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1. Introduction 
 

B-spline curves and surfaces are widely used for 

computer aided design purposes (Zeid 2007). The local 

control is an achievable task with these curves. This 

characteristic is compatible with the finite element method 

where lower order polynomials are used for the trial and test 

function approximation. B-spline basis functions are 

constructed from lower order polynomials and applied with 

the finite element approach based on the continuity 

requirement of the problem: the linear B-spline basis 

function are used for the C
0
 continuity requirement, the 

quadratic B-spline basis function for the C
1
 continuity 

requirement, etc. In this work, we focus on a Rayleigh beam 

problem and the combination of the quadratic B-spline basis 

function with the finite element approach is selected to 

showcase its advantage over the conventional finite element 

method.  

The quadratic B-spline finite element formulation is 

advantageous over the conventional finite element method: 

the size of mass and stiffness matrix is reduced to half when 

compared to conventional approach, it does not require a 

mesh, and a lower polynomial order is required for 

approximation when compared to conventional 

approximation. These characteristics can be useful for many 

applications; problems involving large systems and cracks 

within the continuum. A combined approach for computer 

aided design and analysis can also be performed with B-

spline curves.  

In the finite element method, Galerkin’s approach is 
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often used to obtain the weak form where trial and test 

function are formulated from the same basis function and 

this approach yields a system of symmetric matrices (Reddy 

2005); the natural boundary conditions are satisfied while 

formulating the weak form and the essential boundary 

conditions are satisfied while solving the algebraic 

equations using a transformation matrix (Shen et al. 2014). 

Since the quadratic B-spline basis function is a lower order 

polynomial, the numerical solutions of a rotating Rayleigh 

beam problem with the Galerkin quadratic B-spline finite 

element method are most likely to converge.  

Mostly, Euler-Bernoulli beam theory is used for 

structures such as the rotating blade. The advantages of this 

approach include: formulation of a single uncoupled 

differential equation, straight forward approach in 

numerical solutions, and reasonable accuracy with less 

computational effort. Timoshenko beam theory, however, 

includes shear deformation and rotary inertia. This yields a 

coupled differential equation. However, it includes 

additional complexity; shear locking in numerical solutions. 

Instead, Rayleigh beam theory includes only rotary inertia 

term in addition to Euler-Bernoulli assumptions. In 

Rayleigh theory, only a single differential equation is 

formulated. This incorporates additional accuracy with a 

straight forward approach in numerical solutions. The 

slenderness ratio  ,/ 0

2

0 IRAr   which is explained in the 

later part of this paper, is a differentiating factor between 

Euler-Bernoulli beam and Rayleigh beam results. At low 

slenderness ratio, higher natural frequencies of Rayleigh 

beam and Euler-Bernoulli beam tend to differ; rotary inertia 

plays a prominent role in higher modes as the curvature of 

bending will be higher (Avcar 2015, Tang et al. 2015). 

Rayleigh beam theory is the missing link between Euler-

Bernoulli and Timoshenko beam theory and has 
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considerable practical and pedagogical value. Recently, 

closed form solutions for axially loaded Rayleigh beams 

have been obtained (Sarkar et al. 2016). 

Generally, the free vibration problem of a rotating beam 

is solved using the finite element method (Hodges and 

Rutkowski 1981, Nagaraj and Shanthakumar 1975, 

Bauchau and Hong 1987, Hoa 1979). Various attempts have 

been made to get the analytical solutions assuming 

simplifications to the equation (Bokaian 1990). The power 

series solution of the differential equation was obtained 

using the Frobenius method (Giurgiutiu and Stafford 1977). 

Mao (2015) used the Adomain modified decomposition 

method to convert the governing differential equation of a 

rotating tapered beam into a recursive algebraic equation. 

Mohammadnejad (2015) addressed vibration problems 

including a Rayleigh beam with variable axial force. He 

performed repeated integrations to convert the governing 

ordinary differential equation into weak form integral 

equations and compared the numerical results with 

published literature and finite element method results. The 

free vibration problem of a rotating Rayleigh beam can be 

solved with the finite element formulation. In literature, this 

problem has been addressed with semi-analytical and 

numerical solutions. A series solution was obtained using 

the Frobenius method, the dynamic stiffness matrix is 

derived in the process before applying the Wittrick-

Williams algorithm to calculate natural frequencies, and the 

results were obtained for the various slenderness ratios to 

capture the change in higher modes (Banerjee and Jackson 

2013). The Rayleigh-Ritz method along with the cell 

discretization method has also been used to solve the 

rotating Rayleigh beam problem (Auciello 2013). However, 

B-spline finite element solutions remain to be explored for 

this problem. 

