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1. Introduction  
 

Suspension bridges analysis requires a form-finding 

analysis prior to the finite element (FE) model to determine 

the geometric parameters and the initial force of the cable 

system since the configuration of a cable is arbitrary in 

stress-free state and its stiffness is derived from the applied 

external loads in contrast to the frame structures (Irvine 

1981). In the past years, many numerical and analytical 

form-finding approaches have evolved for the tensegrity 

structures (Zhang et al. 2014, Koohestani and Guest 2013, 

Faroughi et al. 2014) and the suspension bridges (Sun et al. 

2014, 2016, Kim et al. 2014, Jung et al. 2015) as well. 

The form-finding analysis methods for suspension 

bridges can be summarized into three categories: 1) the 

simplified approach; 2) the FE-based method; and 3) the 

analytical method. The simplified method assumes the main 

cable to be a parabola under uniform load along its span 

direction (Chen et al. 2014, Gimsing and Georgakis 2011, 

Lonetti and Pascuzzo 2014). However, the accuracy of the 

simplified approximation is insufficient since the main 
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cable sustains both self-weight along its length and 

concentrated forces from the hangers. The FE-based method 

identifies the target cable shape by updating the nodal 

positions and/or initial force of the cable elements 

according to the nonlinear structural analysis results based 

on an assumed initial suspension bridge model. Wang and 

Yang (1996) proposed a successive substitution approach, 

which predicates on the Newton-Raphson method and 

modifies the initial tension of the cable elements, to 

minimize vertical deformation and/or bending moment of 

the girder under dead load. Karoumi (1999) utilized the 

trial-and-error procedure for the form-finding analysis of 

suspension bridges. Like the simplified method, these 

approaches also assume that the configuration of main cable 

follows a parabolic shape and fix the nodal position during 

the iteration process. However, the final configuration of 

the main cable is not a parabola rigorously. To overcome 

these drawbacks, several methods, such as the target 

configuration under dead load (TCUD) method (Kim and 

Lee 2001) , the initial force method (Kim et al. 2002), the 

improved TCUD (I.TCUD) method (Kim and Kim 2012), 

the G.TCUD method (Jung et al. 2013) and the coordinate 

iteration method (Sun et al. 2014), have been developed 

successively. These methods find out the target profile of 

the bridge by treating the nodal positions of the main cable 

and/or the unstrained length of the bridge’s members, e.g., 

the main cable, the pylon and the girder as variables and 

solve them in NFEM iteration formula with additional 

constraints derived from bridge’s geometric requirements 

under dead load. However, the convergence of these FE-  

 
 
 

Form-finding analysis of suspension bridges 
using an explicit Iterative approach 

 

Hongyou Cao1a, Yun-Lai Zhou
1, Zhijun Chen2b and Magd Abdel Wahab3,4,5 

 
1Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore 

2School of Civil Engineering & Mechanics, Huazhong University of Science & Technology, Wuhan, 4300743, China 
3Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City, Vietnam 

4Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam 
5Soete Laboratory, Faculty of Engineering and Architecture, Ghent University, 

Technologiepark Zwijnaarde 903, B-9052 Zwijnaarde, Belgium 

 
(Received September 19, 2016, Revised December 16, 2016, Accepted January 23, 2017) 

 
Abstract.  This paper presents an explicit analytical iteration method for form-finding analysis of suspension bridges. By 

extending the conventional analytical form-finding method predicated on the elastic catenary theory, two nonlinear governing 

equations are derived for calculating the accurate unstrained lengths of the entire cable systems both the main cable and the 

hangers. And for the gradient-based iteration method, the derivation of explicit calculation for the Jacobian matrix while solving 

the nonlinear governing equation enhances the computational efficiency. The results from sensitivity analysis show well 

performance of the explicit Jacobian matrix compared with the traditional finite difference method. According to two numerical 

examples of long span suspension bridges studied, the proposed method is also compared with those reported approaches or the 

fundamental criterions in suspension bridge structural analysis, which eventually confirms the accuracy and efficiency of the 

proposed approach. 
 

Keywords:  form-finding analysis; suspension bridge; analytical method; elastic catenary cable; finite element analysis 

 

mailto:magd.abdelwahab@tdt.edu.vn


 

Hongyou Cao, Yun-Lai Zhou, Zhijun Chen and Magd Abdel Wahab 

 

y

x

i

 j

w

iF

jF
jX

iX

yl

yF

xF

xl

O

 

Fig. 1 Two-dimensional catenary cable 

 

 

based approaches highly depend on the assumed initial FE  

model (Wriggers 2008).  

