0.6697 0.667 0.6678 0.6694 

*

15d  0.1000 0.1000 0.100 0.1000 0.1000 

*

16d  0.1000 0.1000 0.100 0.1000 0.1000 

*

1[ ( ) ( 3.0)]

( 3.0)

C  

 

d
 1.34% 1.73% 1.12% -1.05% 1.56% 

*

2[ ( ) ( 3.0)]

( 3.0)

C  

 

d  1.56% 1.48% 1.08% -1.02% 1.41% 

*

0 ( )C d  479.52 482.16 479.53 481.13 482.25 

 

 

again the robustness of the proposed method in solving the 

RBDO problems. 

 

 

7. Conclusions 
 

An efficient method is presented for solving RBDO 

problems. It combines the reliability mapping function and 

an improved surface method. The relationship between a 

mean value FORM reliability index and an accurate failure 

probability is called the reliability mapping function. It has 

been well known that the reliability growth tendency 

obtained by using different reliability methods should be the 

same when the design variables are changed. That is, 

evaluation results obtained by using different reliability 

methods should be highly correlated. Thus, the reliability 

mapping function has a clear theoretical basis. 

Double-loop involved in the classical RBDO can be 

converted into single-loop by using reliability mapping 

functions. Since the computational effort of the mean value 

FORM is minimal in methods of standard reliability 

analysis, the efficiency of the proposed method is high. An 

improved surface method is also proposed to ensure the 

accuracy of reliability analysis in process of the 

construction of reliability mapping function. Since the 

improved response surface method is constructed based on 

the MPP resulting from the advanced FORM, the accuracy 

of proposed response surface method should be higher than 

that of the advanced FORM. 

Numerical results reported in this contribution indicated 

that the proposed method is satisfactory in terms of the total 

number of LSF evaluations, optimal design, constraints and 

objective function. Compared with the advanced FORM, 

the proposed method can obviously reduce the total number 

of LSF evaluations. In addition, the reliability mapping 

function does not depend on the selection of sample points, 

thus the use of reliability mapping function to solve RBDO 

problems is also feasible.  

Numerical results also indicated that the proposed 

method can obtain the consistent optimization solutions 

when different LSFs with the same physical meaning are 

used to construct the reliability mapping function. This 

illustrates the robustness of the proposed method in solving 

the RBDO problems. Moreover, the proposed method can 

also obtain satisfying results when non-normally distributed 

random variables are involved. This hence confirms again 

the robustness of the proposed method in solving the RBDO 

problems. 

In this work, since a quadratic polynomial without cross 

terms is used as a response function, the proposed improved 

response surface method may be inaccurate for highly non-

linear LSFs, the further investigation of the proposed 

improved response surface method should be required. 

Although numerical results show that the reliability 

mapping function is feasible to solve RBDO problems, 

extensive application of the proposed method to large 

structural problems with a large number of design variables 

should be performed in the future. 
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