The B-spline basis functions have been used with 

different methods of weighted residuals. The regularized 

long wave equation was solved with the combination of 

least square method and cubic B-spline basis function (Dag 

and Ozer 2001). The same equation has also been solved 

with the combination of Galerkin method and quadratic B-

spline basis function (Gardner et al. 2013). A different 

approach, a method of subdivision-based spline curves, 

shows better convergence than the uniform refinement with 

lesser number of elements for geometrically non-linear 

problems (Bornemann and Cirak). A time integration 

scheme has also been introduced with B-spline curves 

where the method was found to be conditionally stable 

(Rostami et al. 2013). A combined approach was used for 

the design and analysis with B-spline approximation, where 

the spectral element method and the B-spline finite element 

method were used for the rod and plate model, and no major 

difference was observed between these two methods. For 

better convergence, three refinements were discussed as 

well: n-refinement, increased number of B-spline curves; p-

refinement, variation in the degree of curves; k-refinement, 

knot alteration (Kagan et al. 1998).  
The cubic B-spline finite element method was applied to 

the analysis of thin symmetric shells, where the cubic B-
spline was used for the first time to interpolate both the 
displacement and geometry. The advantages over the 
conventional finite elements were shown as well; stresses  

are continuous at nodes and the cubic B-spline interpolation 

are superior to the Hermite interpolation where the second 

derivative of the field variable is not continuous (Gupta et 

al. 1991). Isogeometric analysis uses non-uniform rational 

B-spline basis functions and the idea is to have a combined 

approach in analysis and design, which leads to 

convenience from the industrial perspective. It is a potential 

alternative to the conventional finite element method 

(Hughes et al. 2005). Higher order B-splines curves are also 

used frequently in research. Higher accuracy was achieved 

with the cubic and quintic B-spline functions for the static 

analysis of flat cylindrical shell (Shen and Wang 1987). A 

sextic B-spline collocation method was recently used for a 

non-rotating Euler-Bernoulli beam (Mohammadi 2014).  

In this paper, the quadratic B-spline finite element 

method is used to solve the rotating Rayleigh beam free 

vibration problem. Equations are also represented in non-

dimensional form for the purpose of convenience. The mass 

and stiffness matrix are derived for both the approaches; B-

spline finite element method and finite element method, 

results are obtained with these methods as well. A 

subinterval in B-spline approximation equals an element in 

finite element approximation. Results are obtained for the 

cantilever boundary condition with an equivalent 

approximation for both the methods; total 40 subintervals in 

B-spline method and 40 elements in finite element method. 

Results are obtained at different slenderness ratio for 

Rayleigh beam. Results are also obtained with Euler-

Bernoulli beam theory, where the slenderness ratio plays no 

role in the formulation. The results show that the quadratic 

B-spline finite element method presents a computationally 

efficient alternative to the conventional finite element 

method. Lower order models can be created using the B-

spline finite element which can be useful for control 

applications involving rotating beams (Wang and Wereley 

2004). To the best of our knowledge, this is the first paper 

which illustrates the B-spline finite element method for 

rotating beams. 

 

 

2. Weak formulation of the governing differential 
equation 
 

The Rayleigh beam theory includes an additional rotary 

inertia term when compared to Euler-Bernoulli beam 

theory. This results in a single differential equation. A 

rotating beam differential equation includes a centrifugal 

force term in addition to a non-rotating beam differential 

equation which varies along the length of the beam; 

analytical solutions are difficult to obtain for the rotating 

Rayleigh beam differential equation. In this section, we 

derive the mass and stiffness matrix of a beam with varying 

cross section and varying stiffness. 

The governing differential equation of a rotating 

Rayleigh beam is given by (Banerjee and Jackson 2013) 
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(1) 

Here, EI(x) is the flexural stiffness, ρ is the density, A(x) 

is the area of cross section, w(x) is the transverse 

displacement and G(x) is the centrifugal force which is 

given by    

 

R

x

xdxxAxG 2)()( 

              

(2) 

where, Ω is the angular velocity and R is the radius of the 

rotating beam. The term involving ρI(x) in Eq. (1) is the 

additional term which occurs in Rayleigh beam theory, 

when compared to Euler-Bernoulli beam theory. 