The analytical approaches, which separates the bridge 

into two substructures: the cable system and the pylon-

girder, couples them via the hanger forces and deals with 

the cable system independently using analytical method, 

possess a much higher computational efficiency and faster 

convergence in contrast to the simplified and the FE-based 

methods. Based on the elastic catenary equations, O’Brien 

and his co-workers (1964, 1967) proposed a successive 

calculation procedure that divides the cable into segments at 

the positions of the concentrated loads and solves the static 

equilibrium to determine the cable configuration. This 

method is mainly used to predict the accurate cable 

configuration of the suspension bridges during the hanger 

installation process (Chen et al. 2015, Fan et al. 1999, Luo 

2004) since it requires the unstrained length of each cable 

element known as prior. Chen et al. (2013) improved this 

method to the form-finding analysis of the suspension under 

bridge finished stage through considering the unstrained 

length instead of the horizontal distance of the cable 

element (the space between the two adjacent hangers) as 

variables. Wang et al. (2015) extended this approach to the 

preliminary analysis of self-anchored suspension bridge 

while neglecting the self-weight of the hangers in their main 

cable analysis model. Similar to above approaches, Jung et 

al. (2015), proposed a simplified analytical method for the 

optimization of the initial shape analysis in self-anchored 

suspension bridges. This approach assumes the main cable 

segments between hangers to be parabolic under self-weight 

instead of the elastic catenary element. In essence, the 

analytical form-finding procedure becomes solving a series 

of implicit nonlinear governing equations derived from the 

cable system. 

The Netwon-Raphson iteration method is the most 

widely used and efficient approach to solve the nonlinear 

equations. However, the numerical methods, e.g., finite 

difference method (FDM), has to be adopted to approximate 

the Jacobian matrix during the governing equations 

resolving process due to the implicit expression of the 

equations (Chen et al. 2013, Luo 2004). Although the FDM 

is simple in application, both truncation and round-off 

errors that it often suffers will heavily affect the Jacobian 

matrix approximation quality (Lund 1994). An explicit 

Jacobian matrix estimation method will not only overcome 

these defects but also improve the current analytical 

methods for form-finding analysis of suspension bridge. 

This study extends the elastic catenary theory based 

analytical form-finding method to be capable of calculating 

the accurate unstrained length of the entire cable system, 

including both main cable and hangers. The Jacobian matrix 

for the iteration process is derived in explicit form in 

accordance to the differential form of elastic catenary 

equations and then sensitivity analysis is carried out to 

validate the reliability of this explicit method in comparison 

with FDM. Finally, two long span suspension bridges are 

numerically studied, and the results are also compared with 

those existing approaches. 

 
 
2. Iterative approach for form-finding analysis  

 

This section introduces the elastic catenary theory based 

analytical form-finding analysis approach for suspension 

bridges (Chen, Cao, and Zhu 2013). This approach includes 

the entire cable system information (main cable and 

hangers) into the governing equations.  

 

2.1 Elastic catenary equations 
 
The elastic catenary theory assumes a perfectly flexible 

cable with self-weight uniformly distributed along its length 

as shown in Fig. 1, where xi 
and xj denote the coordinates of 

node i and j, Fi 
and Fj

 
refer to the nodal forces at both ends, 

respectively. The elastic catenary equations follow 

 0[ , ] ,T
j i x y il l L  x x φ F  (1) 

0j i L  F F w  (2) 

where L0 
represents the unstrained length of element, 

w=[0,w]
T
, w means the self-weight per length unit of the 

cable. The two components of φ
 
are given in Eqs. (3) and 

(4) as follows 
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where E and A denote the elastic modulus and the cross-

sectional area of the cable, respectively. 

 
2.2 Governing equations  
 
Form-finding analysis is an inverse problem 

determining the nodal positions and cable tensions or 

unstrained lengths according to the predetermined 

geometric parameters of the bridge under the dead load 

state. The following steps detail the analytical form-finding 

analysis procedure, 

(1) Dividing the bridge into two sub-structures coupled 

by the hanger forces. As shown in Fig. 2(a), ls and lm denote  

the  span  of  side-span  and  main-span, 
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respectively. f refers to the sag at the mid-span of  main 

cable and 
 
d

x

i
 means the horizontal distance between the i

th
 

and the (i-1)
th

 hangers.  

(2) Replacing the hangers by vertical supports and 

calculating the support forces Ri (i denotes the i
th

 support) 

according to the target shape of the stiffening girder under 

dead load as shown in Fig. 2(b). By this way, the hanger 

forces acting on the stiffening girder Ni (i refers to the i
th

 

hanger) are eventually determined by Ri+Ni=0. The force 

acting on the main cable equals the summation of Ni and the 

 

 

 

self-weight of the hanger. The structural parameters such as 

spans, the layout of the hangers and the sag-span ratio are 

usually determined prior.  

(3) Calculating the hanger forces at the lower anchored 

points, Ni, using the pylon-girder substructure. The cable 

system thus can be considered as an independent system as 

shown in Fig. 2(c). 

