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1. Introduction  
 

The vibration analysis of fluid conveying pipelines play 

a very important role in the engineering fields, such as, oil 

transportation, nuclear plant, municipal water supply, 

aviation, cosmonautics, etc. Therefore, natural frequencies, 

modes and critical fluid velocity of the pipelines became a 

hot topic and several studies on vibrations of fluid 

conveying pipelines have been reported. Chellapilla et al. 

(2007) obtained the critical velocity of a fluid flowing in a 

pipeline and resting on the Pasternak foundation by using 

Fourier series and Galerkin methods. Tong et al. (2007) 

investigated  the  vibration  and  acoustic  radiation 

characteristics of a submerged structure using direct-

boundary element method and finite elements method. In 

the other study, in-plane vibrations of curved pipes 

conveying fluid are investigated using the generalized 

differential quadrature rule proposed by Wang and Qiao 

(2008). Chang and Lee (2009) studied on free vibration of a 

single-walled carbon nanotube containing a fluid flow using 

the Timoshenko beam model. Lee et al. (2009) investigated 
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the wave characteristics, divergence stability and dynamics 

of the oil pipelines conveying internal flow by using the 

spectral element method. The natural frequency of fluid-

structure interaction in pipeline conveying fluid is 

investigated using eliminated element-Galerkin method, 

and the natural frequency equations with different boundary 

conditions are obtained by Yi-min et al. (2010). Kubenko et 

al. (2011) analyzed the effect of external static loading 

(uniform radial pressure and axial compression) on the 

buckling of cylindrical shells interacting with the fluid 

flowing inside. Ni et al. (2011) analyzed the free vibration 

problem of Euler-Bernoulli pipes conveying fluid with 

several typical boundary conditions by using Differential 

Transform Method. In this study, Euler-Bernoulli beam 

theory is used, but rotary inertia and transverse shear 

deformation are not taken into account by the authors.  In 

the other study, the natural frequency equations of fluid-

structure interaction in pipeline conveying fluid with both 

ends supported is investigated using a direct method, and 

the direct method is derived from Ferrari’s method by Yi-

min et al. (2012). Dai et al. (2012) studied on the vibration 

analysis of three-dimensional pipes conveying fluid with 

consideration of steady combined force by transfer matrix 

method. In the other paper, dynamic response of a clamped-

clamped pipe conveying fluid is solved using the 

generalized integral transform technique by Gu et al. 

(2013). Kheiri et al. (2014) developed a general linear 

theoretical model for dynamics of a pipe conveying fluid 

flexibly restrained at both ends, allowing them to 

conveniently study the dynamics of pipes with both 
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classical and non-classical boundary conditions. 

DTM was applied to solve linear and non-linear initial 

value problems and partial differential equations by many 

researches. The concept of DTM was first introduced by 

Zhou (1986) and he used DTM to solve both linear and 

non-linear initial value problems in electric circuit analysis. 

Ç atal (2006, 2008) suggested DTM for the free vibration 

analysis of both ends simply supported and one end fixed, 

the other end simply supported Timoshenko beams resting 

on elastic soil foundation. Ç atal and Ç atal (2006) calculated 

the critical buckling loads of partially embedded 

Timoshenko pile in elastic soil by DTM. Arikoglu and 

Ozkol (2010) investigated the vibration analysis of a three 

layered composite beam with a viscoelastic core by using 

DTM. The effects of loading on the optimal shape of an 

Euler-Bernoulli column was investigated by Erdönmez and 

Ö zkol (2010) considering four loading conditions which are 

mainly classified as eccentric compressive and using DTM. 

In the other studies, Yesilce investigated the free vibration 

analysis of moving Bernoulli-Euler and Timoshenko beams 

by using DTM (2010, 2013). Lal and Ahlawat (2015) 

investigated axisymmetric vibrations and buckling analysis 

of functionally graded circular plates subjected to uniform 

in-plane force using DTM. In the other study, nonlocal 

Euler-Bernoulli beam theory was employed for vibration 

analysis of functionally graded size-dependent nanobeams 

using Navier-based analytical method and a semi analytical 

DTM by Ebrahimi and Salari (2015). Yesilce (2015) 

described the determination of the natural frequencies and 

mode shapes of the axial-loaded Timoshenko multiple-step 

beam carrying a number of intermediate lumped masses and 

rotary inertias by using Numerical Assembly Technique and 

DTM. Aydin and Bozdogan (2016) applied DTM to obtain 

critical buckling load of multistorey structures. Bozyigit 

and Yesilce (2016) investigated free vibrations of moving 

Reddy-Bickford beams for different support conditions and 

velocity values using dynamic stiffness method and 

differential transformation.  