For the free vibration problem, we assume 
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The weak formulation of Eq. (3) is given by 
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Integrating Eq. (4) by parts, we get 
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(5) 

The first two terms of Eq. (5), which are outside the 

integrals, will reduce to zero; the test function satisfies the 

essential boundary conditions. The natural boundary 

conditions will be satisfied in the first two terms as well, 

and are given by  
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The left hand side of Eqs. (6) and (7) represent the shear 

force and bending moment at the tip of a rotating Rayleigh 

beam, respectively. 

Eq. (5) can be rewritten as 
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The conventional finite element formulation involves 

Hermite interpolation of trial and test function and it is 

given by 
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Substituting Eqs. (9) and (10) in equation (8), we get 
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where, [N(x)] represents the shape function vector and [q] 

represents a vector containing nodal degrees of freedom. 

From Eq. (11), the stiffness matrix can be written as 
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and the mass matrix can be written as
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To get the stiffness and mass matrix of a rotating Euler-

Bernoulli beam, the terms involving ρI(x) have to be 

omitted; the third term in Eq. (12) and the second term in 

Eq. (13) will not contribute to a rotating Euler-Bernoulli 

stiffness and mass matrix, which are given by 
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The stiffness and mass matrix terms are straightforward 

in Rayleigh beam theory and Euler-Bernoulli beam theory, 

where matrices are easy to invert and are of lower size. 

However, in Timoshenko beam theory, the size of matrices 

will be even higher (based on the interpolation) and 

matrices will be difficult to invert; the enhanced accuracy is 

achieved at higher computational cost and with an 

additional problem of shear locking. 

Natural frequencies of a rotating Rayleigh beam are 

given by 

]][[]][[2  KM 
          

(16) 

where, i=1,2,3…N, where, ω1 is the first natural frequency 

and [ϕ] is an eigenvector.  

 

 

3. Non-dimensional form of the equation 
 

Non-dimensional form of equation simplifies the 

formulation as various parameters can be clubbed together 

into a few key parameters. A non-uniform beam has the 

varying cross-section and stiffness across its length. To 

obtain the non-dimensional form of a non-uniform beam, 

we consider variations in cross sectional area and second 

moment of area, given by (Banerjee and Jackson 2013) 

)()(),()( 00 xfAxAxgIxI 
       

(17, 18) 
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and c is a constant which can be considered as the taper 

ratio.  Here, A0 and I0 are the cross sectional area and 

second moment of area terms, respectively, at the left end 

(thick end) of the beam. By considering different values of 

the non-uniform parameter n , various practical cases of 

tapered beams can be created. 

The non-dimensional form of the Eq. (3) is given by 
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where, ,
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Here, s is the non-dimensional rotating speed, λ is the 

non-dimensional natural frequency, and r is the slenderness 

ratio which differentiates results of the Rayleigh beam and 

the Euler-Bernoulli beam. For a thick beam, the results of 

both the theories tend to differ, but as the beam gets slender 

the difference is insignificant. For a thick beam, 

Timoshenko beam theory enhances the results further by 

adding the shear deformation term into the formulation. 

In non-dimensional form, the boundary conditions are 

given by 
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From the weak formulation of Eq. (21), we can obtain 

the stiffness matrix as 
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and the mass matrix as  
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From Eqs. (26) and (27), we notice that as the value of 

the slenderness ratio  0

2

0 / IRA  increases, the results of 

the Rayleigh beam will approach to the results of the Euler-

Bernoulli beam; the third term in Eq. (26) and second term 

in Eq. (27) will be omitted in Euler-Bernoulli beam theory. 

For a non-rotating beam formulation, one has to substitute 

the value of non-dimensional rotating speed (s) equal to 

zero; the second and third terms of the stiffness matrix will 

be omitted. 
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Fig. 1 Quadratic B-spline curves 

 
 
4. Quadratic B-spline finite element formulation 
 

The B-spline curves are chosen with the finite element 

approach based on the continuity requirement of the 

problem. In conventional finite element method, the 

Hermite interpolation is an appropriate selection for the 

Rayleigh beam problem, where displacement and slope are 

continuous at the nodal boundaries. Similarly, in B-spline 

finite element method, the quadratic B-spline curves satisfy 

the required C
1
 continuity.  