Fig. 3 illustrates the mechanical sketch of the cable 

system.  1 1 1,
T

i x yF F 
 

F
 

(the subscript and superscript of F 

denote the left/right node of the cable element and the 

c. The hangers are replaced by node forces

b. The hangers are replaced by supports

Side span Side span2n-1 supports and the reactions denoted by Ri

2n-1 node forces Ni  acting on the cable and Ni=Ri

a. A suspension bridge
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Fig. 2 Structural decomposition of the girder-tower system and cable system 

(x1,y1) (x2,y2)
(x3,y3)1

2
3

(x2n-1,y2n-1)

(x2n,y2n)

(x2n+1,y2n+1)

2n-1

2n

1

iF1

xF

1

xF

2 1n

xd  2n

xd1

xd 2

xd 3

xd
n

xd 1n

xd 

o

y

x

A

i
i hN G

i
i hN Gi

jT

1i
iT 

Upper anchorage  on the 

main cable

Lower anchorage on 

the girderiN

i
i hN G

The girder

i
h

(a) The main cable system

(b) The free body diagram of 

No.n+1hanger 

(c) The free body diagram at the detail 

of A 

f

(xn+1,yn+1)

h

 

Fig. 3 The main cable system and free body diagrams of the connecting points between girder, hanger and main cable 
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element number, respectively) denotes the nodal forces of 

node i of the first cable element. Recalling the elastic 

catenary element equations Eqs. (1)-(4), the coordinate and 

nodal forces of node j for the first cable element become 

1 1
2 1 ,

T

x yd d  
 

x x  (5) 

0j i L  F F w  (6) 

where,  1 1 1 1 1
0 , ,x x y xL F F d ,  1 1 1 1

0, ,y y x yd F F L . 

As shown in Fig. 3(b), hi (i represents the i
th

 hanger, 

i=1~2n-1) denotes the length of the hanger with elongation. 

Assuming 
0
ih  defines the unstrained length of the i

th
 

hanger, and the following equations describe the 

relationship between hi and 
0
ih  

0
00

ih i ii h

h h

N w x
dx h h

E A


   (7) 
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h
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h

w

    
  (6) 

where wh refers to the weight of the hanger per length unit, 

Eh and Ah represent the modulus of elasticity and the cross 

sectional area of the hangers, respectively. The self-weight 

of i
th

 hanger i
hG  becomes: 

0
i i
h hG w h  (9) 

According to the equilibrium condition at i
th

 node as 

shown in Fig. 3(c), the tension at node j of i
th

 element and 

the tension at i node of (i+1)
th

 element lead to 

   
2 2

0
i i i i
j x yT F F wL    (10) 

   
2 2

1
0

i i i i i
i x y i hT F F wL N G       (11) 

The force relationship between j
th

 node of i
th

 element 

and i
th

 node of (i+1)
th

 element expresses as 

1 1
0 1

i i i
i i iL 

  F F w N  (12) 

where 1

1 1[0, ] , 2 2i T

i i hN G i n

   N  i=2~2n. 

If the nodal force at node i of the first cable element, 

1 1 1,
T

i x yF F 
 

F , is known, calculating the coordinate and 

nodal force of each element from 1 to 2n successively with 

Eqs. (5)-(6) and Eq. (12), the coordinate of mid-node and 

the end node of the main cable can be obtained as 

 1 1 1 0
1 1

, , , ,
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n x y x y x y

i i

d d d F F L
 

     
    

 x x x  (13) 
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 x x x  (14) 

According to the structural parameters of the bridge, 

such as span, sag and the relative height between the 

neighbouring pylons, the coordinates of the main cable at 

mid-span and the end are known and can be expressed as 

 1 1 / 2, / 2
T

n l h f   x x  (15) 

 2 1 1 ,
T

n l h  x x  (16) 

where l denotes the span of the bridge, f refers to the mid-

span sag of the main cable and h represents the relative 

height between neighboring pylons as shown in Fig. 3(a). 

With Eqs. (13)-(16) and substituting the expression of 

  
L

0

i
 into the equations, the governing equations of form-

finding method for a plane-shape cable becomes 
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2.3 Nonlinear iteration procedure 
 
The following gradient-based iteration method is 

employed to solve Eq. (17), 

Step 1: Assuming the main cable shape follows a 

parabola under dead load, the initial iteration forces, 

   
F

i

1 = [F
x

1,F
y

1]T , can be estimated by the following equations 

2 22
1

2

8
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8 83

d m
x

q l q lf
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f fl
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   

 
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 (18) 
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tany x x

h f
F F F

l



   (19) 

where, qd and qm are the dead load and self-weight per unit 

length of stiffening girder and main cable, respectively. 

Step 2: Calculating the unstrained length of the first 

element, 
  
L

0

1
, and the nodal coordinate, (x2, y2), and the 

force, 
   
F

j

1, of node j according to Eqs. (1)-(2). 

Step 3: Calculating the node i forces, 2 2 2[ , ]T

i x yF FF , of 

the second element according to Eq. (12), and calculating 

the unstrained length of the second element, 
  
L

0

2
, the nodal 

coordinate, (x3, y3), and the forces, 2

jF  according to Eqs. 

(1)-(2). Repeating this procedure until all the cable 

elements’ nodal coordinates and forces are calculated. 