ADM was studied to solve partial differential equations 

by many researches. The concept of ADM was first 

introduced by Adomian (1986, 1994). Hsu et al. (2008, 

2009) investigated free vibration of non-uniform Euler-

Bernoulli beams with general elastically end constraints and 

uniform Timoshenko beams under various supporting 

boundary conditions using Adomian modified 

decomposition method. The design of shaped piezoelectric 

modal sensor for beam with arbitrary boundary conditions 

using ADM was studied by Mao and Pietrzko (2010a). In 

the other study, Sweilam and Khader (2010) studied on 

approximate solutions to the nonlinear vibrations of 

multiwalled carbon nanotubes by using ADM. ADM was 

employed to investigate the free vibrations of a stepped 

Euler-Bernoulli beam consisting of two uniform sections by 

Mao and Pietrzko (2010b). In the other study, Mao (2011) 

investigated the free vibrations of the Euler-Bernoulli 

beams with multiple cross-section steps by using ADM. In 

the other study, Mao and Pietrzko (2012) studied on the free 

vibrations of tapered Euler-Bernoulli beams with a 

continuously exponential variation of width and a constant 

thickness along the length under various boundary 

conditions by using ADM. ADM was employed to 

investigate the free vibrations of elastically connected 

parallel Euler-Bernoulli beams by Mao (2012). Tapaswini 

and Chakraverty (2014) studied on the dynamic response of 

imprecisely defined beam subject to various loads using 

ADM. In the other study, Mao (2015) investigated the free 

vibration of rotating Euler-Bernoulli beams with the 

thickness and/or width of the cross-section vary linearly 

along the length by using Adomian modified decomposition 

method. Jamali et al. (2016) used domain decomposition 

method for buckling analysis of nanocomposite cut out 

plates.  

Since previous studies have shown DTM and ADM to 

be the efficient tools and they have been applied to solve 

boundary value problems for many differential equations 

that are very important in fluid mechanics, viscoelasticity, 

control theory, acoustics, etc. Besides the variety of the 

problems to DTM and ADM may be applied, their accuracy 

and simplicity in calculating the natural frequencies and 

plotting the mode shapes makes these methods outstanding 

among many other methods.   

The free vibration analysis of simply supported, one end 

fixed, the other end simply supported and fixed-fixed 

supported Timoshenko pipeline fluid conveying is 

performed in this study. At the beginning of the study, the 

governing equations of motion are obtained. In the next 

step, the equations of motion, including the parameter for 

the nondimensionalized multiplication factors for the fluid 

velocity, are solved using the efficient mathematical 

techniques, called DTM and ADM. The natural frequencies 

of Timoshenko pipelines fluid conveying and the critical 

fluid velocity are calculated, the first five mode shapes are 

plotted and the effects of the parameter for the 

nondimensionalized multiplication factor for the fluid 

velocity and the length of the pipelines are investigated. A 

suitable example that studies the effects of parameter for the 

nondimensionalized multiplication factors for the fluid 

velocity and the length of the pipelines on the free vibration 

analysis of Timoshenko pipelines fluid conveying using 

DTM and ADM has not been investigated by any of the 

studies in open literature so far.  
 

 

2. The mathematical model and formulation 
 

A uniform Timoshenko pipeline conveying fluid is 

presented in Fig. 1. The Timoshenko beam theory, which is 

taken rotary inertia and transverse shear deformation into 

account, is applied to analyze the flexural vibration of the 

fluid conveying Timoshenko pipeline. The governing 

equations of Timoshenko beam are two coupled differential 

equations expressed in terms of the flexural displacement 

and the angle of rotation due to bending. The coupled 

equations for Timoshenko pipeline conveying fluid are 

(Vedula 1999) 
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Fig. 1 Timoshenko pipeline conveying fluid 
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where y(x,t) is the total transverse deflection, ϕ(x,t) is the 

angle of rotation due to bending, mp is mass per unit length 

of the pipe, mf is mass per unit length of the fluid, m is total 

mass per unit length (m=mp+mf), L is length of the pipe, A is 

the cross-section area [A=π·(D
2
−d

2
)/4], here, D and d are  

the outer and inner diameter of pipe, respectively, k  is the  

shear coefficient  2 1 / 4 3k      
,here, μ is the 

Possion ratio, I is moment of inertia of the pipe 

[I=π·(D
2
−d

2
)/64], V is the fluid velocity, E, G are Young’s 

modulus and shear modulus of the pipe, respectively, x is 

the pipe position, t is time variable. 

The bending moment function M(x,t) and the shear force 

function T(x,t) of the fluid conveying Timoshenko pipeline 

are written as 
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where γ(x,t) is the associated shearing deformation. 

Assuming that the motion is harmonic we substitute for 

y(z,t) and ϕ(z,t) the following 

   , i ty z t y z e                 (5) 

     , 0 1i tz t z e z              (6) 

where y(z) and ϕ(z) are the amplitudes of the total 

transverse deflection and the angle of rotation due to 

bending, respectively; ω is the natural circular frequency of 

the vibrating system and 1i . Eqs. (1)-(2) can be 

converted into the ordinary differential equations by using 

Eqs. (5)-(6) as 
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where 
L

x
z  . 

