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1. Introduction  
 

In many applications, some or all parts of a high-

performance structure are made of composite materials. The 

basis of the superior structural performance of composite 

materials, compared to the conventional materials, lies in 

their low density, high strength, high stiffness, and 

heterogeneous properties. Optimization is the main concept 

in the design of composite structures due to the adaptability 

of composite materials to a specific design situation. It 

should be also declared that the optimal design of 

composite laminates, on the other hand, has become a 

challenge for designers. Because of numerous design 

variables, the complex behavior, and multiple failure 

modes, these structures essentially require sophisticated 

analytical techniques There have been extensive numerical 

and analytical studies on the determination of critical 

buckling load of laminated composites in the literatures. 

Walker and Hamilton (2005) maximized critical bucking 

load of symmetrically laminated composite plates with 

manufacturing uncertainty in the ply angle using golden 

section method. Fares et al.  (2004) presented a 

multiobjective optimization problem to determine the 

optimal layer thickness and optimal closed loop control 

function for symmetric cross-ply laminated composite 

plates subjected to thermomechanical loadings. Sciuva et al. 

(2003) performed optimization of laminated and sandwich 

plates with respect to buckling load and thickness using 

genetic and simulated annealing algorithms. Adali et al. 

(2003) studied optimal designs of symmetrically laminated 

composites to maximize the biaxial buckling. Sebaey et al. 

(2013) presented buckling load optimization of laminated 

plates using ant colony optimization algorithm. Correia et 
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al. (2003) investigated optimal design of laminated 

composite plates with integrated piezoelectric actuators. 

Walker (2002) presented optimal designs of symmetrically 

laminated composite plates with different stiffener 

arrangements using golden section method. Walker (2001) 

presented for the optimal multiobjective design of 

symmetrically laminated composite plates using golden 

section method. Mateus et al. (1997) presented a general 

formulation for maximization of the buckling load. Walker 

et al. (1996) presented optimal buckling designs of 

symmetrically laminated composite plates under in-plane 

uniaxial loads using golden section method. Joshi and 

Biggers (1996) studied thickness optimization for laminated 

composite plates using the method of feasible directions. 

Fukunaga et al. (1995) presented an optimization approach 

for symmetrically laminated plates to maximize buckling 

loads under combined loading using lamination parameters. 

Hu and Lin (1995) maximized the buckling resistance of 

symmetrically laminated plates subjected to uniaxial 

compression with respect to fiber orientations by using a 

sequential linear programming method. Adali et al. (1995) 

presented two design problems for hybrid symmetric 

laminated plates.. Setoodeh et al. (2009) presented a 

generalized reciprocal approximation for design of variable-

stiffness laminated composite panels for maximum buckling 

load. 

While considerable researches have gone into the 

buckling load optimization of the laminated composite 

plates, only limited investigations have been reported on the 

buckling of laminated composite stepped columns in the 

literature. Lellep and Sakkov (2008) studied the stability of 

elastic multistepped columns subjected to axial pressure 

load. Lellep and Kraav (2008) established minimum weight 

design of laminated stepped column subjected to axial 

compressive load using non-linear programming. Akbulut et 

al. (2010) investigated theoretical prediction of buckling 

loads for symmetric angle-ply and cross-ply laminated flat 

composite columns.  
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Fig. 1 Geometry of a laminated stepped column (Akbulut 

et al. 2010) 

 

 

On the other hand, to the authors’ knowledge, there is no 

any research on the buckling load optimization of laminated 

composite stepped columns connected by fillets in the 

literature. Therefore, in this research, buckling load 

optimization of laminated composite stepped columns 

connected by fillets is investigated to fill this gap. The 

design objective is the maximization of the critical buckling 

load and the design variable is the fiber orientations in the 

layers of the laminates. The classical laminate plate theory 

is used for the finite element solution of the laminated 

stepped flat columns. The modified feasible direction 

(MFD) method is used for the optimization routine. For this 

purpose, a program based on FORTRAN is exploited. 

Finally, the optimization results are presented for width 

ratios (b/B), ratios of fillet radius (r1/r2), aspect ratios (L/B) 

and boundary conditions. The results are presented in 

graphical and tabular forms and the results are compared. 