Step 4: calculating 
  
d

y
n+1and 

  
d

y
2n+1 according to the y-

direction coordinate of node 1, n+1 and 2n+1, and checking 

the convergence of the iteration procedure using the 

following convergence criteria 

2 2
1 1 2 1 2 1
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1 2 1

n n n n

x x m x x m

n n

x x

d d d d
R

d d


   

 

    
        

   

 (20) 

where, 1

, / 2n

x md h f   , 2 1

,

n

x md h  , and   is the tolerance 

defined by users. If the convergence criterion is satisfied, 

terminate the iteration, or else go to the Step 5. 
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Fig. 4 The flow chart of the flexible iteration procedure 

 

 

Step 5: If the convergence criteria in Eq. (20) is not 

achieved, the following iteration formula is adopted 

 
1 1,

, 1,

2 1 2 1, 2 2
,

n n t

x m tx

in n t

x m x

d d

d d
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J F  (21) 

where, t denotes the iteration step. 1,t

iF
 

can be expressed 

as 

 
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1 ,1,

2 1 2 1,2 2
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d d
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 
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and 1, 1t

i


F  for the next iteration step t+1 is 

1, 1 1, 1,t t t

i i i

   F F F  (23) 

Finally, go back to Step 2 for the next iteration step.  

The matrix shown in Eq. (21) is called flexible matrix 

indicating the relationship between the vector function,

1 2 1,
T

n n
y yd d  

 
φ , and the vector variable, 1,t

iF
 

from 

mathematical viewpoint. Because function φ expresses in an 

implicit form, the gradient matrix, [J], usually is 

approximated by FDM. 

The FDM approximates the derivative of the response 

based on the response function values 

   i j j ii

j j

x

x x

    


 

x e x
 (24) 

Δxj is a small perturbation applied to the j
th

 design 

variable xj, and ej 
is a vector unit in the j

th
 direction. One 

additional function evaluation is need for every design 

variable xj to compute the full gradient. Even though, this 

method is straightforward and can be easily implemented 

for any response function, the approximation quality 

strongly depends on the step size Δxj, which is an obvious 

inherent drawback of this method. Both truncation and 

round-off errors are present in FDM. Truncation errors are 

due to the terms disregarded in the Taylor expansion in Eq. 

(24). A smaller perturbation Δxj 
will reduce this error. In 

contrast, round-off errors increase strongly when Δxj 
is very 

small. Therefore, a compromise between both types of 

errors is required during application of FDM. 

Fig. 4 gives the flowchart for the flexible iteration 

procedure. The TCUD of the main cable in the main span is 

obtained under the hypothesis that the tower is in zero-

bending moment state under dead load which means the 

horizontal component of the side main cable tension equals 

to that of the main cable. When calculating the TCUD of 

the main cable in the side span, the first term in Eq. (17) can 

be removed, and the governing equation of the form-finding 

analysis for side span is reduced as a single variable 

nonlinear equation. The calculation procedure for side span 

is also the same as the flowchart shown in Fig. 4 with the 

horizontal component of 1
iF  

as known. 

 

 

3. Jacobian matrix derivation and sensitivity analysis 
 

This section derives an explicit gradient matrix formula 

from the recursion relation in Eq. (12) and the differential 

form of elastic catenary equations to overcome the 

shortcomings of FDM. A sensitivity analysis is also 

conducted to verify the feasibility and efficiency. 

 
3.1 Jacobian matrix derivation 
 
According to the flexible iteration procedure, 

substituting Eq. (12) into Eq. (17) leads to a form only 

respecting to variables 1 1 1,
T

i x yF F 
 

F . 
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Linearizing the nonlinear function U by first-order 

Taylor expansion at  1 2, , n
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where, 
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  

C  

,
T

i i i
x yF F 

 
F .

 

Recalling Fig. 3, the length of the hangers can be 

calculated by 

1 1 1
d i d

i i i i y ih y y y y        (28) 

Substituting Eq. (8) and Eq. (28) into Eq. (9) leads to the 
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differential equation with respect to
i
y  

 
2 1

1 2

i

h h h
h hi

i
y

h h i h h h

G E A
w w

E A N E A w h


 




 

  

 (29) 

where 
 

2 1

1 2

h h

i

h h i h h h

E A

E A N E A w h







 

. 

The relationship between ΔF
i

 
and ΔF

i-1

 
becomes 

according to Eq. (12) 

1 1
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,
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 
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 
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    

     

F F w F

F
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(30) 

If neglecting the effect of the hanger elongation on the 

self-weight of the hanger, Eq. (9) can be simplified as 

0
i i i
h h hG w h w h   (31) 

and thus the coefficient γ in Eq. (29) equals 1. 

With the recursion relation expressed in Eq. (30), Eq. 

(26) can be simplified as 

   1 1

2 2m m
   
 

U U F J F  (32) 

where,   2 2 2 22 2 n n 
J C F

 
and 

1

1
2 2

2

m

n m

n
m



 
 

  
 
 

F

F F

F

. 