It is assumed that the solution is 

  iszy z C e                 (9) 
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and substituting Eqs. (9)-(10) into Eqs. (7)-(8) results 
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Eqs. (11)-(12) can be written in matrix form for the two 

unknowns P and C as 
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and the non-trivial solution will be when the determinant of 

the coefficient matrix will be zero. Thus, we have a fourth-

order equation with the unknowns, resulting in four values 

and the general solution functions can be written as: 
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The eight constants, C1, ..., C4 and P1, ..., P4 will be 

found from Eqs. (11), (12) and boundary conditions. 

The bending moment and shear force functions of the 

fluid conveying Timoshenko pipeline can be obtained by 

using Eqs. (3)-(4) as 
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Table 1 DTM theorems used for equations of motion 

Original Function Transformed Function 
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3. Differential Transform Method (DTM) 
 

DTM is a semi-analytic transformation technique based 

on Taylor series expansion and is a useful tool to obtain 

analytical solutions of the differential equations. Certain 

transformation rules are applied and the governing 

differential equations and the boundary conditions of the 

system are transformed into a set of algebraic equations in 

terms of the differential transforms of the original functions 

in DTM. The solution of these algebraic equations gives the 

desired solution of the problem. High-order Taylor series 

method differs from DTM as Taylor series method requires 

symbolic computation of the necessary derivatives of the 

data functions and is impractical for large orders. DTM is 

an iterative procedure to obtain analytic Taylor series 

solutions of differential equations (Yesilce 2015).  

A function y(z), which is analytic in a domain D, can be 

represented by a power series with a center at z=z0, any 

point in D. The differential transform of the function y(z) is 

given by 
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where y(z) is the original function and Y(k) is the 

transformed function. The inverse transformation is defined 

as 
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Eq. (23) implies that the concept of the differential 

transformation is derived from Taylor’s series expansion, 

but the method does not evaluate the derivatives 

symbolically. However, relative derivative are calculated by 

iterative procedure that are described by the transformed 

equations of the original functions. In real applications, the 

function y(z) in Eq. (22) is expressed by a finite series and 

can be written as 
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Table 2 DTM theorems used for boundary conditions 
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Eq. (24) implies that 0
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 is negligibly 

small. Where N  is series size and the value of N  

depends on the convergence of the eigenvalues. 

Theorems that are frequently used in differential 

transformation of the differential equations and the 

boundary conditions are introduced in Table 1 and Table 2, 

respectively. 

 

3.1 Using differential transformation to solve motion 
equations 

 
Eqs. (7)-(8) can be rewritten as follows 
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where  

fm
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EI
    ;(Nondimensionalized multiplication factor 

for the fluid velocity)             (27) 

The differential transform method is applied to Eqs. 

(25)-(26) by using the theorems introduced in Table 1 and 

the following expressions are obtained 

 
 

 
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 

 

   
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1 2

fi k L m EI Y k
Y k

AG L k EI k

kAG L

AG L k EI k

Y km k L

AG L k EI k k

       
   

      

  
  

     

   
  

       
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fi k L m EI Y k
Y k

AG L k EI k

kAG L

AG L k EI k

Y km k L

AG L k EI k k

       
   

      

  
  

     

   
  

         

(28) 

 
 

 

 

   

2 22

1
2

2

1 2

p

Y kAG L
k

EI k k

m I L kAG L

EI k EI A k k

 
       

    
   

      

  (29) 

where Y(k) is the transformed function of y(z) and Φ(k) is 

the transformed function of ϕ(z). 

The boundary conditions of a simply supported fluid 

conveying Timoshenko pipeline are given below 

 0 0y z                  (30a) 

 0 0M z                  (30b) 

 1 0y z                   (30c) 

 1 0M z                  (30d) 

Applying the differential transform method to Eqs. 

(30a)-(30d) and using the theorems introduced in Table 2, 

the transformed boundary conditions of a simply supported 

pipeline are obtained as 

for z = 0; 

   0 1 0Y                 (31a) 

for z = 1; 

   
0 0

0
N N

k k

Y k M k

 

 

              (31b) 

where  kM  is the transformed function of M(z). 

The boundary conditions of a fixed-fixed fluid 

conveying Timoshenko pipeline are given below 

 0 0y z                 (32a) 

 0 0z                 (32b) 

 1 0y z                  (32c) 

 1 0z                  (32d) 

Applying the differential transform method to Eqs. 

(32a)-(32d), the transformed boundary conditions of a 

fixed-fixed pipeline are obtained as 

for z = 0; 

   0 0 0Y                (33a) 

for z = 1; 

   
0 0

0
N N

k k

Y k k

 

 

               (33b) 

The boundary conditions of one end (z=0) fixed and the 

other end (z=1) simply supported Timoshenko pipeline are 

given below 

 0 0y z                  (34a)  

 0 0z                  (34b) 

 1 0y z                   (34c) 

 1 0M z                  (34d) 

Applying the differential transform method to Eqs. 