 

 

2. Basic equations 
 

In Fig. 1, a laminated stepped column is illustrated. The 

displacement field of the laminates based on the classical 

laminated plate theory is given by the following expressions 

𝑢 = 𝑢𝑜(𝑥, 𝑦) − 𝑧
𝜕𝑤

𝜕𝑥
, 𝑣 = 𝑣𝑜(𝑥, 𝑦) − 𝑧

𝜕𝑤

𝜕𝑦
, 𝑤 = 𝑤(𝑥, 𝑦) (1) 

where u, v and w represent the displacements in the x, y and 

z directions, respectively and also, u0 and v0 are the plate 

mid-plane displacements.  

The membrane strains (εx, εy, γxy) and the bending 

curvatures (κx, κy, κxy) are defined as follows 

*𝜀+ = {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} =

{
 
 

 
 𝑢𝑜,𝑥 +

1

2
𝑤𝑜,𝑥
2

𝑣𝑜,𝑦 +
1

2
𝑤𝑜,𝑦
2

𝑢𝑜,𝑦 + 𝑣𝑜,𝑥 +𝑤𝑜,𝑥𝑤𝑜,𝑦}
 
 

 
 

 (2) 

*+ = {

𝑥
𝑦
𝑥𝑦

} = {

−𝑤𝑜,𝑥𝑥
−𝑤𝑜,𝑦𝑦
−2𝑤𝑜,𝑥𝑦

} (3) 

The in-plane stress resultants Nij and the moment 

resultants Mij are defined by the constitutive relations that 

given by 
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where Aij, Bij
 
and Dij

 
denote the extensional, coupling and 

bending stiffnesses, respectively. Aij, Bij
 

and Dij
 

can be 

calculated as follows 

(𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗  ) = ∫ 𝑄𝑖𝑗

ℎ/2

−ℎ/2

(1, 𝑧, 𝑧2)𝑑𝑧 (5) 

Since presently only symmetric laminates are 

considered, the coupling stiffness terms Bij vanish.  

In this study, four-noded Lagrangian finite elements 

having three degrees of freedom per node is used for the 

buckling of the laminated stepped columns. Using the same 

shape functions associated with node i (i=1, 2,…, n), Φi, for 

interpolating the variables in each element, the 

displacement vectors can be written as 

𝑢 =∑𝑖(𝑥, 𝑦)𝑢𝑖

𝑛

𝑖=1

 (6) 

where ui is the value of the displacement vector 

corresponding to the node i, and is given by 

𝑢𝑖 = {𝑢𝑜
(𝑖)
, 𝑣𝑜

(𝑖)
, 𝑤(𝑖) }

𝑇

 (7) 

The generalized form of the buckling eigenvalue 

problem using the finite element discretization can be 

written as 

(,𝐾- − [𝐾𝑔])*𝑢+ = 0 (8) 

where K and Kg are the stiffness matrix and geometric 

matrix, respectively. For a non-trivial solution, the 

eigenvalues (λ) which make the determinant to be equal to 

zero, correspond to the critical buckling loads. The 

subspace iteration technique is used for the buckling 

solution of the laminated stepped columns. 

 

 

3. Modified feasible direction method 
 

The MFD method is one of the most powerful methods 

for optimization problems. This method takes into account 

not only the gradients of objective function and constraints, 

but also the search direction in the former iteration. In this 

study, there is not any constraint. The iterative process of 

modified feasible direction method is given below step by 

step. 

Step 1 q=0, X
q
=X

m 
Step 2 q=q+1, evaluate objective function 𝐹(𝑋𝑞−1) 
Step 3 Calculate gradient of the objective function 

∇𝐹(𝑋𝑞−1) 
Step 4 Find the usable-feasible direction S

q
 

Step 5 Perform a one-dimensional search, X
q
=X

q-1
+αS

q
 

Step 6 Check convergence. If satisfied, go to step 7, 

otherwise go to step 2 
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Step 7 X
m
=X

q
 

The objective function F(Xi) is accurately modelled as a 

quadratic polynomial approximation around the current 

iterate Xi as in Eq. (9). 