According to Eq. (4), the following differential equation 

can be obtained 

0
0

y y y
y x y

x y

d dF dF dL
F F L

  


  
  
  

 (33) 

where 
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 
22

2 0x yT F F wL    

Differentiating Eq. (3) respecting to Fx and L0, 

respectively, lead to 

   

2 00

1

2

1 1 2 2 0

1
ln

1 1

yx

x y

x

y y

T F wLL

F EA w T F

F

w T T F T T F wL

  
  

 

 
  

    

 

   

2 00

1

2

1 1 2 2 0

1
ln

1 1

yx

x y

x

y y

T F wLL

F EA w T F

F

w T T F T T F wL

  
  

 

 
  

    

 

(34a) 

0 2

x x xF F

L EA T


  


 (34b) 

When φx=dx 
is a constant, considering the implicit 

function and Eq. (3), the following relationships can be 

obtained 

0

0.

/x x

x x

L

F F L

   
 

  
 (35a) 

0

0.

/x x

y y

L

F F L

   
 

  
 (35b) 

Substituting Eqs. (33)-(34) into Eq. (30) can achieve 

0 .

/
y y y x x

x x x

d

F F L F L

       
  

    
 (36a) 

0 .

/
y y y x x

y y y

d

F F L F L

       
  

    
 (36b) 

The matrix C2×2n 
can be directly calculated from Eq. 

(36) and the matrix F2n ×2 
can be calculated from Eq. (30) 

and Eqs. (35)-(36). 

 

3.2 Sensitivity analysis 
 
Fig. 5 shows a simplified single-span suspension bridge 

with a span of 120 m and 11 hangers, the sag-span ratio for 

the main cable is 1/10, and the area, density and elastic 

modulus of the cable are 0.08 m
2
, 8.005×10

3
 kg/m

3 
and 

2.00×10
11 

Pa, respectively. To validate the explicit flexible 

matrix derived in section 3.1, three loading cases are 

considered for calculating the Jacobian matrix.  

Case 1: the cable only acts by its self-weight with 

neglecting the effect of the hangers and deck girder; 

Case 2: the cable acts by its self-weight with 

concentrated load 5000 kN at each hanger shown in Fig. 5 

while ignoring the effect of the hangers and stiffening 

girder; 

Case 3: Only considering the load at each lower anchor 

of the hangers as 5000 kN with 0.01 m
2
 for each hanger 

area and the same material as the main cable. 

The obtained results are also compared with those 

calculated by FDM with different perturbation. Eq. (18) 

determines the initial load for calculating the flexible 

matrix. 1
mF =[-966.51, 386.61]

T
 kN for case 1, and 1

mF =[-

73154.01, 29261.61]
T
 kN for case 2 and case 3. 

Table 1 lists the sensitivities computed by FDM with 

different perturbations and by the proposed explicit method. 

The perturbation Δxi 
is defined as a percentage between the 

variables in the FDM during the computations due to the 

value of the two variables are not at same magnitude. From 

Table 1, the sensitivities calculated by FDM vary with the 

perturbations and these sensitivities are not converging to 

those calculated by the proposed analytical method as 

perturbation Δxi 
decreases. The optimal perturbation for this 
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Table 1 Sensitivities computed with the FDM and the 

proposed explicit method (Unit: m/N) 

Cases  Jij J11 J12 J21 J22 

Case 1 

Finite 

difference 

method 

Δxi =1% -1.13×10
-5

 -5.91×10
-5

 2.29×10
-6

 -1.18×10
-4

 

Δxi 

=1×10
-4

 

% 
-1.14×10

-5
 -5.91×10

-5
 2.35×10

-6
 -1.18×10

-4
 

Δxi 

=1×10
-10

 

% 

-1.14×10
-5

 -5.91×10
-5

 2.32×10
-6

 -1.18×10
-4

 

Δxi 

=1×10
-13

 

% 

-2.11×10
-5

 -9.42×10
-5

 -2.02×10
-5

 -9.65×10
-4

 

Present work -1.14×10
-5

 -5.91×10
-5

 2.35×10
-6

 -1.18×10
-4

 

Case 2 

Finite 

difference 

method 

Δxi =1% -1.84×10
-7

 -8.20×10
-7

 -3.00×10
-8

 -1.64×10
-6

 

Δxi 

=1×10
-4

 

% 

-1.86×10
-7

 -8.20×10
-7

 -3.03×10
-8

 -1.64×10
-6

 

Δxi 

=1×10
-10

 

% 

-1.30×10
-7

 -8.96×10
-7

 -6.49×10
-8

 -1.55×10
-6

 

Δxi 

=1×10
-13

 

% 

-3.90×10
-8

 -8.10×10
-5

 7.30×10
-8

 -8.12×10
-5

 

Present work -1.86×10
-7

 -8.20×10
-7

 -3.03×10
-8

 -1.64×10
-6

 

Case 3 

Finite 

difference 

method 

Δxi =1% 1.84×10
-7

 8.20×10
-7

 3.04×10
-8

 1.64×10
-6

 

Δxi 

=1×10
-4

 

% 
1.86×10

-7
 8.20×10

-7
 3.07×10

-8
 1.64×10

-6
 

Δxi 

=1×10
-10

 

% 

1.95×10
-7

 6.53×10
-7

 3.24×10
-8

 1.63×10
-6

 

Δxi 

=1×10
-13

 

% 

-3.25×10
-5

 8.11×10
-5

 -3.25×10
-8

 1.62×10
-4

 

Present 

work 

γ 1.85×10
-7

 8.20×10
-7

 2.99×10
-8

 1.64×10
-6

 

 γ=1 1.85×10
-7

 8.20×10
-7

 2.99×10
-8

 1.64×10
-6

 

 

 

numerical example is Δxi=1×10
-4

% where results calculated 

by the proposed method agrees well with almost all the 

sensitivities calculated by FDM under the three loading 

cases. By comparing with the analytical values, truncation 

errors still exist for 1% perturbation and the round-off 

errors are clearly visible when Δxi 
smaller than 1×10

-4
%. 