(34a)-(34d), the transformed boundary conditions of one 

end fixed and the other end simply supported pipeline are 

obtained as 

for z = 0; 

   0 0 0Y                (35a) 

for z = 1; 

   
0 0

0
N N

k k

Y k M k

 

 

             (35b) 

For simply supported pipeline, substituting the boundary 

conditions expressed in Eqs. (31a)-(31b) into Eqs. (28)-

(29), and taking Y(1)=c1, Φ(0)=c2; for fixed-fixed supported 

pipeline, substituting the boundary conditions expressed in 

Eqs. (33a)-(33b) into Eqs. (28)-(29), and taking Y(1)=c1, 

Φ(1)=c2; for one end fixed and the other end simply 

supported pipeline, substituting the boundary conditions 

expressed in Eqs. (35a)-(35b) into Eqs. (28)-(29), and 

taking Y(1)=c1, Φ(1)=c2; the following matrix expression is 

obtained 

   

   

( ) ( )

11 12 1

( ) ( ) 2
21 22

0

0

N N

N N

A A c

c
A A

 

 

 
      

         
     

      

      (36) 

where c1 and c2 are constants and  )(
1



N
jA ,  )(

2



N
jA  

(j=1, 2) are polynomials of ω corresponding N . 

In the last step, for non-trivial solution, equating the 

coefficient matrix that is given in Eq. (36) to zero one 

determines the natural frequencies of the vibrating system 

as is given in Eq. (37).  

   

   

( ) ( )

11 12

( ) ( )

21 22

0

N N

N N

A A

A A

 

 

 



 

            (37) 

The j
th

 estimated eigenvalue, )(


N
j

 
corresponds to N

and the value of N is determined as 

( ) ( 1)N N

j j

 

                  (38) 

where 
)1( 



N
j  is the j

th
 estimated eigenvalue corresponding 

69



 

Baran Bozyigit, Yusuf Yesilce and Seval Catal 

to ( N −1) and ε is the small tolerance parameter. If Eq. (38) 

is satisfied, the j
th

 estimated eigenvalue, )(


N
j

 
is obtained.  

The procedure that is explained below can be used to 

plot the mode shapes of fluid conveying Timoshenko 

pipeline. The following equalities can be written by using 

Eq. (36) 

   11 1 12 2 0A c A c               (39) 

Using Eq. (39), the constant c2 can be obtained in terms 

of c1 as follows 

 

 
11

2 1

12

A
c c

A


  


             (40) 

All transformed functions can be expressed in terms of 

ω, c1 and c2. Since c2 has been written in terms of c1 above, 

Y(k), Φ(k) and  kM  can be expressed in terms c1 and ω 

as follows 

   1,Y k Y c               (41a) 

   1,k c                (41b) 

   1,M k M c               (41c) 

The constants c1 and c2 cannot be calculated directly. To 

plot the mode shapes, the value of one of the constants is 

assumed as a nonzero value. For instance, c2 is equated to 1 

and the second row and second column of the coefficient 

matrix are erased. The reduced matrix is multiplied by 

reduced vector of constants to obtain other constant. After 

computation of c1 and knowing that c2 equals 1, the 

displacement function is constructed. The mode shapes can 

be easily plotted by using Eq. (41.a) for different natural 

frequency values and axial coordinates. 

 
 
4. Adomian Decomposition Method (ADM) 

 
According to ADM, we consider the differential 

equation, in the operator form 

       L u R u N u g z           (42) 

when N  is a non-linear operator, L  is the highest-order 

derivative which is assumed to be invertible [if differential 

equation describes by M order, where the differential 

operator L  is given by  
 

M

M

dx

d
L


 ], R is a linear 

differential operator of less order than L  and g is the 

source term. The method is based on applying the inverse 

operator 
1

L  is therefore considered a M-fold integral 

operator defined by      


z z z

dzdzdzL
0 0 0

1

**   in Eq. 

(42) to be expressed by 

       1 1 1 1L L u L g L R u L N u           (43) 

For the initial value problem, 1L  can be an integral 

operator defined from t0 to t, for the boundary value 

problems, undefined integration is used and integration 

constants are encountered. The integration constants are 

found by applying boundary conditions. 

Non-linear term is defined as   





0n

nAuN

 

where 







0n

nuu , and the components of An are so-called 

Adomian polynomials, Ai depends on u0, u1, …, ui only (∀i), 

as follows (Wazwaz 1998, 1999, 2000) 

 

 

 
   

   
   

     
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1 1 0

2

1 0

2 2 0

3

1 0

3 3 0 1 2 0

1 1 1

2

6

A F u

A u F u

u F u
A u F u

u F u
A u F u u u F u

u A B t L g L R u L N u  



 


  


      

     

  (44) 

is found. 