The Hermite interpolation requires two points while the 

quadratic B-spline curve requires four points for 

interpolation; three B-spline curves contribute to one 

subinterval and vice-versa. A combined approach of design 

and analysis can be performed with these curves. Fig. 1 

shows a non-uniform rotating Rayleigh beam with the 

quadratic B-spline curve distribution. 

The B-spline basis function for the zeroth order 

polynomial (p=0) is given by  
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To calculate higher order B-spline basis functions, a 

recursive formulae is used; higher order basis functions are 

calculated from lower order basis functions. The B-spline 

basis function for the first order polynomial and for the 

higher order polynomials (p≥1) are given by (Boor 1972) 
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The basis functions for the linear polynomials (p=1) and 

for the quadratic polynomials (p=2) are given by 
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(31) 

Figs. 2(a)-(b)-(c) show constant, linear, and quadratic B-

spline curves, respectively (Hughes et al. 2005). Where the 

knot vector [x] is given by 

   54321x  

We can clearly see from the Figs. 2(a)-(b)-(c) that the n
th 

order B-spline curve will contribute to n+1 sub-intervals. 

 

Fig. 2(a) Constant B-spline curves 

 

 

Fig. 2(b) Linear B-spline curves 

 

 

Fig. 2(c) Quadratic B-spline curves s 

 

 

From Eqs. (28), (30), and (31), we write the quadratic B-

spline equation, which includes three subintervals 
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The quadratic B-spline basis function is a lower order 

polynomial when compared to the Hermite cubic 

polynomials. In polynomial order, the cubic B-spline basis 

function is equivalent to the Hermite cubic polynomials, but 

for the later, the second derivative of the field variable is 

not continuous. 

The components of the quadratic B-spline basis function 

for a subinterval [xi−xi+1] are given as 
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It is clear from Eq. (33) that three B-spline curves will 
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contribute to one sub-interval. And one can approximate the 

transverse displacement (field variable) in this sub-interval 

using the basis function given by 

  iiiiiiiiw    11221,         
(34) 

      1,1,1,   iiiiiiw 
           

(35) 

where β1, 
β2, β3,…, βn are the unknown B-spline curve 

parameters. 

The equivalent approximation in the conventional finite 

element is given by  

      1,1,1,   iiiiii dNw
           

(36) 

where, vector [d] contains twice the number of unknowns 

than in vector [β] A total of n unknowns will appear with 

Eq. (35), but the conventional finite element method yields 

2n unknowns after the application of the essential boundary 

conditions and hence the size of matrices will be double in 

the conventional finite element method. 

Weak formulation can be obtained over a sub-interval. 

Using Galerkin’s method, for interval [xi−xi+1] we get the 

stiffness matrix as 
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and the mass matrix as 
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The B-spline approximation does not satisfy the 

Kronecker delta property and a transformation matrix is 

used to apply the essential boundary conditions. The 

transformation is given by 
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where, [T] is a transformation matrix. We can see that the 

essential boundary conditions can be easily applied as the  

Table 1 Non-dimensional natural frequencies of a non-

rotating Rayleigh beam with linear area and cubic inertia 

variation 

 

Table 2 Non-dimensional natural frequencies of a rotating 

Rayleigh beam with linear area and cubic inertia variation 

 

 

first two elements of vector [w] represent displacement and 

slope at the fixed node (In case of the cantilever boundary 

conditions). 

 

 

5. Results and discussion 
 

Results are obtained for the cantilever boundary 

conditions given by 

,0)0( xw ,0
)0(


xdx

wd ,0)( RxV  and .0)( RxM  

where V is the shear force, and M is the bending moment. 