And when Δxi=1×10
-13

%, the computed gradient matrix is 

incorrect. The effectiveness of the FDM depends on the 

perturbation Δxi. For instance, the optimal perturbation is 

Δxi=1×10
-4

% in this numerical example, however, it will 

change and it is difficult to select for other functions and 

calculation point. On the other hand, the proposed method 

can compute the analytical values directly, which gives a 

better choice compared with FDM.  

In addition, the gradient matrix calculated with γ=1 is 

the same as that calculated with the actual γ determined by 

Eq. (30) from Case 3, this means that the self-weight of the 

hangers can be approximated by their deformed lengths 

during the gradient matrix derivation as for almost all 

suspension bridges the elongation of the hangers is small 

and the hangers should be in elastic state during operating 

period. The gradient matrix calculation procedure thus can 

be greatly simplified with γ
 
equals 1.    

f=
12

m

l=120m

3m

 

Fig. 5 A simplified cable structures 

 
Table 2 Material and cross-sectional properties of the bridge 

Structural member E (Gpa) A (m2) I (m4) w (kN/m) 

Main span cable 210 0.4 - 32.9 

Side span cable 210 0.41 - 33.8 

Hanger 210 0.025 - - 

Deck 210 0.5 1.66 72.4 

 
 
4. Numerical examples 
 

Great Belt suspension bridge (Kim and Lee 2001) and 

Yingwuzhou Yangtze River Bridge et al. 2013) are 

investigated in order to show the efficiency of the improved 

analytical form-finding method in determining the initial 

shape of suspension bridges.  

 

4.1 The Great Belt suspension bridge 
 
For Great Belt suspension bridge, form-finding analysis 

has been performed by (Karoumi 1999), Kim and Lee 

(2001), Kim and Kim (2012). Fig. 6 shows the TCUD 

parameters and node number of the simplified Great Belt 

suspension bridge where the superstructure is supported by 

a roller on the cross beam of the pylons. The main cable is 

connected to the stiffening girder at the center of the bridge. 

In Fig. 6, the nodal points 1, 9, and 21 represent the position 

of the left spray saddle, tower saddle, and sag point at the 

center span with the predetermined y-coordinate of 0.00 m, 

180.00 m and 0.001 m, respectively. Besides these, prior to 

a form-finding analysis, nodal coordinates for several 

structural points are also pre-determined for a target 

configuration as follows: 1) The hangers are vertically 

arranged and the camber of the deck girder was not 

considered; 2) The x-coordinates of nodal points at which 

the main cable and hangers interconnect are known; 3) The 

y-coordinates of nodal points at which the deck girder and 

hangers interconnect are 0.00 m. The other nodal 

coordinates are unknown parameters, for example, y-

coordinates of main cable for the node no. 2-8 and 10-20, 

which shall be determined by a form-finding analysis. 

Table 2 summarizes the material and cross-sectional 

properties of the bridge. As this bridge is an earth-anchored 

bridge, the axial forces and longitudinal displacement of the 

deck girder are not expected and the analytical method 

based form-finding analysis considers cable-only system, 

therefore the stiffness of the tower does not affect the form-

finding analysis result and the parameters about the tower 

were not listed. 

Table 3 summarizes the differences between the 

converged nodal coordinates of the main cable calculated 

by the proposed method, TCUD and I.TCUD methods. In 

Table 3, the third and the fourth columns were obtained 
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Table 4 Horizontal tension of the main cable (×10
6
N) 

Parameter TCUD I.TCUD Present work 

Horizontal tension of the main cable 194.00 193.75 193.69 

 

 

from Kim and Kim (2012). The results from these three 

methods agree well with each other. However, the TCUD 

and I.TCUD methods require proper initial configuration 

estimation for the main cable ahead to ensure the 

convergence of the implementation and lead to challenge in 

engineering application. The convergence of the proposed 

method is independent of the initial configuration of the 

main cable. Therefore, the proposed analytical method has 

obvious advantages. Since the proposed method divides the 

bridge into two substructures and the form-finding analysis 

only refers to the cable system, the shortening of the main 

tower induced by the cable force does not affect the vertical 

coordinates of the main cable. However, the results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

calculated by TCUD illustrate that the vertical deformation 

of the tower leading to the actual sag of the main cable is 

3.6 cm smaller than that of the other two methods. I.TCUD 

method can eliminate the deformation of the tower during 

the form-finding analysis by introducing initial force into 

the tower. The results calculated by the proposed method 

and I.TCUD agree well with each another. The maximum 

difference occurs at the two nodal points near the tower 

saddle with 3 mm. This difference may be resulted from 

that the proposed method is derived from the complete form 

of elastic catenary equations while the cable element in 

I.TCUD is derived from the linearized elastic catenary 

equations.  