 

4.1 Using ADM to solve motion equations  
 

By using Eqs. (25)-(26), the equation of motion can be 

rewritten in terms of y(z) as 

 
 

 
 

 
 

 
 

   

4 3

4 3

2

2

0

d y z d y z
A F B F

dz dz

d y z
A H F C E D

dz

dy z
B H C H y z

dz

    

      

      

      (45) 

where 

2

2 2

fm VAG
A

k L L


 


            (46a) 

2 fm i V
B

L

  
              (46b) 

2C m                  (46c) 

AG
D E

k L
   


              (46d) 

2

EI
F

L
                  (46e) 

2

pm I AG
H

A k

 
              (46f) 

Similarly, by using Eqs. (25)-(26), ϕ(z) can be written in 

terms of y(z) as 
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 
   

 

3 2

3 2

d y z d y zA F B F
z

D H dz D H dz

dy zC F E

D H H dz

    
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   

 
   

 

  (47) 

Eq. (45) can be rewritten as 

   

 
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    (48) 

The inverse operator 1L , where the inverse operator is 

    
z z z z

dzdzdzdz

0 0 0 0

* , is applied to both sides of Eq. (48) 

following expression is obtained 
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(49) 

If desired solution function instead of the series 

expansions of the solution function is obtained in writing 

the following equation 

    
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n

n

y z y z
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Eq. (50) is substituted in Eq. (49), it is obtained 
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ADM is applied to Eq. (51) by using the inverse 

operator, following steps are obtained 

for n=0; 
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for n ≥0; 
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  (53) 

Terms derived from Eqs. (52)-(53), the desired function 

is obtained when the solution is placed in the Eq. (50). 

We may approximate the above solution by the K-term 

truncated series, Eq. (50) can be rewritten as 

   
1

0

K

n

n

y z y z




                (54) 

Eq. (54) implies that  


Kn

n zy

 

is negligibly small. The 

number of the series summation limit K is determined by 

convergence requirement in practice.  

From the boundary conditions of a simply supported 

Timoshenko pipeline, we get the conditions below 

   0 0 0 0y z y               (55) 

From the conditions M(z=0)=0, y(z=1)=0 and M(z=1)=0, 

we get the three equations which are depend on y′(0), y′′(0) 

and y′′′(0) terms. Solving three equations are found y′(0), 

y′′(0) and y′′′(0) terms. Finally, putting these terms in Eq. 

(54), desired solution is found. Consequently, the boundary 

value problem solution is obtained by converting the initial 

value problem. 
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From the boundary conditions of one end (z=0) fixed 

and the other end (z=1) simply supported Timoshenko 

pipeline 

   0 0 0 0y z y             (56) 

is obtained. 

From the conditions ϕ(z=0)=0, y(z=1)=0 and M(z=1)=0, 

we get the three equations which are depend on y′(0), y′′(0) 

and y′′′(0) terms. Solving three equations are found y′(0), 

y′′(0) and y′′′(0) terms. Thus, putting these terms in Eq. (54), 

solution is found for the boundary conditions of one end 

(z=0) fixed and the other end (z=1) simply supported 

Timoshenko pipeline.  

From the boundary conditions of a fixed-fixed 

supported Timoshenko pipeline, we get the condition below 

   0 0 0 0y z y             (57)  

From the conditions ϕ(z=0)=0, y(z=1)=0 and ϕ(z=1)=0, 

we get the three equations which are depend on y′(0), y′′(0) 

and y′′′(0) terms. Solving three equations are found y′(0), 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

y′′(0) and y′′′(0) terms. Thus, putting these terms in Eq. (54), 

solution is found for the boundary conditions of a fixed-

fixed supported Timoshenko pipeline.   

 

 

5. Numerical analysis and discussions 
 

In this paper; the simply supported, the fixed-fixed 

supported and one end fixed, the other end simply 

supported fluid conveying Timoshenko pipelines are 

considered for numerical analysis. The first five natural 

frequencies, ωi (i = 1,…,5) of Timoshenko pipelines are 

calculated by using computer programs prepared in Matlab 

by the authors. Natural frequencies are found by 

determining values for which the determinant of the 

coefficient matrix is equal to zero.  

The numerical results of this paper are obtained based 

on uniform Timoshenko pipelines with the following data 

as: 

mf = 0.277 kN.sec
2
/m; mp = 0.311 kN.sec

2
/m; D=720 mm; 