For results, we consider a total of 40 subintervals for the 

quadratic B-spline finite element method and 40 elements 

for the conventional finite element method. The size of 

mass and stiffness matrix for the quadratic B-spline finite 

element method is [40,40] and for the conventional finite 

element it is [80,80] Results are obtained for a non-rotating 

(s=0) and a rotating beam (s=50) 

Tables 1 and 2 show the first five non-dimensional 

natural frequencies of a non-rotating Rayleigh beam and a 

rotating Rayleigh beam, respectively. In both the Tables, the 

factor n  which is responsible for the non-uniform nature 

of the beam is considered equal to 1. This leads to a cubic 

variation in I(x) and a linear variation in A(x) (Eqs. (19), 

(20)). The taper ratio c is chosen as 0.5. Two values of the 

slenderness ratio (r=10, r=100) are considered in both the 

Tables. The last column in both the Tables shows the results 

for an Euler-Bernoulli beam, and results are independent of 

the slenderness ratio. We see that the B-spline finite element 

method results compare well with the published results. 

r=10, s=0, n =1, c=1/2
 

r=100, s=0, n =1, c=1/2
 

 

(Banerjee 
and 

Jackson 

2013) 

FEM 

n=40 

B-spline 

FEM 
m=40 

(Banerjee 
and 

Jackson 

2013) 

FEM 

n=40 

B-spline 

FEM 
m=40 

FEM 
(n=40) 

(Euler-

Bernoulli) 

λ1 3.7727 3.7727 3.7728 3.8233 3.8233 3.8234 3.8238 

λ2 17.097 17.0975 17.1079 18.304 18.3038 18.3153 18.3173 

λ3 40.412 40.4126 40.4794 47.178 47.1781 47.2599 47.2649 

λ4 N/A 69.4402 69.6629 N/A 90.1371 90.4422 90.4509 

λ5 N/A 101.4261 101.9597 N/A 147.1728 147.9916 148.0035 

r=10, s=5, n =1, c=1/2
 

r=100, s=5, n =1, c=1/2
 

 

(Banerjee 
and 

Jackson 

2013) 

FEM 

n=40 

B-spline 

FEM 
m=40 

(Banerjee 
and 

Jackson 

2013) 

FEM 

n=40 

B-spline 

FEM 
m=40 

FEM 
(n=40) 

(Euler-

Bernoulli) 

λ1 6.6118 6.6118 6.6120 6.7421 6.7421 6.7423 6.7434 

λ2 20.356 20.3563 20.3655 21.888 21.8883 21.8985 21.9053 

λ3 43.444 43.4436 43.5061 50.839 50.8391 50.9161 50.9339 

λ4 N/A 72.2411 72.4555 N/A 93.8788 94.1374 94.2067 

λ5 N/A 103.9772 104.4983 N/A 150.9629 151.7639 151.8160 
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Table 3 Non-dimensional natural frequencies of a non-

rotating Rayleigh beam with quadratic area and quartic 

inertia variation 

r=10, s=0, n =2, c=1/2
 

r=100, s=0, n =2, c=1/2
 

 

(Banerjee 

and 

Jackson 
2013) 

FEM 

n=40 

B-spline 

FEM m=40 

(Banerjee 

and 

Jackson 
2013) 

FEM 

n=40 

B-spline 
FEM 

m=40 

FEM 

(n=40) 

(Euler-
Bernoulli) 

λ1 4.5517 4.5517 4.5518 4.6244 4.6244 4.6245 4.6251 

λ2 18.211 18.2107 18.2215 19.533 19.5328 19.5447 19.5476 

λ3 41.457 41.4573 41.5253 48.489 48.4886 48.5717 48.5790 

λ4 N/A 70.3744 70.5995 N/A 91.4925 91.8002 91.8132 

λ5 N/A 102.2365 102.7736 N/A 148.5498 149.3729 149.3917 

 

Table 4 Non-dimensional natural frequencies of a rotating 

Rayleigh beam with quadratic area and quadratic inertia 

variation 

 

 

 
Figs. 3(a)-(b) Mode shapes of a non-rotating and a rotating 

beam for ,1n
 

respectively (linear area and cubic inertia 

variation) 

For the non-uniform parameter ,2n  results are 

obtained in Tables 3 and 4, and every other parameter is 

kept same as shown in Tables 1 and 2. This case 

corresponds to a quartic variation in I(x) and a quadratic 

variation in A(x). Tables 3 and 4 show the first five non-

dimensional natural frequencies of a non-rotating Rayleigh 

beam and a rotating Rayleigh beam, respectively. Again, we 

see that the B-spline finite element method compared well 

with the published results. The first five mode shapes are 

drawn in Figs. 3 and 4 for the values of n  equal to 1 and 

2, respectively.  