Table 4 shows that the three methods provide consistent 

results for the horizontal tension of the main cable. The 

maximum horizontal tension of the main cable occurs in the 

TCUD method. As discussed above, TCUD cannot 

eliminate the vertical deformation of the tower, which  

535m 1624m 535m

0.00

180.00 180.00

0.000.001

1

2
3

4

9
10

8

21
20

 

Fig. 6 Geometric parameters of the simplified suspension bridge 

Table 3 Calculated nodal coordinates of the main cable 

 Node 

No. 
x (m) 

y (m) (3)-(1) (3)-(2) 
Remarks 

(1) By TCUD (2) By I.TCUD (3) Present work (m) (m) 

1 0.000 0.000 0.000 0.000 0.000 0.000 main cable anchor 

2 66.875 13.637 13.640 13.640 0.003 0.000 
 

3 133.750 29.967 29.973 29.974 0.007 0.001 
 

4 200.625 48.714 48.724 48.725 0.011 0.001 
 

5 267.500 69.961 69.975 69.976 0.015 0.001 
 

6 334.375 93.696 93.715 93.716 0.020 0.001 
 

7 401.250 119.935 119.959 119.961 0.026 0.002 
 

8 468.125 148.687 148.716 148.719 0.032 0.003 
 

9 535.000 179.964 180.000 180.000 0.036 0.000 tower saddle 

10 602.667 151.101 151.132 151.129 0.028 -0.003 
 

11 670.333 124.787 124.812 124.811 0.024 -0.001 
 

12 738.000 101.011 101.032 101.031 0.020 -0.001 
 

13 805.667 79.764 79.781 79.780 0.016 -0.001 
 

14 873.333 61.038 61.050 61.050 0.012 0.000 
 

15 941.000 44.824 44.833 44.833 0.009 0.000 
 

16 1008.667 31.116 31.122 31.123 0.007 0.001 
 

17 1076.333 19.908 19.912 19.913 0.005 0.001 
 

18 1144.000 11.196 11.198 11.198 0.002 0.000 
 

19 1211.667 4.976 4.977 4.977 0.001 0.000 
 

20 1279.333 1.244 1.245 1.245 0.001 0.000 
 

21 1347.000 0.001 0.001 0.001 0.000 0.000 sag point 
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implies the final mid-span sag will be smaller than the 

predetermined value as the tower deforms in vertical 

direction and leads to the increase in the horizontal force of 

the main cable.  

 

4.2 Yingwuzhou Yangtze River Bridge 
 
Yingwuzhou Yangtze River Bridge is employed to 

verify the applicability of the proposed method in large-

scale real engineering application. As shown in Fig. 7, 

Yingwuzhou Yangtze River Bridge is the 8
th

 bridge across 

the Yangtze River located in Wuhan with a span of 

(225+850+850+255) m. The total number of the hangers on 

each cable plane is 132, with 55 hangers in the main span 

and 11 hangers in each side span. Figure 8 shows the layout 

and number of the hangers. The cross sectional area, the 

cross sectional moment of transverse and vertical inertia of 

the stiffening girder are 1.563 m
2
, 207.598 m

4
, 1.105 m

4
, 

respectively. The cross sectional area and elastic modulus 

of the main cable are 0.296 m
2
, 2.05×10

11
 Pa, and the sag-

span ratio of the main cable in main span is 1/9. The 

coordinates of the saddles on the three towers are (0, 0, 

162.5), (±850, 0, 144.5) and that of the two anchors are 

(±1075, 0, 39.0). The dead load is 342.82 kN/m including 

the secondary dead load of 59.02 kN/m. 

Generally speaking, an ideal suspension bridge FE 

model should satisfy the following three requirements: (1) 

the bridge’s displacement under dead load equals to zero; 

(2) the calculated tension of the hangers should equal to that 

of the predetermined tension; (3) the calculated bending 

moment of the stiffness girder equals to that of calculated 

by the multi-support continuous beam model. In this 

analysis, these three points are considered as criterions to 

investigate the effectiveness of the proposed method. 