Table 3 The first five natural frequencies of the simply supported fluid conveying Timoshenko 

pipeline for different values of L and α 

L (m) 
ωα 

(rad/sec) 
METHOD 

α 

0.00 0.25 0.50 0.75 

3.0 

ω1 
DTM, ADM 552.2780 549.7708 542.2060 529.4496 

ANM 552.2780 549.7708 542.2060 529.4496 

ω2 
DTM, ADM 1743.2269 1740.0957 1730.6831 1714.9324 

ANM 1743.2269 1740.0957 1730.6831 1714.9324 

ω3 
DTM, ADM 3091.3681 3086.9946 3073.8554 3051.8954 

ANM 3091.3681 3086.9946 3073.8554 3051.8954 

ω4 
DTM, ADM 4452.6499 4446.8753 4429.5286 4400.5407 

ANM 4452.6499 4446.8753 4429.5286 4400.5407 

ω5 
DTM, ADM 5798.9734 5791.7543 5770.0697 5733.8364 

ANM 5798.9734 5791.7543 5770.0697 5733.8364 

5.0 

ω1 
DTM, ADM 213.6885 212.8658 210.3849 206.2053 

ANM 213.6885 212.8658 210.3849 206.2053 

ω2 
DTM, ADM 761.4476 760.6098 758.0929 753.8875 

ANM 761.4476 760.6098 758.0929 753.8875 

ω3 
DTM, ADM 1483.5996 1482.5748 1479.4981 1474.3633 

ANM 1483.5996 1482.5748 1479.4981 1474.3633 

ω4 
DTM, ADM 2276.2921 2275.0144 2271.1791 2264.7798 

ANM 2276.2921 2275.0144 2271.1791 2264.7798 

ω5 
DTM, ADM 3091.3681 3089.8029 3085.1049 3077.2671 

ANM 3091.3681 3089.8029 3085.1049 3077.2671 

7.0 

ω1 
DTM, ADM 111.4726 111.0646 109.8342 107.7618 

ANM 111.4726 111.0646 109.8342 107.7618 

ω2 
DTM, ADM 417.4662 417.0848 415.9390 414.0252 

ANM 417.4662 417.0848 415.9390 414.0252 

ω3 
DTM, ADM 857.1313 856.7046 855.4239 853.2872 

ANM 857.1313 856.7046 855.4239 853.2872 

ω4 
DTM, ADM 1374.4353 1373.9360 1372.4377 1369.9388 

ANM 1374.4353 1373.9360 1372.4377 1369.9388 

ω5 
DTM, ADM 1931.9382 1931.3492 1929.5818 1926.6344 

ANM 1931.9382 1931.3492 1929.5818 1926.6344 
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d=600 mm; 𝜇 = 0.30; EI = 190955.1031 kN.m
2 
; 

AG = 1337782.705 kN; 55.1k ; L = 3.0 m, 

5.0 m and 7.0 m; 𝛼 = 0.00, 0.25, 0.50 and 0.75 

Using DTM and ADM, the frequency values of the 

simply supported Timoshenko pipeline for the first five 

modes are presented in Table 3, the first five frequency 

values of one end fixed, the other end simply supported 

Timoshenko pipeline are presented in Table 4 and the fixed-

fixed Timoshenko pipeline’s the first five frequency values 

are presented in Table 5 being compared with the frequency 

values obtained by using analytical method for the different 

values of the nondimensionalized multiplication factor for 

the fluid velocity and the length of the pipeline. 

For L=7.0 m and 𝛼=0.75; Fig. 2 shows the first five 

mode shapes of Timoshenko pipeline with simply supported 

boundary condition, Fig. 3 shows the first five mode shapes 

of Timoshenko pipeline with one end fixed, the other end 

simply supported boundary condition and Fig. 4 shows the 

first five mode shapes of Timoshenko pipeline with fixed- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

fixed boundary condition. 

For all boundary conditions, as the nondimensionalized 

multiplication factor for the fluid velocity is increased for 

the other variable (L) is being constant, the natural 

frequency values of all fluid conveying Timoshenko 

pipelines decreased. This result indicates that, the 

increasing for the fluid velocity leads to reduction in natural 

frequency values for all boundary conditions. This result is 

very important for the effect of the fluid velocity. 

A decrease is observed in natural frequency values of all 

fluid conveying Timoshenko pipelines for the condition of α 

being constant and the values of the length of the pipeline 

are increased. This result indicates that, the increasing for 

the length of the pipeline leads to reduction in natural 

frequency values for all boundary conditions.  

In application of DTM, the natural frequency values of 

the fluid conveying Timoshenko pipelines are calculated by 

increasing series size N . For simply supported and fixed-

fixed supported Timoshenko pipelines, when the series size 

is taken 60; for one end fixed, the other end simply  

Table 4 The first five natural frequencies of one end fixed, the other end simply supported fluid  