F(𝑋𝑖) = 𝑎𝑜 +∑𝑎𝑖𝑋𝑖 +

𝑁𝑑

𝑖=1

∑𝑏𝑖𝑋𝑖
2

𝑁𝑑

𝑖=1

 (9) 

where Nd and Xi are number of design variables and ith 

design variable, respectively. ai and bi are the coefficients of 

polynomial function determined by a least squares 

regression. After the objective function is approximated, 

their gradients with respect to the design variables are 

calculated by finite differences methods. The solving 

process is iterated until convergence is achieved. 
Convergence or termination checks are performed at the 

end of each optimization loop. The optimization process 

continues until either convergence or termination occurs. 

The process may be terminated before convergence in two 

cases: 

• The number of design sets so far exceeds the 

maximum number of optimization loops. 

• If the initial design is infeasible and the allowed 

number of consecutive infeasible designs has been 

exceeded. 

The optimization problem is considered converged if all 

of the following conditions are satisfied: 

• The current design is feasible, 

• Changes in the objective function F: 

a) The difference between the current value and the 

best design so far is less than the tolerance τF. 

Fbestcurrent FF   

b) The difference between the current value and the 

previous design is less than the tolerance, 

Fcurrentcurrent FF  1  

• Changes in the design variables X
i
: 

a) The difference between the current value of each 

design variable and the best design so far is less than 

the respective tolerance τ
i
. 

ii
best

i
current XX   

b)The difference between the current value of each 

design variable and the previous design is less than the 

respective tolerance, 

F
i
current

i
current XX   

The optimization process was solved to obtain a global 

maximum from different initial points to check if other 

solutions were possible. The convergence tolerance ratio 

was considered 0.01 for the objective function. 

 

 

4. Optimization problem 
 

In this study, the optimization problem is the 

maximization of the critical buckling load by designing the 

fibre orientations in the layers. The optimal design problem 

can be stated mathematically as follows 

Find: 21 θ,θ  

Maximize: ( ) ( )θλmaxλ cr
θmaxcr =  

Subjected to: °° 90≤≤0 kθ  

(10) 

The critical buckling load λcr for a given fibre 

orientation is determined from the finite element solution of 

the eigenvalue problems given by Eq. (8). The optimization 

procedure involves the stages of evaluating the critical 

buckling load and improving the fiber orientation θ to 

maximise λcr. Thus, the computational solution consists of 

successive stages of analysis and optimization until a 

convergence is obtained and the optimal angle θopt is 

determined within a specified accuracy. 

 

 

5. Numerical results and discussion 
 

In this study, four layered angle-ply (θ1/θ2/θ2/θ1) 
laminated stepped columns subjected to axial pressure load 

is investigated for the optimization problem. Each of the 

lamina is assumed to be same thickness. The numerical 

results are given for a graphite/epoxy T300/5208 composite 

with the following the material properties: 

E1=181 GPa, E2=10.3 GPa, G12=7.17 GPa, v12=0.28, 

The nondimensional buckling load is calculated as 

3
2

2= hE/BλN crcr  (11) 

In this study, effect of width ratios (b/B) on the optimum 

results is investigated for symmetric angle-ply laminated 

stepped columns for both ends clamped (B/h=100, r1/r2=1, 

L/B=2.5). In Fig. 2, effect of b/B ratios on the maximum 

critical buckling load is illustrated. As seen, the maximum 

critical buckling load decreases with increase in the width 

ratio except for unstepped laminated column (b/B=1). It can 

be attributed that, as width ratio increases distribution of the 

axial pressure load on the edge of the laminated stepped 

column increases. On the other hand, unstepped column 

gives the highest critical buckling load. In Table 1, effect of 

b/B ratio on the optimum fibre orientations is given. 