 

 

 

 

Fig. 10 Calculated displacement of the stiffening girder and 

main cable 

 

 

Fig. 9 shows the FE model of the Yingwuzhou Yangtze 

River Bridge developed by Midas/Civil. Midas/Civil 

supplies elastic catenary cable element recognized as the 

most accurate element type to simulate the nonlinear 

properties of the cable elements. However, unlike beam or 

truss element, users need to define the initial tension or 

unstrained length for each cable element to calculate its 

stiffness matrix, which means the accuracy of the FE model 

highly depends on these initial tensions or unstrained 

lengths. As shown in Fig. 9, the FE model of Yingwuzhou 

Yangtze River Bridge contains 1619 nodes and 1601 

elements, including 548 elastic catenary cable elements in 

total. The stiffness girder and tower are modeled by beam 

element while the main cable and the hangers utilize the 

catenary element. The nodal coordinate of the main cable 

and unstrained length of all catenary elements were 

calculated by the proposed form-finding approach. To 

eliminate the vertical deformation of the towers, proper 

initial forces equal to the internal forces induced by the  

 

Fig. 7 Yingwuzhou Yangtze River Bridge 

20+54@15+20=850 20+54@15+20=85040+11@15+20=225 20+11@15+40=225

13                                                                           671            12 68                                                                         122 123        134

 

Fig. 8 Elevation view of Yingwuzhou Yangtze River Bridge (units in meters) 

 

Fig. 9 The FE model of Yingwuzhou Yangtze River Bridge 
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main cable’s compression to the towers have been 

introduced to the corresponding elements. 

Fig. 10 demonstrates the displacement curves of the 

stiffening girder and main cable under dead load calculated 

from the FE model developed utilizing the results obtained 

by the form-finding analysis. The maximum displacement 

of the stiffening girder (smaller than 3 mm) occurs at the 

mid-span of each main span, and the maximum 

displacement of the main cable does not exceed 1 mm, 

which is much smaller compared with that of the stiffening 

girder. Fig. 11 shows the predetermined tensions of the odd 

numbered hangers from 1 to 67 calculated by the multi-

support continuous model and that calculated from the FE 

model under dead load. The vertical label on the left side in 

Fig. 11 denotes the tension of the hanger and that on the 

right side shows the ratio of the calculated tension to 

predetermined tension. The line shows the variation of the 

tension ratio varies with different hangers. It shows that the 

maximum error of calculated hanger tensions is smaller 

than 0.5% of the predetermined tensions. Fig. 12 compares 

the bending moment of the stiffening girder calculated by 

the FE model and those yielded by the multi-support 

continuous beam model and the results agree well with each 

other, and the maximum error between them are less than 

1.5%. 

To summarize, the proposed method performs well in 

real bridge model and agrees well with the three criterions. 

The proposed method is an analytical method, where all the 

cable members’ geometric parameters including nodal 

coordinates and unstrained lengths, were rigorously 

 

 

 

obtained from elastic catenary equations with no 

simplification in the deviation process. Meanwhile, the 

elastic catenary cable element supplied by Midas/Civil is 

derived from the linearized elastic catenary equations with 

neglecting the high-order terms of the equations that shall 

lead to errors between analytical method and FE method. 

Besides, the unavoidable error of the nonlinear solver of the 

FE software from round-off errors will also amplify these 

errors between the two different methods. In summary, the 

errors in the FE model developed by the proposed method 

are very small and acceptable and the form-finding method 

proposed in this paper can provide an accurate form-finding 

analysis result for suspension bridges. 

 

 

5. Conclusions 
 

This study addressed an explicit analytical iterative 

method for form-finding analysis in suspension bridge 

based on the gradient matrix derived from the differential 

form of the elastic catenary equations, where a sensitivity 

analysis is conducted for verification. Afterwards, two 

suspension bridges are investigated numerically to illustrate 

the accuracy and efficiency of the proposed form-finding 

analysis method. To conclude, following remarks can be 

obtained: 

(1) An improved form-finding method is developed for 

accurate unstrained lengths calculation for the hangers 

based on the conventional analytical form-finding 

method. The Jacobian matrix for gradient-based 

 

Fig. 12 Bending moment diagrams of the multi-support continuous beam and suspension bridge (kN.m) 

 

Fig. 11 Comparison of the calculated hanger tensions and the predetermined hanger tensions 
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iteration algorithms is derived in an explicit form to 

overcome the inherent defects of FDM. 

(2) The sensitivity analysis demonstrates that the 

gradient matrices calculated by the proposed method 

and by FDM with proper perturbations are consistent. 

The proposed method directly derives the accurate 

Jacobian matrix while FDM suffers both truncations 

errors and round-off errors.  

(3) In the first example, the cable coordinates and 

horizontal tensions comparison between those obtained 

by the proposed analytical method and those derived by 

two NFEM-based form-finding methods confirms the 

accuracy and efficiency of the proposed method. The 

proposed method avoids the unfavorable influence 

induced by the shortening of towers compared with 

TCUD while the final results evaluated by it agrees well 

with those derived by I.TCUD. 

(4) The proposed methodology shows capacity in the 

application of large-scale practical engineering 

structures from Yingwuzhou Yangtze River Bridge 

nonlinear FE analysis. In comparison with the 

fundamental criterions for suspension bridge, the 

maximum displacement error is smaller than 3 mm and 

the maximum relative error of hanger tensions and 

bending moment for the stiffening girder do not exceed 

0.5% and 1.5%, respectively, which implies that the 

proposed method satisfies the requirements in 

engineering practice. 

(5) The proposed method might be easily extended to 

spatial-shape cable from plane-shape cable and self-

anchor suspension bridges that gives a promising future 

in real engineering application. 
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