conveying Timoshenko pipeline for different values of L and α 

L (m) 
ωα  

(rad/sec) 
METHOD 

α 

0.00 0.25 0.50 0.75 

3.0 

ω1 
DTM, ADM 745.0523 742.8703 736.3021 725.2804 

ANM 745.0523 742.8703 736.3021 725.2804 

ω2 
DTM, ADM 1884.8044 1881.8485 1872.9653 1858.1084 

ANM 1884.8044 1881.8485 1872.9653 1858.1084 

ω3 
DTM, ADM 3166.4095 3162.1124 3149.2050 3127.6387 

ANM 3166.4095 3162.1124 3149.2050 3127.6387 

ω4 
DTM, ADM 4489.0713 4483.3710 4466.2464 4437.6262 

ANM 4489.0713 4483.3710 4466.2464 4437.6262 

ω5 
DTM, ADM 5814.8697 5807.7005 5786.1679 5750.1962 

ANM 5814.8697 5807.7005 5786.1679 5750.1962 

5.0 

ω1 
DTM, ADM 312.4215 311.7428 309.7013 306.2803 

ANM 312.4215 311.7428 309.7013 306.2803 

ω2 
DTM, ADM 878.9420 878.1767 875.8785 872.0415 

ANM 878.9420 878.1767 875.8785 872.0415 

ω3 
DTM, ADM 1580.3295 1579.3412 1576.3745 1571.4243 

ANM 1580.3295 1579.3412 1576.3745 1571.4243 

ω4 
DTM, ADM 2344.8902 2343.6378 2339.8786 2333.6067 

ANM 2344.8902 2343.6378 2339.8786 2333.6067 

ω5 
DTM, ADM 3137.1042 3135.5580 3130.9171 3123.1750 

ANM 3137.1042 3135.5580 3130.9171 3123.1750 

7.0 

ω1 
DTM, ADM 167.9129 167.5827 166.5896 164.9263 

ANM 167.9129 167.5827 166.5896 164.9263 

ω2 
DTM, ADM 499.2323 498.8913 497.8673 496.1584 

ANM 499.2323 498.8913 497.8673 496.1584 

ω3 
DTM, ADM 940.8361 940.4316 939.2177 937.1929 

ANM 940.8361 940.4316 939.2177 937.1929 

ω4 
DTM, ADM 1447.2125 1446.7278 1445.2735 1442.8481 

ANM 1447.2125 1446.7278 1445.2735 1442.8481 

ω5 
DTM, ADM 1989.9701 1989.3918 1987.6561 1984.7618 

ANM 1989.9701 1989.3918 1987.6561 1984.7618 
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Fig. 2 The first five mode shapes of the simply supported 

fluid conveying Timoshenko pipeline, L=7.00 m and 

α=0.75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The first five mode shapes of one end fixed, the 

other end simply supported fluid conveying           

Timoshenko pipeline, L=7.00 m and α =0.75 
 

Table 5 The first five natural frequencies of the fixed-fixed fluid conveying Timoshenko 

pipeline for different values of L and α 

L (m) 
ωα 

(rad/sec) 
METHOD 

α 

0.00 0.25 0.50 0.75 

3.0 

ω1 
DTM, ADM 939.8725 937.8720 931.8561 921.7809 

ANM 939.8725 937.8720 931.8561 921.7809 

ω2 
DTM, ADM 2004.6776 2001.8982 1993.5468 1979.5836 

ANM 2004.6776 2001.8982 1993.5468 1979.5836 

ω3 
DTM, ADM 3238.4886 3234.1997 3221.3203 3199.8119 

ANM 3238.4886 3234.1997 3221.3203 3199.8119 

ω4 
DTM, ADM 4522.3483 4516.7935 4500.0980 4472.1684 

ANM 4522.3483 4516.7935 4500.0980 4472.1684 

ω5 
DTM, ADM 5832.7115 5825.4276 5803.5826 5767.1884 

ANM 5832.7115 5825.4276 5803.5826 5767.1884 

5.0 

ω1 
DTM, ADM 421.3659 420.7832 419.0323 416.1051 

ANM 421.3659 420.7832 419.0323 416.1051 

ω2 
DTM, ADM 987.8029 987.0949 984.9683 981.4197 

ANM 987.8029 987.0949 984.9683 981.4197 

ω3 
DTM, ADM 1669.7206 1668.7569 1665.8644 1661.0389 

ANM 1669.7206 1668.7569 1665.8644 1661.0389 

ω4 
DTM, ADM 2408.9821 2407.7529 2404.0634 2397.9079 

ANM 2408.9821 2407.7529 2404.0634 2397.9079 

ω5 
DTM, ADM 3180.8191 3179.2881 3174.6932 3167.0282 

ANM 3180.8191 3179.2881 3174.6932 3167.0282 

7.0 

ω1 
DTM, ADM 233.4623 233.1869 232.3595 230.9769 

ANM 233.4623 233.1869 232.3595 230.9769 

ω2 
DTM, ADM 579.8212 579.5115 578.5821 577.0316 

ANM 579.8212 579.5115 578.5821 577.0316 

ω3 
DTM, ADM 1020.3629 1019.9751 1018.8114 1016.8706 

ANM 1020.3629 1019.9751 1018.8114 1016.8706 

ω4 
DTM, ADM 1515.7182 1515.2457 1513.8278 1511.4632 

ANM 1515.7182 1515.2457 1513.8278 1511.4632 

ω5 
DTM, ADM 2044.9414 2044.3720 2042.6631 2039.8136 

ANM 2044.9414 2044.3720 2042.6631 2039.8136 
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Fig. 4 The first five mode shapes of the fixed-fixed fluid 

conveying Timoshenko pipeline, L=7.00 m and α=0.75 
 

 

supported Timoshenko pipeline, when the series size is 

taken 62, the natural frequency values of the first five 

modes can be appeared in application of DTM. 