 

 

 

Fig. 2 Effect of b/B ratios on the maximum critical 

buckling load 
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Table 1 Optimum fibre orientations depending on b/B ratios 

b/B θopt 

0.25 (0°/90°/90°/0°) 

0.50 (0°/30°/30°/0°) 

0.75 (0°/43°/43°/0°) 

1.00 (0°/0°/0°/0°) 

 

 

Fig. 3 Effect of r1/r2 ratios on the maximum critical 

buckling load 

 

Table 2 Optimum fibre orientations depending on r1/r2 

ratios 

r1/r2 θopt 

0.25 (0°/25°/25°/0°) 

0.50 (0°/90°/90°/0°) 

0.75 (0°/30°/30°/0°) 

1.00 (0°/30°/30°/0°) 

 

 

In Fig. 3, effect of r1/r2 ratio on the maximum critical 

buckling load is given. As seen from Fig. 4, the curve of the 

maximum critical buckling load fluctuates with increase in 

the r1/r2 ratio. The effect of r1/r2 ratio on the maximum 

critical buckling load diminishes as r1/r2 ratio increases. On 

the other hand, the maximum critical buckling load occurs 

for r1/r2=0. In Table 2, effect of r1/r2 ratio on the optimum 

fibre orientations is shown. 

In this study, effect of aspect ratio (L/B) on the optimum 

design is investigated for symmetric angle-ply laminated 

stepped columns for both ends clamped (B/h=100, b/B=0.5, 

r1/r2=1). In Fig. 4, effect of L/B ratio on the maximum 

critical buckling load is illustrated. As observed in Fig. 3, 

the maximum critical buckling load decreases as L/B ratio 

increases because of the decreasing of the rigidity of the 

laminated stepped column. In Table 3, effect of L/B ratio on 

the optimum fibre orientations is shown. 

In this study, effect of different boundary conditions on 

the optimum results is investigated for symmetric angle-ply 

laminated stepped columns (B/h=100, r1/r2=1, L/B=2.5, 

b/B=0.5). Boundary conditions are given as below: 

1. Clamped-Clamped (C-C) 

At x=0, u=v=w=θy=θz=0 

 

Fig. 4 Effect of L/B ratios on the maximum critical 

buckling load 

 

Table 3 Optimum fibre orientations depending on L/B ratios 

L/B θopt 

1.00 (4°/0°/0°/4°) 

1.50 (0°/0°/0°/0°) 

2.00 (0°/0°/0°/0°) 

2.50 (0°/30°/30°/0°) 

3.00 (0°/6°/6°/0°) 

 

Table 4 Optimum results depending on the boundary 

conditions 

Boundary conditions θopt crN  

(C-C) (0°/30°/30°/0°) 6.465 

(C-S) (0°/0°/0°/0°) 3.459 

(S-S) (0°/0°/0°/0°) 1.587 

(C-F) (0°/0°/0°/0°) 0.580 

 

 

At x=L, v=w=θy=θz=0 

2. Clamped-Simply supported (C-S) 

At x=0, u=v=w=θy=θz=0 

At x=L, v=w=θz=0 

3. Simply supported-Simply supported (S-S) 

At x=0, u=v=w=θz=0 

At x=L, v=w=θz=0 

4. Clamped-Free (C-F) 

At x=0, u=v=w=θy=θz=0 

As seen from Table 4, as expected the maximum and 

minimum critical buckling loads occur for (C-C) and (C-F) 

boundary conditions, respectively. 

 

 

6. Conclusions 
 

This paper deals with critical buckling load optimization 

of laminated stepped flat columns under axial compression 

load. The design objective is the maximization of the 

critical buckling load and the design variable is the fibre 

orientation. It is observed that width ratios, fillet radius, 

aspect ratios and boundary conditions have important 

effects on the buckling behavior of laminated steeped 

column. As seen from the results, the maximum buckling 
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load decreases as width ratio increases except for unstepped 

laminated column. Unstepped column gives the highest 

critical buckling load. The fillet radius has a substantial 

effect on the critical buckling loads of stepped columns. 

The curve of the maximum critical buckling load fluctuates 

with inrease in the r1/r2 ratio. The maximum critical 

buckling load decreases as L/B ratio increases because of 

the decreasing of the rigidity of the laminated stepped 

column. This problem can be investigated for other 

optimization methods and the results can be compared. 
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