In Fig. 5, the fifth natural frequency is plotted with the 

change in slenderness ratio for non-uniform parameter )(n

equal to 1. We can clearly see that for higher slenderness 

ratio, higher natural frequencies of Rayleigh beam and 

Euler-Bernoulli beam are almost equal. For lower modes, 

natural frequencies are almost equal in both the theories 

(negligible variation with the change in the slenderness 

ratio); from the analytical solutions of non-rotating beams, 

one can clearly see that the effect of the rotary inertia term 

is not prominent for lower modes.   

The non-uniform parameter )(n
 

is varied to get 

change inthe first five natural frequencies. The results are 

shown in the Table 5, where all the five natural frequencies 

vary linearly with linear change in non-uniform parameter, 

which can be observed in the Fig. 6. 

 

 

 

 
Figs. 4(a)-(b)Mode shapes of a non-rotating and a rotating 

beam for ,2n respectively (quadratic area and quartic 

inertia variation) 
 

r=10, s=5, n =2, c=1/2
 

r=100, s=5, n =2, c=1/2
 

 

(Banerjee 

and 

Jackson 
2013) 

FEM 

n=40 

B-spline 
FEM 

m=40 

(Banerjee 

and 

Jackson 
2013) 

FEM 

n=40 

B-spline 
FEM 

m=40 

FEM(n=40) 
(Euler-

Bernoulli) 

λ1 7.1268 7.1268 7.1269 7.2885 7.2885 7.2886 7.2901 

λ2 21.003 21.0033 21.0129 22.618 22.6179 22.6286 22.6360 

λ3 44.014 44.0143 44.0786 51.595 51.5945 51.6735 51.6919 

λ4 N/A 72.7026 72.9205 N/A 94.6302 94.9289 94.9630 

λ5 N/A 104.3394 104.8659 N/A 151.7073 152.5153 152.5683 
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Figs. 5(a)-(b) Variation in the fifth natural frequency with 

change in the slenderness ratio for a non-rotating and a 

rotating beam, respectively 

 

Table 5 Variations in the first five natural frequencies with 

change in non-uniform parameter 

r=10, 

s=0, 

c=1/2 
1n  2n  3n  4n  5n  

λ1 3.7728 4.5518 5.4416 6.4470 7.5712 

λ2 17.1079 18.2215 19.4045 20.6639 22.0059 

λ3 40.4794 41.5253 42.6525 43.8610 45.1511 

λ4 69.6629 70.5995 71.6133 72.7031 73.8680 

λ5 101.9597 102.7736 103.6581 104.6121 105.6344 

 

 

6. Conclusions 
 

Rayleigh beams include the effect of rotary inertia 

besides retaining the usual assumptions made for Euler-

Bernoulli beams. Rayleigh rotating beam models are 

finding increasing use in engineering structures such as 

helicopter rotor blades, compressor and turbine blades. 

Calculating accurate frequencies and mode shapes of the 

rotating structure in a computationally efficient manner 

plays an important role in their design. The free vibration 

problem of a rotating Rayleigh beam is solved with the 

quadratic B-spline finite element method. The size of the 

matrices and lower polynomial order are of importance with 

this method as matrix inversion becomes easier and requires 

less computational effort. Results are also obtained with the 

 

Fig. 6 Variations in the first five natural frequencies with 

change in non-uniform parameter 

 

 

conventional finite element method with an equivalent 

discretization; total 40 elements in comparison to 40 sub-

intervals of the quadratic B-spline finite element method. 

Results show an accurate match with the results published 

in literature and with the conventional finite element results 

for different non-uniform cross sections. In particular, two 

cases on non-uniform parameter 1n and 2n are 

considered which correspond to linear area and cubic inertia 

variation, and quadratic area and quartic inertia variation, 

respectively. The non-uniform beam formulation developed 

in this paper is valid for a large classes of practical beams. 

Results are also obtained with the Euler-Bernoulli beam 

theory to see the effect of slenderness ratio  0

2

0 / IRA  on 

the Rayleigh beam results. It is evident that for higher 

modes at higher slenderness ratio, the results of both the 

theories are almost equal. Also, variations in first five 

natural frequencies are obtained with change in non-

uniform parameter. 
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