Additionally, here it is seen that higher modes appear when 

more terms are taken into account in DTM applications. 

Thus, depending on the order of the required mode, one 

must try a few values for the term number at the beginning 

of the calculations in order to find the adequate number of 

terms. 

Similarly, the natural frequency values of the fluid 

conveying Timoshenko pipelines are calculated by 

increasing series size K, in application of ADM. For all 

boundary conditions, when the series size is taken as 26, the 

natural frequency values of the first five modes of the fluid 

conveying Timoshenko pipelines can be appeared in 

application of ADM. When more terms are taken into 

account in ADM applications, the natural frequencies of the 

following modes can be appeared.     

For the different values of α and L, the variations of the 

first frequency factors 
2 4

14
1

m L

EI

  
  
  

  for the 

simply supported, one end fixed, the other end simply 

supported  and fixed-fixed boundary conditions are 

presented in Fig. 5(a), Fig. 5(b) and Fig. 5(c), respectively. 

For all boundary conditions, Figs. 5(a)-(c) show the first 

natural frequency as function of the fluid velocity, for the 

different values of the length of the pipelines. It must be 

stressed that the divergence instability that corresponds to 

the critical fluid velocity at which the natural frequency 

tends to zero is based on Timoshenko beam theory whose 

validity in the vicinity of the instability may become 

questionable. Nevertheless, the extrapolated value of the 

critical fluid velocity computed from the linear theory 

provides useful information as an indicative towards 

capturing the instability.  

In this numerical analysis, for the different values of the 

length of the pipelines and boundary conditions; the values 

of the critical fluid velocity (Vcr) are calculated and  

 
(a) Simply supported fluid conveying pipeline 

 
(b) One end fixed, the other end simply supported fluid 

conveying pipeline 

 
(c) Fixed-fixed fluid conveying pipeline 

Fig. 5 Effect of flow velocity on the first frequency factor 

for the fluid conveying pipeline 

 

 

presented in Table 6. 

As expected, the length of the pipeline increases the 

fixed-fixed boundary condition`ns have resulted in higher 

critical fluid velocities than the simply supported and one 

end fixed, the other end simply supported conditions. 
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Table 6 The values of the critical fluid velocity (Vcr) for the 

different values of the length of the pipelines and boundary 

conditions 

L (m) Boundary Condition Vcr (m/sec) 

3.0 

Simply supported 780.742 

One end fixed, the other end 

simply supported 
990.584 

Fixed-fixed supported 1227.272 

5.0 

Simply supported 509.537 

One end fixed, the other end 

simply supported 
675.548 

Fixed-fixed supported 889.224 

7.0 

Simply supported 369.825 

One end fixed, the other end 

simply supported 
503.667 

Fixed-fixed supported 679.774 

 

 

Similarly, the critical fluid velocity of the one end fixed, 

and the other simply supported pipeline is higher than the 

simply supported pipeline’s critical fluid velocity. 

 

 

6. Conclusions  
 

In this study, starting from the governing differential 

equations of motion in free vibration of the fluid conveying 

pipelines, DTM algorithms are developed by using 

Timoshenko beam theory and the iterative-based computer 

programs are developed for the solution of linear-

homogeneous frequency equation set relating to free 

vibration of the fluid conveying Timoshenko pipelines with 

simply supported, fixed-fixed and one end fixed, the other 

end simply supported boundary conditions. Variation in free 

vibration natural frequencies for the first five modes of 

Timoshenko pipelines is investigated for the different 

values of the nondimensionalized multiplication factor for 

the fluid velocity and the length of the pipeline. The 

calculated natural frequencies of Timoshenko pipelines by 

using DTM and ADM are compared with the results of the 

analytical solution, the critical fluid velocities are calculated 

and the first five mode shapes are plotted for different 

boundary conditions.  

All the steps of the DTM and ADM are very 

straightforward and the application of the DTM and ADM 

to both the equations of motion and the boundary conditions 

seem to be very involved computationally. However, all the 

algebraic calculations are finished quickly using symbolic 

computational software. Besides all these, the analysis of 

the convergence of the results show that DTM and ADM 

solutions converge fast. When the results of the DTM and 

ADM are compared with the results of ANM, very good 

agreement is observed. The advantages of DTM and ADM 

are their fast convergence of the solution and their high 

degree of accuracy. 

Thus, the present work has demonstrated that DTM and 

ADM have high precision and computational efficiency in 

vibration analysis of fluid conveying Timoshenko pipelines. 

These methods may be further extended to the analysis for 

nonlinearly static and dynamic responses of fluid conveying 

Timoshenko pipelines. Moreover, the fully coupled fluid-

structure interaction of fluid conveying pipelines can be 

investigated using DTM and ADM. 
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